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SIMULATION
Primary Goals
I Introduce Monte Carlo Simulation Study (MCSS) designs

I What? Why? How?
I How are results typically presented?
I How could they be improved?

I Showcase how they are implemented in R with some best
practice guidelines



Monte Carlo Designs. . .

Monte Carlo Simulation Studies provide a pivotal foundation for
research in Quantitative Psychology and applied statistics at large.

What are Monte Carlo Simulation Studies?
MCSS are experiments with a wide variety of applications.
Generally, certain parameters, which are known and fixed by the
researcher, are used to generate random data and then estimate or
analyse the behavior of other statistics across many conditions.

This is repeated over many iterations and then results are
summarized for dissemination.
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MCSS and the Central Limit Theorem

Given the population parameter ψ, let ψ̂ = f(D) be the associated
sample estimate, which is a function of data input D.

Theoretical CLT: given an infinite number of randomly sampled
datasets Di of size n, ψ can be recovered as the mean of all f(Di)s.

MCSS: Generate a large (but finite!) number of datasets
(“replications”, R) to obtain a sample approximation of the
population parameter (ψ̃):

ψ̃ = f(D1) + f(D2) + · · ·+ f(DR)
R
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Further. . .

I While this seems reasonable for explaining concepts like the
standard error of the mean, this holds for virtually any statistic
and data generating mechanism (Mooney, 1997).

I Further, the sampling error of ψ can be approximated by
finding the standard deviation of all f(Di) sets:

SE(ψ̃) =

√
[f(D1)− ψ̃]2 + · · ·+ [f(DR)− ψ̃]2

R
,

. . . which is interpreted as the standard deviation of a statistic under
a large number of random samples — an empirically obtained
estimate of the standard error that does not require or assume an
infinite number of samples.



The General Structure

1. Generate a dataset with n values according to some
probability density function (e.g., normal, log-normal, binomial,
χ2, etc.).

2. Analyse the generated data by finding the mean of the
sampled data, and store this value for later use.

3. Repeat steps 1 and 2 R times. Once complete, summarise the
set of stored values with an appropriate statistic (e.g. mean,
standard deviation).

Manipulate!
Once this structure is built, all sorts of things can be manipulated:
generating distribution, sample size, number of replications,
heterogeneity of variance, and so on.



Monte Carlo Designs. . .
In general, they have been used to:

I Evaluate the performance (e.g., Power/Type I error rates) of a
new statistic or under various assumption violations
I Examine the effects of skewness and kurtosis in linear mixed

models (Arnau et al., 2013)

I To see how well parameters are recovered in specific conditions
I Investigate the behaviour of statistics and estimaters at various

sample sizes (Schönbrodt and Perugini, 2013; Chalmers and
Flora, 2014)

I Determine the behavior of model fit statistics in complex
multivariate systems of equations (Heene et al., 2012; Bollen
et al., 2014)

I Simulate ‘realistic’ data to address hard to study phenomena
I To estimate if lower income areas have more pedestrian

casualties (Noland et al., 2013)
I Projections of teen pregnancy rates (Sayegh et al., 2010)
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Origins

I Invented in the 1940s by Stanislaw Ulam, while working on
nuclear weapons projects at Los Alamos National Laboratory.

I Was ill and ended up pondering the success rates of solitaire:

...what are the chances that a Canfield solitaire will come out
successfully? After spending a lot of time trying to estimate them
by pure combinatorial calculations, I wondered whether a more
practical method... might... be to lay it out say one hundred times
and... count the number of successful plays.

I Due to the war effort, the project required a code name.
Nicholas Metropolis suggested “Monte Carlo”, after the casino
in Monaco where Ulam’s uncle gambled.



Within Psychology

MCSS are especially prevalent in the pages of Multivariate
Behavioral Research and Structural Equation Modeling (SEM). In
fact, these two journals have printed specific guides for researchers:

I Skrondal (2000) - Design and analysis of Monte Carlo
experiments: Attacking the conventional wisdom

I Paxton, Curran, Bollen, et al. (2001) - Monte Carlo
experiments: Design and implementation

I Boomsma (2013) - Reporting Monte Carlo studies in Structural
Equation Modeling



Within Psychology

For SEM in particular, MCSS are an excellent approach for
evaluating estimators and goodness-of-fit statistics under a variety
of conditions, model complexity, and model misspecification (e.g.,
Kenny et al., 2015).

Paxton et al.: “. . . many topics in SEM would benefit from an
empirical analysis through Monte Carlo methods” (2001, p. 288).



A search for peer reviewed articles using the query all(“Monte
Carlo Simulation”) in scholarly journals on PsycINFO. . .
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Conducting MCSS Research
Prep Work
1) Develop a theoretically derived research question and choose an

appropriate software package.

Generate
2) Design specific experimental conditions and select values for

the population parameters.

Analyse
3) Execute the simulation and repeat.
4) Troubleshoot and verify.

Summarise
5) Condense results from across iterations
6) Prepare results for communication



Conducting MCSS: An Introduction

Let’s say Georgie is interested in the ability of a sample mean (x) to
recover µ and if the CLT approximation for the standard error is
reasonable, given three different sample sizes.

Simulation Design
I Choice of generating distribution: normal
I Values of interest: the mean, the standard error
I Manipulation of interest: sample size (5, 30, 60)



Georgie’s First Simulation: Setup
# Design
R <- 5000 # set 5,000 replications
mu <- 10 # set mu to 10
sigma <- 2 # set standard deviation to 2
N <- c(5, 30, 60) # set 3 sample size conditions

# Results
res <- matrix(0, R, 3) # create a null matrix

# (with R rows, and 3 columns)
# to store output.

colnames(res) <- N # name columns (5, 30, 60)

head(res, n = 2)

## 5 30 60
## [1,] 0 0 0
## [2,] 0 0 0



Georgie’s First Simulation: Replications

set.seed(77) # Set seed to make analysis replicable
for(i in N){ # i = 5/30/60, across the 3 iterations

for(r in 1:R){ # 1:R creates a vector 1,2,3,...,R
dat <- rnorm(n = i, mean = mu, sd = sigma)

# generate random data from a normal
# distribution with set mean and sd

res[r, as.character(i)] <- mean(dat)
# return mean of dat and put it in res on row
# r and in either column 5, 30, or 60.

}
}
head(res, n = 2)

## 5 30 60
## [1,] 10.95739 10.11153 10.07469
## [2,] 10.64917 10.01001 9.90292



Georgie’s First Simulation: Summarise
# summarise by calculating mean for each column
apply(res, 2, mean)

## 5 30 60
## 10.00193 10.00089 10.00194
# summarise by calculating s for each column
apply(res, 2, sd)

## 5 30 60
## 0.8892208 0.3684190 0.2575624

Georgie’s Observations
I µ was recovered well regardless of n.
I Sampling variability of the estimates decreased as n increased.
I Empirical SEs can be compared against CLT (σ/

√
n):

I 0.894, 0.365, and 0.258



Georgie’s First Simulation: Summarise
# summarise by calculating mean for each column
apply(res, 2, mean)

## 5 30 60
## 10.00193 10.00089 10.00194
# summarise by calculating s for each column
apply(res, 2, sd)

## 5 30 60
## 0.8892208 0.3684190 0.2575624

Georgie’s Observations
I µ was recovered well regardless of n.
I Sampling variability of the estimates decreased as n increased.
I Empirical SEs can be compared against CLT (σ/

√
n):

I 0.894, 0.365, and 0.258



Conducting MCSS: A WARNING

ABORT
While "for loops" are useful for introducing simulation designs they
should not be used if at all possible:
I Setup mixes generate and summarise steps
I For loops become increasingly complex as the design expands

(nested loops)
I Objects can be easily overwritten accidentally
I Design change might require overhaul of entire loop structure
I Deciphering and debugging for loops is hell



Conducting MCSS: What to look for in Software

What we want. . .

I An overarching philosophy for structuring MCSS that clearly
delineates between generate, analyse, and summarise steps.

I A structure that can be expanded as needed for various designs.
I Convenience features, e.g.:

I Resample non-convergent results
I Support parallel computation
I Save/restore results in case of power failures
I Explicit tools for debugging



Conducting MCSS: My Recommendation

Highly recommended: SimDesign in R (Chalmers, 2018):
install.packages("SimDesign")
library(SimDesign)



What does SimDesign provide?

Core elements of SimDesign make explicit reference to the
generate-analyse-summarise paradigm:

Design <- createDesign(...)

Generate <- function(...) ...
Analyse <- function(...) ...
Summarise <- function(...) ...

results <- runSimulation(...)

This structure can be applied to any simulation study,
regardless of its complexity!



The SimDesign Skeleton



The Helper: SimFunctions()
SimFunctions("MySim", comments = TRUE) # creates .R script w/comments



MySim.R, continued:



It is. . . by Design

The “design” of a simulation study is typically a (fully-crossed) set
of factors. SimDesign uses a tibble to store this:
Design <- createDesign(sample_size = c(5, 30, 60))
Design

## # A tibble: 3 x 1
## sample_size
## <dbl>
## 1 5
## 2 30
## 3 60

Benefits:

I Design will be accessed sequentially (top to bottom), so it is
easy to see what parameters are being passed and when.

I Rows of Design can be filtered, just as you would subset any
other data.

I Columns can be added to incorporate other factors!



createDesign()

Add another variable to create fully-crossed design object:
Design <- createDesign(sample_size = c(30, 60, 120),

distribution = c('norm', 'chi'))
Design

## # A tibble: 6 x 2
## sample_size distribution
## <dbl> <chr>
## 1 30 norm
## 2 60 norm
## 3 120 norm
## 4 30 chi
## 5 60 chi
## 6 120 chi



createDesign()

Use subset argument to remove unwanted rows:
Design <- createDesign(sample_size = c(30, 60, 120),

distribution = c('norm', 'chi'),
subset = !(sample_size == 60))

Design

## # A tibble: 4 x 2
## sample_size distribution
## <dbl> <chr>
## 1 30 norm
## 2 120 norm
## 3 30 chi
## 4 120 chi



Generate This!

Generate() is a function that has only 1 required input:
condition (a single row from Design) and uses parameters from
that row to prepare a single dataset:

Generate <- function(condition, fixed_objects = NULL) {
dat <- rnorm(n = condition$sample_size, mean = 10, sd = 2)
dat

}

I Note the use of condition$ to access variables from Design.
I Use if() statements if needed (e.g., for generating

distribution).



Analyse That!

The purpose of Analyse() is to calculate and store all statistics of
interest from each iteration.

For example, if we are only interested in the mean:

Analyse <- function(condition, dat, fixed_objects = NULL) {
ret <- mean(dat)
ret

}

This code will be called R times for each row of the Design matrix
and can be used to return multiple values, if needed.



Then Summarise!
Summarise() is where we compute meta-statistics such as means,
standard deviations, degree of bias, root mean-square error (RMSE),
detection rates, and so on.

Summarise <- function(condition, results, fixed_objects = NULL) {
c_mean <- mean(results)
c_se <- sd(results)
ret <- c(mu = c_mean, se = c_se) # create a named vector
ret

}

For each row of the design matrix, SimDesign will return the
mean and standard error of the R replications as well as the number
of replications, computation time, and a summary of any warnings
that occurred.



runSimulation()

The final step is to pass the objects to runSimulation():

results <- runSimulation(design=Design, replications = 5000,
generate=Generate, analyse=Analyse, summarise=Summarise)

I Useful optional arguments:
I seed: Set a random value seed for reproducability.
I save: Save results to an external file.
I parallel/ncores: Use parallel processing.
I debug: Set to jump inside a running simulation (via

browser()). Options include: error, all, generate,
analyse, summarise.



. . . But what about the results?



MCSS Presentation, An Example

Even results from fairly simple MCSS produce a large amount of
output, which are often presented in very long tables. Ramsey &
Ramsey (2009) in the British Journal of Mathematical and
Statistical Psychology had a straight-forward design:

I Goal: compare the performance of 10 pairwise multiple
comparison procedures (MCPs) in an ANOVA framework

I Design:
1. degree of heteroskedasticity (c, equal variance, and multiplied

by 2, 4, and 10)
2. number of groups (k, from 4 to 8)
3. sample size per group (n, from 2 to 500)

I Primary output: Type I error rates from full true null models.

What might be included in a publication?







. . . and it is still going!

Even so, this table ignores:
I Many of the sample size comparisons

I none of the (many) sample size conditions that pertain to
unequal groups

I The number of groups factor. . .
I this entire table only refers to k = 4!



Observations

MCSS Results
Output takes the form of multi-dimensional tables with
dimensions pertaining to the results for one or more outcome
measures (e.g., Type I error rate) for a particular set of design
variables or conditions (e.g., sample size/generating distribution).

However, methods for conveying MCSS findings has typically been
given little attention.

For instance, Paxton et al. (2001) state that results can be
presented “descriptively, graphically, and inferentially” but provide
little detail on how to do so.



MCSS Presentation

“...reading results from Monte Carlo studies in whatever form should
be a revelatory task, not a baffling puzzlement."

–Boomsma, 2013, p. 534.

Issues with tabular displays
I Results nearly unreadable, except for looking up particular

combinations of factors
I Many comparisons get hidden from view, especially for complex

simulation designs with many factors
I Wearisome – patterns are difficult to discern at a glance

How can this situation be improved?



Shaded Tables 1



Shaded Tables 2



Interactive Exploration



Final Example - Type I Error Rates and Power

A quick study of Type I error (and power) rates for the independent
groups t-test under violations of homogeneity of variance:
library(SimDesign)
Design <- expand.grid(sample_size = c(30, 60, 120),

group_size_ratio = c(1, 2),
sd_ratio = c(1/4, 1, 4),
mean_diff = c(0, 0.5))

head(Design)

## sample_size group_size_ratio sd_ratio mean_diff
## 1 30 1 0.25 0
## 2 60 1 0.25 0
## 3 120 1 0.25 0
## 4 30 2 0.25 0
## 5 60 2 0.25 0
## 6 120 2 0.25 0



Final Example - Type I Error Rates and Power

Generate <- function(condition, fixed_objects = NULL){
# Attach() makes the variables in condition directly accesible
Attach(condition)
N1 <- sample_size / (group_size_ratio + 1)
N2 <- sample_size - N1
group1 <- rnorm(N1)
group2 <- rnorm(N2,

mean=mean_diff,
sd=sd_ratio)

dat <- data.frame(group = c(rep('g1', N1),
rep('g2', N2)),

DV = c(group1, group2))
dat

}

Analyse <- function(condition, dat, fixed_objects = NULL){
welch <- t.test(DV ~ group, dat)
ind <- t.test(DV ~ group, dat, var.equal=TRUE)
ret <- c(welch=welch$p.value, independent=ind$p.value)
ret

}



Final Example - Type I Error Rates and Power

Summarise <- function(condition, results, fixed_objects = NULL){
ret <- EDR(results, alpha = .05)
ret

}

NOTE: EDR() is a SimDesign function for detection-based statistical
tools; e.g., if f(D) returns a p-value, then an estimate of the “true
detection rate” (aka empirical detection rate) is approximated by:

ρ̃ = Iα[f(D1)] + · · ·+ Iα[f(DR)]
R

,

where Iα is an indicator function that returns 1 if the p-value from f(D) is
less than α and 0 otherwise. EDR() averages the values to obtain a
proportion.



Final Example - Type I Error Rates and Power

results <- runSimulation(design = Design, replications = 1000,
parallel = TRUE, generate = Generate,
analyse = Analyse, summarise = Summarise)

head(results)

## # A tibble: 6 x 10
## sample_size group_size_ratio sd_ratio mean_diff welch independent
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 30 1 0.25 0 0.05 0.06
## 2 60 1 0.25 0 0.041 0.048
## 3 120 1 0.25 0 0.054 0.055
## 4 30 2 0.25 0 0.056 0.157
## 5 60 2 0.25 0 0.049 0.158
## 6 120 2 0.25 0 0.044 0.152
## # ... with 4 more variables: REPLICATIONS <int>, SIM_TIME <dbl>,
## # COMPLETED <chr>, SEED <int>



Final Example - Type I Error Rates and Power

TypeI <- subset(results, mean_difference == 0)
Power <- subset(results, mean_difference != 0)

library(ggplot2)
ggplot(TypeI,

aes(factor(standard_deviation_ratio), independent) +
geom_boxplot() + ylim(c(0,.2))

ggplot(TypeI,
aes(factor(standard_deviation_ratio), welch) +

geom_boxplot() + ylim(c(0,.2))



Final Example - Type I Error Rates and Power
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Final Example - Type I Error Rates and Power
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Conclusion

I The theory of simulation studies is reasonable but dependent
on the appropriate choice of parameters by the researcher.

I Many topics are amenable to MCSS designs!
I MCSS are fairly easy to implement, especially when one is able

to harness the power of R and SimDesign (see Sigal and
Chalmers, 2016).

I Presenting results from MCSS experiments via tables is the
classic approach. . .
I . . . however, there is definitely room for improvement.
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