
Introduction to Monte Carlo Simulations
with Applications in R Using the

SimDesign Package

Phil Chalmers

2019-12-17

Overview

1) What are Monte Carlo simulations (MCSs), and why do
we do them?

2) Meta-statistics to summarise MCS results
3) Hands-on coding of MCSs, and overview of the

SimDesign package in R
4) Important considerations and principles to follow
5) Presenting results

What are Monte Carlo Simulations?

Numerical experiments using data randomly sampled from a
selection of probability distributions.
I Given some design condition under investigation, generate

some data, analyse said data, repeat R times, and
summarise the obtained results

I Requires computers to perform these experiments, usually
with a good general purpose/statistical programming
language (R, SAS, python, C++)

I General setup is embarrassingly parallel. Makes these
experiments ideal for modern super-computers, user-built
Beowulf clusters, or even computers on completely
different networks

Why should we care?

Rationale:
I Regarding parameter estimates, sampling properties must

be established so that they can be used with confidence in
empirical data
I Furthermore, estimators may perform better than others

in different settings
I Small sample properties may not be known (even when

large-sample asymptotics are)
I Analytic results may not be possible (e.g., sampling

distribution of 1
n

∑n
i=1 |xi − x̄ |?)

I Assumptions are required for all models . . . but what
happens when these assumptions are violated?

Typical issues investigated in MCSs

I Is an estimator biased? What are its sampling properties
(i.e., standard error)?

I How do different estimators compare in terms of
efficiency?

I Is an estimator consistent/robust when assumptions are
violated?

I Do the confidence intervals demonstrate nominal
coverage rates?

I Given some nominal detection rate (α), how powerful is a
test statistic when the null hypothesis is false; does it
retain the null the appropriate proportion of times when
the null is true (Type I error)?

Reasoning of MCSs

For population parameter ψ (given some pre-specified
conditions), let ψ̂ = f (D) be a sample estimate given some
randomly sampled dataset (D).
I Say that we had a number of randomly sampled datasets

from this population. For each dataset, we could compute
ψ̂1 = f (D1), ψ̂2 = f (D2), . . ., ψ̂R = f (DR).

I Under the Central Limit Theorem, as the number of
random samples R →∞ then ψ ≡ E [f (D)].

I Therefore, given our finite datasets we could use the
approximation ψ ≈ 1

R
∑R

r=1 f (Dr) when R is large enough.

Reasoning of MCSs

To use this property of the Central Limit Theorem in MCSs, if
we were to randomly generate datasets with the desired
empirical properties (often implied by the model we want to
analyse it with) then ψ̂r = f (Dr) would be a single instance
from the true sampling distribution of ψ.
I Repeating the data generation process to obtain Dr many

times, and collecting the results in the form ψ̂r = f (Dr),
will give us a random sample of the true sampling
distribution of the statistic.

I From here, we can make inferences about the properties of
the statistic by analysing different properties of this
collected set of estimates (mean, standard deviation,
quartiles, etc).

Simple Example

Question
How does trimming the sample mean affect estimation of the
population mean (µ) when the data are drawn from a Gaussian
distribution? Investigate using different sample sizes.

Simple Example (generate + analyse)
R <- 1000
mu <- 1
N <- c(30, 90, 270)
mat <- matrix(0, R, 3)
colnames(mat) <- c('mean', 'trim.1', 'trim.2')
res <- list('30'=mat, '90'=mat, '270'=mat)

for(r in 1L:R){
for(n in N){

dat <- rnorm(n, mean = mu, sd = 1)
M0 <- mean(dat)
M1 <- mean(dat, trim = .1)
M2 <- mean(dat, trim = .2)
res[[as.character(n)]][r,] <-

c(M0, M1, M2)
} #end n

} #end r

Sample of estimator distributions

head(res[['30']])

mean trim.1 trim.2
[1,] 1.082 1.163 1.195
[2,] 1.235 1.207 1.172
[3,] 0.830 0.890 0.895
[4,] 1.149 1.107 1.054
[5,] 0.938 0.983 1.044
[6,] 1.011 1.007 0.985

Sample of estimator distributions

head(res[['270']])

mean trim.1 trim.2
[1,] 0.993 0.998 1.004
[2,] 0.918 0.921 0.917
[3,] 0.925 0.933 0.949
[4,] 1.006 1.001 0.985
[5,] 0.969 0.977 0.988
[6,] 0.997 0.992 0.968

Sample of estimator distributions

Recall that µ = 1 in this simulation.
sapply(res, colMeans)

30 90 270
mean 0.996 1 0.999
trim.1 0.996 1 0.999
trim.2 0.996 1 0.999

Standard Error

From Wikipedia: The standard error (SE) is the standard
deviation of the sampling distribution of a statistic, most
commonly of the mean.
I After collecting our estimates we have successfully

obtained an unbiased sample of the true sampling
distribution.

I Hence, the standard deviation of the collection of sample
estimates is an estimate of the standard error!

Simple Example (summarise)

sapply(res, function(x) apply(x, 2, sd))

30 90 270
mean 0.182 0.105 0.0611
trim.1 0.187 0.109 0.0631
trim.2 0.195 0.115 0.0658

Recall that for the mean estimator (no trimming), the sampling
error is SE = σ/

√
N .

sapply(N, function(n, SD = 1) SD / sqrt(n))

[1] 0.1826 0.1054 0.0609

Flow of MCSs

All MCSs follow the same work-flow:
I generate data from some probability sampling distribution

(implied by some model) given a fixed set of design
parameters/conditions,

I analyse these data to obtain information about the
statistical estimators, detection rates, confidence intervals,
etc,

I Repeat the generate and analyse operations a number of
times and collect their results, and summarise this
information using relevant meta-statistics.

Summarising results
What we really want is some way to compare different
estimators using standard methods.

bias : Good estimators should be unbiased. Bias estimates
therefore should be close to 0.

bias = 1
R

R∑
r=1

(ψ̂r − ψ)

root-mean square error (RMSE). Good estimators should
demonstrate minimal sampling error when recovering the
population values; the less sampling error, the better.

RMSE =

√√√√ 1
R

R∑
r=1

(ψ̂r − ψ)2

MSE ≡ RMSE 2

Summarising results

Note that RMSE ≥ SD. Although SD is equivalent to the
standard error (SE), it doesn’t account for the potential bias in
the parameter estimates.

I Recall that SE = SD =
√

1
R

∑R
r=1(ψ̂r − ψ̄)2, where ψ̄ is

used instead of ψ. Hence, RSME ≡ SE iff bias ≡ 0.
I Bias contributes to population recovery accuracy with the

relationship RMSE =
√
bias2 + SE 2

I Therefore, RMSE captures information about how variable
the sampling variability as well as how much the bias
negatively contributes to the accuracy of recovering
population parameters.

Simple Example (summarise)

sapply(res, function(x, pop) colMeans(x - pop),
pop = mu)

30 90 270
mean -0.00409 0.00299 -0.001445
trim.1 -0.00380 0.00237 -0.000814
trim.2 -0.00356 0.00275 -0.000553
(RMSE <- sapply(res, function(x, pop)

sqrt(colMeans((x - pop)^2)), pop = mu))

30 90 270
mean 0.182 0.105 0.0611
trim.1 0.187 0.109 0.0630
trim.2 0.195 0.115 0.0658

Summarising results

For unbiased estimators we can also find the relative
efficiency of the estimators by simply forming ratios between
the MSE values (treating one estimator as the reference).

REi = (RMSEi/RMSE1)2

REi = MSEi/MSE1

Naturally, when i = 1 then RE ≡ 1. Values greater than 1
indicate less efficiency than the reference, while values less than
1 indicate more.

Simple Example

RE <- t((t(RMSE) / RMSE[1,])^2)
RE

30 90 270
mean 1.00 1.00 1.00
trim.1 1.05 1.08 1.07
trim.2 1.14 1.20 1.16

Coverage, Type I Errors, and Power

Other types of MCSs are possible that don’t necessarily focus
on parameter recovery per say.
I For instance, we may be interested in whether a proposed

confidence interval contains the population parameter at
some advertised rate (1− α). This is commonly referred
to as coverage.

95% confidence interval coverage
CIs <- matrix(0, 10000, 2)
for(i in 1:10000)

CIs[i,] <- t.test(rnorm(100, mean = 2.5))$conf.int
1 - mean(CIs[,1] > 2.5 | CIs[,2] < 2.5)

[1] 0.949

Coverage, Type I Errors, and Power
Analogously, we may be interested in whether p-values return
the correct detection rates.
I Type I Errors: Reject the Null hypothesis when it is true.

This should happen at a rate of α.
ps <- numeric(10000); alpha <- .05
for(i in 1:10000) ps[i] <- t.test(rnorm(100))$p.value
mean(ps < alpha)

[1] 0.0476

I Power: Reject the Null hypothesis when it is false (given
α). Higher rate = better.

for(i in 1:10000) ps[i] <- t.test(rnorm(100, mean=0.2))$p.value
mean(ps < alpha)

[1] 0.506

Organizing Monte Carlo Simulations

Organizing Monte Carlo Simulations
This area is often taken for granted. If the design of the MCS is
not well thought out beforehand then you may find yourself in a
world of headaches and remorse....

Thinking A Little More Clearly

Previous slides are enough to help you understand 99% of the
simulation work out there, and technically are enough for you to
write your own simulations. That’s great, but. . . .
I DON’T DO IT THIS WAY!
I There are better, more organized, less error prone ways.
I Let’s start with the three main F-ing problems with the

previous coding approach:
I for-loops
I functions
I features

I Got 99 Problems and a For-Loop Makes 100,
101, 102, . . .

The for-loop philosophy is generally how one approaches
MCSs in general purpose programming languages (at least at
first). This leads to some pretty annoying problems:
I Loops can be rearranged, and may be deeeeeeeeeply nested
I Objects can be accidentally rewritten in larger programs

(e.g., n <- 10 . . . for(n in 1:N))
I Objects don’t have to be standard (could be list, matrices,

vectors, etc). This can create confusion
I Notation is non-standard (what the heck does n mean?!?!).

Requires extra documentation
I Code is generally harder to read and keep organized
I Hard to make extensible (e.g., add more distributional

shapes to the example)

Simple Example Code (Again)
R <- 1000
mu <- 1
N <- c(30, 90, 270)
mat <- matrix(0, R, 3)
colnames(mat) <- c('mean', 'trim.1', 'trim.2')
res <- list('30'=mat, '90'=mat, '270'=mat)

for(r in 1L:R){
for(n in N){

dat <- rnorm(n, mean = mu, sd = 1)
M0 <- mean(dat)
M1 <- mean(dat, trim = .1)
M2 <- mean(dat, trim = .2)
res[[as.character(n)]][r,] <-

c(M0, M1, M2)
} #end n

} #end r

(Less) Simple Example Code
R <- 1000; mu <- 1
dist <- c('norm', 'chi')
N <- c(30, 90, 270); mat <- matrix(0, R, 3)
colnames(mat) <- c('mean', 'trim.1', 'trim.2')
tmp <- list('norm'=mat, 'chi'=mat)
res <- list('30'=tmp, '90'=tmp, '270'=tmp)

for(r in 1L:R){
for(d in dist){

for(n in N){
dat <- if(d == 'norm') rnorm(n, mean=mu)

else rchisq(n, df = mu)
M0 <- mean(dat)
M1 <- mean(dat, trim = .1)
M2 <- mean(dat, trim = .2)
res[[as.character(n)]][[d]][r,] <-

c(M0, M1, M2)
} #end n

} #end d
} #end r

(Less) Simple Example Code

head(res[['270']][['chi']])

mean trim.1 trim.2
[1,] 0.909 0.659 0.571
[2,] 1.030 0.725 0.627
[3,] 1.036 0.751 0.605
[4,] 1.098 0.722 0.614
[5,] 0.892 0.645 0.504
[6,] 1.125 0.757 0.598

Functions to Avoid Hard-to-find Errors

I All of the meta-statistics previously described could be
explicitly coded each time they are required. However, this
is unintuitive and very error prone.

I Instead, functions should be written and utilized, such
as bias(), RMSE(), empirical detection rates/coverage,
and so on. These should be recycled and reused once they
are well tested.

I In order to do this though, data should be kept in an easily
accessible and predictable form (not nested-lists)

Features Which Should be Considered

I Saving/resuming temporary simulation state in case of
power-outages/crashes

I Automatically re-drawing data when analysis functions fail
(but tracking how functions failed)

I Outputting files to completely save analysis results (and
making sure to do this uniquely)

I Making efficient use of RAM (e.g., discarding data objects,
avoiding large empty storage objects)

I Parallel computation support, including support on larger
clusters or across independent nodes/computers

I Clear and easy debugging (for-loops make it difficult to
debug anything due to littered workspace)

. . . enter the SimDesign package.

The SimDesign package

SimDesign
Provides tools to help organize Monte Carlo simulations in R. The
tools provided control the structure and back-end of the Monte
Carlo simulations by utilizing a generate-analyse-summarise strategy.
The functions control common simulation issues such as
re-simulating non-convergent results, support parallel back-end
computations, save and restore temporary files, aggregate results
across independent nodes, and provide native support for debugging.

The SimDesign package

Philosophy of the SimDesign package is to explicitly follow the
work-flow:
I Given some design conditions

(generate → analyse)R → summarise

In the lingo of R, design is some pre-defined object to be
indexed and acted upon while three functions are used and
recycled over and over again to complete the MCS steps.

The SimDesign package

Design <- createDesign(...)

Generate <- function(...) ...
Analyse <- function(...) ...
Summarise <- function(...) ...

res <- runSimulation(design = Design,
replications = 1000,
generate = Generate,
analyse = Analyse,
summerise = Summarise)

The SimDesign package

SimDesign requires
I Design is a tibble object with the relevant simulations

conditions to be investigated in each row, and each major
MCS condition to be in each column (e.g., sample size,
effect size, distribution, etc),

I generate(), analyse(), and summarise() are all
user-defined R functions (with a specific set of inputs and
required output properties), and

I passing all objects, functions, and optional arguments to
runSimulation() to control the MCS flow and features

The SimDesign package

The SimDesign package contains a selection of convenience
functions as well.
I bias(), RMSE(), and RE(): bias, RMSE, and RE. Accepts

statistics in deviation form if that happens to be easier.
I ECR() and EDR(): empirical coverage and detection rates.

The SimDesign package
One important feature in SimDesign is that the internal
functions are wrapped within try() calls automatically. Hence,
if an routine fails within any of the respective functions (i.e., a
stop() call is thrown) then SimDesign will silently deal with
the error while also tracking what the error message was.
I Error messages are appended into the returned object with

the number of times they occurred
I Users may throw their own stop() calls if useful (e.g.,

when a model converges but not before the maximum
number of iterations were reached)

I SimDesign has built-in safety termination when more than
50 consecutive errors are thrown. This avoids simulations
getting stuck in infinite loops, even when running code
across different cores

The SimDesign package

Thankfully, the package allows some initial hand-holding to get
you started. Simply run one of the following commands after
loading the package:
library(SimDesign)
SimFunctions()
SimFunctions('my-awesome-simulation')

The SimDesign package

SimDesign
Let’s explore how the previously described simulations can be
performed with SimDesign instead of using for-loops.

General simulation considerations

I Design your simulation experiment like you would design a
real-world experiment. Use thought over bruit force

I Ensure that the description of your simulation is clear and
reproducable. Others should be able to replicate your
design

I Throw errors early and often, and run analysis functions
that are known to take the most time/are the most likely
to fail first. You don’t want to do extra computations if
you don’t need to!

General simulation considerations

I Each combination of conditions you are interested in grows
exponentially. So be careful not to choose too many,
especially if you can reason that they will be irrelevant a
priori

I That being said, don’t just choose conditions that you
think will be favorable. . . .you may be pleasantly surprised!

Writing Principles

1) Start testing your simulation with a small number of
replications/conditions to make sure it runs through
correctly. Increase once the majority of the bugs have been
worked out

2) Document strange aspects of your simulation/code that
you are likely to forget about

3) Save the state of your simulation! Helps to resume later in
case something goes wrong, but also gives you something
to track for longer simulations (runSimulation(...,
save = TRUE))

4) Useful to output your results as well
(runSimulation(..., save_results = TRUE)),
especially for debugging purposes

Presenting results

I Present your results as if you were dealing with a
real-world experiment

I Check for interaction effects via ANOVA/regression
methods, and look at effect sizes for an indication of what
conditions are the most influential in the results

I Use figures (box-plots, scatter plots, power curves),
condensed/marginalized tables (with rounded numbers),
descriptions, etc, to highlight the important aspects of
your findings
I Table-plots can be useful here as a nice hybrid

Conclusion

MCSs are important to quantitative researchers, so it’s
important to understand how they work and how to construct
them.
I Practice makes perfect. Make trial runs of your code to

make sure it works before doing anything serious. The
more often you write, the better you will get at it
I Use of version control systems like git are useful here

I Be critical. Evaluate the simulation as if it were someone
else’s. What would you criticize about your
design/presentation? Is the purpose of the simulation
obvious?

Conclusion

I Have fun and explore. This is one of the few areas where
exploring can be fun and rewarding. Even if you don’t have
a simulation study in mind, write about topics:
I You’ve had trouble grasping,
I Have always wondered about,
I Are skeptical of.

I For more information, please refer to Sigal, M. J. &
Chalmers, R. P. (2016). Play It Again: Teaching Statistics
with Monte Carlo Simulation. Journal of Statistics
Education, 24, 136-156.

Further Information

I Gentle, J. E. (1985). Monte Carlo methods. In S. Kotz &
N. L. Johnson (Eds.), The encyclopedia of statistical
sciences (Vol. 5, pp. 612-617). New York: Wiley.

I Paxton, P., Curran, P., Bollen, K. A., Kirby, J., & Chen, F.
(2001). Monte Carlo Experiments: Design and
Implementation. Structural Equation Modeling, 8,
287-312.

I Mooney, C. Z. (1997). Monte Carlo simulation. Thousand
Oaks, CA: Sage.

The SimDesign package
I aggregate_simulations(): when saving results on

independent nodes (using only a fraction of the total
replication number) this function aggregates the saved
files into one weighted simulation result.

runSimulation(..., replications = 500,
filename = 'file1')

runSimulation(..., replications = 500,
filename = 'file2')

reads-in .rds files in working directory
Full <- aggregate_simulations()

For nodes linked on a LAN network (i.e., a Beowulf cluster)
then the setup simply requires passing the argument MPI =
TRUE. See the example in help(runSimulation).

