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Overview of Workshop 1

Workshop 1

Primarily about estimating item parameters and diagnosing tests.
Workshop 2 will be more about test scoring and explaining variability using
IRT.

@ Overview of basic and advanced IRT concepts useful for applied item
analyses

@ Statistical estimation techniques for obtaining optimal parameter
estimates in unidimensional and multidimensional models

@ Hands-on applied analysis with mirt, including model fit and item
diagnostic utilities, fitting common and customize item response
models, nonparametric estimation of latent trait densities, utilizing
different estimation algorithms, computation of standard errors, etc

o Utilizing multiple-group estimation techniques to detect differential
item and test functioning



Item response theory

ltem response theory

Item response theory (IRT) is a set of latent variable techniques
specifically designed to model the interaction between a participants ability,
or latent trait, with item level stimuli (difficulty, guessing, etc.)

Three main reasons to use IRT:

e Model a test (parameter estimation, diagnostics, dimensionality
checking, etc.) in which focus is on the item/population parameters,

o Explain variability either in the item properties or persons who were
given the test, and

@ Score a test to obtain estimates of the latent trait(s) for individual
participants



Item response theory

Understanding test data

When analyzing test data, we have responses to questions as our primary
source of information. Generally, this can be coded numerically:

## Item_1 Item_2 Item_3 Item_4 Item_5 Item_6
## [1,] 0 0 0 3 1 2
## [2,] 1 0 0 3 1 2
## [3,] 0 1 1 3 1 3
## [4,] 0 0 0 2 1 2
## [5,] 0 1 1 3 1 3
## [6,] 1 1 1 3 1 2

But what we really want to obtain is some kind of ‘scoring’ procedure to
help us state properties like

@ person 1 > person 2 << person 5 > person 4, w.r.t. their ability

@ had person 3 been given a different item we would expect them to
have a 90% chance of answering correctly

@ Some population of individuals are more likely to answer questions
correctly, regardless of their ability (e.g., native versus non-native
speaking populations)



Item response theory

What is Item Response Theory?

@ Item response theory (IRT) is a set of latent variable techniques
specifically designed to model the interaction between a subject's
ability (i.e., latent trait) and item-level stimuli (difficulty, guessing,
etc.)

@ Focus is on the pattern of responses rather than on composite
variables and linear regression theory (i.e., classical test theory), and
emphasizes how responses can be thought of in probabilistic terms

@ Larger emphases on the error of measurement for each test item
with respect to particular ability levels rather than a global index of
reliability/measurement error (e.g., Cronbach's o, McDonald's w,
etc.)

@ Widely used in educational and psychological research to study latent
variable constructs other than ability (e.g., personality, motivation,
psychopathology)



Item response theory

What is Item Response Theory?

Unidimensional or Multidimensional
Most common IRT models are unidimensional, meaning that they model

each item with only one latent trait, although multidimensional IRT
models are becoming more popular due to their added flexibility.




I IRT

Unidimensional IRT

ltem Response Theory Models J




Unidimensional IRT

Unidimensional IRT models (dichotomous)

IRT models were originally developed to model how a subject's ability (6)
was related to answering a test item (0 = incorrect, 1 = correct) given
item-level proprieties, and how this could be understood probabilistically.

1
1+ exp(—(ab + d))

P(y =1|0,a,d) =

e This is the two-parameter logistic model (2PL)%.

@ Given some ability, 8, the probability of positive endorsement is
non-linearly related to the item easiness (d) and it's
slope/discrimination (a). In canonical form: log(P/(1— P)) = af +d

@ The dichotomous Rasch model is realized when the slope parameters
are fixed to a constant (usually 1)

1 Those who are more familiar with the traditional IRT metric, where
a + d = a(0 — b), the a parameters will be the identical for these parameterizations,
while b= —d/a



Unidimensional IRT

IRT trace line
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Figure 1: The 2PL model is similar to a logistic regression model; however, in
IRT 0 is not observed directly.



Unidimensional IRT

Unidimensional plots (2PL)
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Figure 2: ltem response curves when varying the slope and intercept parameters

in the 2PL model



Unidimensional IRT

Unidimensional IRT models (dichotomous, cont.)

Generalization of the 2PL model are also possible to accommodate for
other common testing phenomenon, such as guessing or careless
responding effects.

(u—g)

P(y =1/6,a,d =
(y=1/0,a,d,g,u) €t T o (—(a0 £ )

This is the (maybe not so popular, but still pretty cool) four parameter
logistic model (4PL), which when specific constraints are applied reduces
to the 3PL, 2PL, and Rasch model.

@ Given 6 the probability of positive endorsement is related to the item
easiness (d), discrimination (a), probability of randomly guessing (g),
and probability of randomly answering incorrectly (u)

@ For psychological questionnaires the lower and upper bounds often
have no real rational, and are taken to be 0 and 1, respectively (in
clinical instruments they may be justified)



Unidimensional IRT

Unidimensional plots (4PL)
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Figure 3: Item response curves when varying the lower and upper bound
parameters in the 4PL model



Unidimensional IRT

|deal point models (dichotomous)

Ideal point models are a special type of IRT model that are intimately
related to the class of ‘unfolding’ models in the psychometric literature.
They are useful when determining where a person is most likely to be
situated in latent variable space when any deviation from their location
causes a decrease in the response probability.

These types of questions often arise in non-ability based measures (e.g.,
personality traits, preference ratings, etc).

@ For example, we ask a participant to agree or disagree with this
statement: | know item response theory fairly well.

o If they agree to this statement, then there is evidence that they
believe they know the material fairly well.

o However, if they disagree with the statement it could be for two
distinct reasons: they do not know IRT well, OR, they know IRT very
well



Unidimensional IRT

|deal point models

The ideal point models has the form
P(y = 1|0, a,d) = exp(—0.5(af + d)?).

@ The ideal point model is easily generalized to multidimensional space
by including more latent traits (Maydeu-Olivares et al., 2006).

@o-
N



Unidimensional IRT

IRT figures with mirt

To help understand how the parameterizations in IRT models affect the
shape of the probability response curves, | have included an interactive
graphical interface to allow the parameters to be modified in real time.

@ The interface is shipped with the package by default, and can be
called using the following:

library('mirt')
itemplot(shiny = TRUE)



Unidimensional IRT

Unidimensional IRT models (polytomous)

Several different types of polytomous item response models exist for
ordinal categories, rating scales, partial credit scoring, unordered
categories, and so on.

o Likert scales, for example, are often modeled by ordinal or rating

scale/partial credit models. The ordinal/graded response model can
be expressed as:

P(yk = k|0, ¢) = P(y > k) = P(y > k+1),

which is simply the difference between adjacent 2PL models (dichotomizing
the item at each category, and estimating separate 2PL models).



Unidimensional IRT

Unidimensional IRT models (polytomous)

A handful of models are from the so-called ‘divide by total' family of IRT
parameterizations, such as the (generalized) partial credit model and
nominal response model.

o For the generalized partial credit model the akj values below are
treated as fixed and ordered from 0 to (k — 1). This indicates that
each successive category is scored equally (the ak, values are often
interpreted as scoring coefficients)

_ __ exp(aki(af) + di)
P(y = k|0,v) Zj'(:l exp(aki(ad) + C/k).

@ aky values indicate the ordering of the categories. In nominal models,
some aky values are estimated to indicate the ordering of the
categories empirically.



Unidimensional IRT

Unidimensional plots (polytomous)
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Figure 4: Probability curves for ordinal /graded (left), generalized partial credit
(center), and nominal (right) response models




Unidimensional IRT

Hybrid of dichtomous and polytomous models

Some response options are worse than others, and sometimes which
response is selected can be informative. E.g.,

5+6=7

Q 10
Q11
Q 12
Q 56

Clearly, those who pick 56 really do not understand addition. There are
multiple approaches to modeling this response phenomemon, and usually
this can be detected with the nominal response model.



Unidimensional IRT

Hybrid of dichtomous and polytomous models

@ Suh and Bolt (2010) introduced a hybrid IRT model for jointly
modeling items that have a dichotomous scoring key, but contain
additional distractor options (e.g., MC items)

@ Contain more information about individuals in the lower # distribution

@ Essentially the model fits a 2-4PL model for the correct response
category, and then fits a nominal response model on the remaining
‘distractor’ options



Unidimensional IRT
ltem and test scoring functions

It is useful to know what the expected score would be given the underlying
abilities for both items and tests. Scores are collected by weighting the
probability trace lines by their respective category locations. For items,

K-1
S(0,9) =Y k- Py = K6, v)
k=0
while for the total test,
J
T(0,%) =) 5(0.¢)
j=1

T(0,1) indicates what the expected total score would be given 6.



Unidimensional IRT

ltem and test scoring functions
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Unidir ional IRT

First look at mirt

First Look at the mirt Package J




Unidimensional IRT

mirt package

Why the mirt package?

o Open-source competitor to proprietary software, useful for real data
analysis and research (handles thousands of items and millions of
participant response), and provides a didactic tool for teaching IRT in
classroom settings

@ Many flexible parameter estimation features:

Mixed (dichotomous and polytomous) IRT model estimation with
flexible specifications for unidimensional and multidimensional patterns
Linear and nonlinear parameter constraints and bounds

Prior parameter distributions

Item- and group-level covariates

User defined item types for on the fly estimation

Nonlinear latent traits and interaction terms



Unidimensional IRT

mirt package

@ Multidimensional estimation techniques that do not rely on
quadrature or joint-ML based schemes (i.e., Metropolis-Hastings
Robbins-Monro, quasi-Monte Carlo EM)

@ Dimensional reduction capabilities to efficiently estimate
two-tier/bi-factor structures. These can help dramatically reduce
estimation times while increase precision

@ Multiple-group and mixed effects IRT modeling for inspecting group
equivalences, modeling item and person-level covariates, and treating
different item parameter estimates as fixed or random



Unidimensional IRT

mirt package

Explicit differential item and test functioning support via a likelihood
framework (does not require ad-hoc test ‘linking' procedures because
it can be built into the estimation directly)

Wide array of plotting features, latent trait estimation, item, person,
and model fits statistics, standard error/information matrix
calculations

Customizable prior parameter distributions and integration grids for
item and person parameter estimation

and more!



Unidimensional IRT

mirt package

The mirt package contains five primary estimation functions, all of which
support mixed item formats for multidimensional response models, and
each with their own special purpose. They are

e mirt() - single group estimation using quadrature (EM) and
stochastic MML (MH-RM) estimation

@ bfactor() - single/multiple group bi-factor or two-tier estimation by
using a dimensional reduction EM algorithm, useful when there are
multiple packets of independent specific factors (e.g., testlets,
longitudinal models)

e mdirt () - latent class model estimation (fairly experimental, as there
are better packages for such procedures)



Unidimensional IRT

mirt package

Two of the modeling functions for including conditional effects (i.e., group
membership, multilevel models, test effects, etc) are

@ multipleGroup() - multiple group estimation, containing useful
tools for horizontal and vertical scaling, as well as for detecting DIF

@ mixedmirt () - mixed effects IRT models for including fixed or
random effect covariates at the item and person level. MH-RM
estimation engine only

mirt () may also include conditional regression effects, but we will cover
this more next workshop.



Unidimensional IRT

mirt () basics

mirt () requires at minimum two inputs: data, and model.

o data matrix/data.frame that must be structured numerically, and
where each row represents a unique individual

@ model can be a numerical object specifying the number of factors to
extract (similar to how factanal() functions for exploratory factor
analysis) or a mirt.model() defined object for more complex factor
loading patterns

#untdimensional model

modl <- mirt(data = data, model = 1)
#two dimensional exploratory model
mod2 <- mirt(data = data, model = 2)

#unidimensional model with mirt.model definition
model <- mirt.model('Fl1 = 1-5')
mod3 <- mirt(data, model)



Unidimensional IRT

Possible mirt item models

The class of IRT model estimated is chosen based upon the itemtype argument
passed to mirt () and friends. From the help(mirt) documentation:

itemtype

type of items to be modeled, declared as a vector for each item or a single value
which will be repeated globally. The NULL default assumes that the items follow
a graded or 2PL structure, however they may be changed to the following:
'Rasch’, "2PL’, '3PL’, '3PLu’, '4PL’, 'graded’, 'grsm’, 'gpcm’, 'nominal’, 'ideal’,
'"PC2PL’, 'PC3PL’, '2PLNRM’, '3PLNRM’, '3PLuNRM’, and '4PLNRM’, for the
Rasch/partial credit, 2 parameter logistic, 3 parameter logistic (lower or upper
asymptote upper), 4 parameter logistic, graded response model, rating scale
graded response model, generalized partial credit model, nominal model,
ideal-point model, 2-3PL partially compensatory model, and 2-4 parameter
nested logistic models, respectively. User defined item classes can also be defined
using the createltem function

Additionally, each itemtype model has an associated mathematical definition in
the ?mirt help file.



Unidimensional IRT

Generic functions

mirt is designed with object oriented programming in mind, with useful R
generic functions that act on estimated model objects.

@ print() — print the estimated model along with global fit statistics,
e.g., G AIC, BIC, etc

@ coef () and summary () — extract unstandardized and standardized
(i.e., factor loadings) coefficients, respectively, and optionally rotate
the parameters for exploratory models

@ anova() — comparison between nested models via Xz, AIC, AlCc,
BIC, etc

@ plot() — two- and three-dimensional probability, information, and
scoring plots relating to the test as a whole



Unidimensional IRT

print ()

dat <- expand.table(LSAT7)
lsat_mod <- mirt(dat, 1)
print(lsat_mod)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
mirt(data = lsat, model = 1)

Full-information item factor analysis with 1 factor(s).
Converged within 1e-04 tolerance after 28 EM iteratioms.
mirt version: 1.8.2

M-step optimizer: BFGS

EM acceleration: Ramsay

Number of rectangular quadrature: 41

Log-likelihood = -2658.805

AIC = 5337.61; AICc = 5337.833

BIC = 5386.688; SABIC = 5354.927

G2 (21) = 31.7, p = 0.0628

RMSEA = 0.023, CFI = 0.939, TLI = 0.924



Unidimensional IRT

coef ()

coef (1sat_mod, simplify = TRUE)

## $items

## al dgu
## Item.1 0.988 1.856 0 1
## Item.2 1.081 0.808 0 1
## Item.3 1.706 1.804 0 1
## Item.4 0.765 0.486 0 1
## Item.5 0.736 1.855 0 1
##

## $groupPars

## $groupPars$means
## MEAN_1

## 0

##

## $groupPars$cov
## F1

## F1 1



Unidimensional IRT

summary ()

summary (1sat_mod)

## F1 h2
## Item.1 0.502 0.252
## Item.2 0.536 0.287
## Item.3 0.708 0.501
## Item.4 0.410 0.168
## Item.5 0.397 0.157
##

## SS loadings: 1.366
## Proportion Var: 0.273

##

## Factor correlations:
##

## F1

## F1 1
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Multidimensional IRT

Multidimensional IRT models

Multidimensional IRT (MIRT) models replace the single 8 and a values
with vectors @ and a, respectively. This is analogous to the transition from
zero-order logistic regression to multiple logistic regression.

(v—2g)
1+exp[—(a’8 + d)]’

P(y =1|0,a,d,g,u) =g+

This model has a very intimate relationship to non-linear factor analysis
when g =0 and u = 1 (since logit(P) ~ a’0 + d), and is often called a
‘compensatory’ model due to the relationship between latent trait scores.

@ Similar relationship exists for the graded response model



Multidimensional IRT

Multidimensional IRT models

The MIRT extension for the nominal/generalize partial credit model can
also readily be understood using the previously declared parameterization.

Ply — k10 0) — exp(akk(a’'0) + dk) .
y=k6.9) S, explak(a') + di)

Again, various aky's may be freed to estimate the empirical ordering of the
categories (nominal) or treated as fixed values to specify the particular
scoring function (gpcm/rating scale).



Multidimensional IRT

Multidimensional plots
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Multidimensional IRT

Compensatory models

The multidimensional models in the previous graphs are know as
‘compensatory’ models. The reason for this is that

@ A low 6 parameter on one dimensions does not necessarily entail a
low probability of positive endorsement

@ High values on adjacent 6,2, can compensate due to the relationship
z=a101 + ax0, + d

o Eg.,ifay =a,=1and d =0, a participant with the values
0&1) = —3 and 0&1) = 3 will have exactly the same response
probability as an individual with the ability values 9§2) = 052) =0



Multidimensional IRT

Partially compensatory models

Noncompensatory (or partially compensatory) models, on the other hand,
are not as affected by high/low 6 since they are constructed by multiplying
individual 2PL response curves:

m 1
Py =116,0) =g+ (1-g) kll 1+ exp(—(acbe + i)

This model appears to be appealing from a theoretical perspective in many
ability testing situations where the response probabilities should be entirely
dependent on adjacent traits.

o E.g., a question that asks how to solve a mathematical problem, but
presents the problem in words, will require the subject to have a
sufficient reading comprehension before being able to measure their
mathematical ability.

@ Unfortunately parameters can be very unstable without highly optimal
data conditions (Chalmers & Flora, 2014).



Multidimensional IRT

Partially compensatory models
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Multidimensional IRT

Exploratory and Confirmatory

@ As we have seen, MIRT models can often be understood as non-linear
extensions of more traditional linear factor analysis methodology, and
as such have exploratory and confirmatory aspects

@ For exploratory models, the orientation of the 6 axes used to estimate
the model are constrained to be orthogonal (no inter-factor
correlations), and should be rotated following convergence for better
interpretation

@ Confirmatory models have no rotational indeterminacy, and are similar
to confirmatory FA in structural equation modeling (by definition,
unidimensional IRT models are confirmatory)

Confirmatory models are generally specified with the mirt.model ()
function’s syntax.



Multidimensional IRT

mirt.model () syntax

mirt uses a customized syntax for defining confirmatory patterns (i.e.,
Q-matrix), and requires calling the mirt.model () function. Factor names
can be defined by the user, but the keyword COV is reserved for specifying
which covariance parameters should be estimated.

# example of a simple structure with correlated an

# inter—factor correlation between factors 1 and 2, and 1 and 3.
# Factor 1 loads on items 1 to 4 and 6, factor 2 loads

# on 7, 8 9 and 5, and factor 3 loads on ttems 10 to 20

model <- mirt.model('

F1 =1-4, 6
F2 = 5, 7-9
F3 = 10-20

COV = F1xF2, F1%F3')

cmod <- mirt(dat, model)



Multidimensional IRT

mirt.model () syntax

The syntax definitions can contain other keyword elements as well that are
useful for specifying equality constraints, prior parameter distributions,
polynomial trait combinations, etc. Also supports using item names
instead of index locations.

@ CONSTRAIN and CONSTRAINB — parameter equality constraints within
and between groups

@ PRIOR - specify prior parameter distributions (e.g., normal,
log-normal, beta)

@ START — specify explicit start/fixed parameter values

model2 <- mirt.model('
Theta = 1-10
(Theta * Theta) = 2,4,6,8,10 ## quadratic factor

## constrain first factor slopes to be equal
CONSTRAIN = (1-10, al)

## N(0,1) prior on d for item 2,3,5, N(0,0.5) for item 4
PRIOR = (2-3, 5, d, norm, O, 1), (4, d, norm, O, 0.5)")



Diagnostics

Test, Item, and Person Diagnostics J




Diagnostics

Diagnostics

Unfortunately, statistical models may not agree well with the empirical
data. Knowing how well our model and items fit within our tests is a very
important topic. Diagnostics help us find (and possible fix) potential
problems, and help us judge the usefulness of the model.

Empirical problems can areas for many reasons, and mirt offers a few
useful tools to help diagnose issues at the

o test-level — providing global fit measures

o item-level — checking how well each item fits within the test, and
whether there are residual interdependencies between items

@ person-level — same as items, but with respect to participants



Diagnostics

Test Diagnostics

Global fit statistics are useful to describe how well the model fits overall,
but are less useful at diagnosing specific modeling problems. In IRT, global
fit stats are possible with the G? statistic, but this becomes impractical
very quickly due to data sparseness.

G2 =2 r/oe[ri}
(3 es [

To circumvent the sparseness issue, mirt implements the M2 and M2*
family of statistics (Maydeu-Olivares & Joe 2006) that are based on the
second order marginals of the item covariances.

o Fit statistics are accessible with the M2() function. Different fit
statistics are also available when passing method = ’EAPsum’ to
fscores().



Diagnostics

Test Diagnostics

@ The M2 family of fit statistics are intimately related to the fit stats in
structural equation modeling, while the fscores() approach is based
on reducing the sparse response patterns to residuals based on total
scores

@ Both provide x? type model fit testing for dichotomous and
polytomous items by collapsing the extremely sparse data-tables into
more manageable marginals

o Related statistics are also available, such as RMSEA, SRMSR (and
residual covariance matrix), CFl, TLI, etc

| generally find M2() to be more useful, especially for multidimensional
models (where the total scores are less meaningful).



Diagnostics

ltem Diagnostics

There are generally two classes of item diagnostic tools: detecting residual
covariation between items, and judging the overall fit of an item within a
test.

Covariance-based residuals are available through the residuals()
function, and include

e local dependence (Chen & Thissen, 1997) statistics (x? and G2
variants), and
e Q3 statistic (Yen, 1984)

Generally these are x? variants, but may be standardized for easier
interpretation. Mostly used for diagnosing multidimensionality, and can
return the complete tables of bivariate residuals for more thorough
inspection.



Diagnostics

Item and Person Diagnostics

Single item/person fit statistics are available through the itemfit () and
personfit () functions. Several options are available.

@ For Rasch specific models, the popular infit and outfit stats are
computed (values close to 1 are considered good, and come with an
associated z value)

@ Z, statistics printed for all models (Drasgow, Levine and Williams,
1985); values greater than 0 indicate a better fit than expected, less
than zero indicate worse



Diagnostics

Item and Person Diagnostics

e X2 is a x2-type statistic based on collapsing across the expected
probability space (only reasonable for unidimensional models). Plots
may also be drawn, if requested (itemfit () only)

@ S-X2 is a different x? statistics based on conditioning on the raw
sum-score, are also available for uni- and multidimensional models
(itemfit () only)

Item and person fit statistics are generally considered ‘two-step’
procedures, in that they require plausible estimates for the 6 values.



Diagnostics

ltem Diagnostics

After items are flagged as not fitting well (or the whole model is flagged),
it can be helpful to inspect the items further:

@ View the patterns of misfit with the observed versus expected tables
(M2, S-X2, local dependence, etc)

@ Modify the item types to determine if that helps fix the problem
(perhaps should have fit a 3PL instead of 2PL)

@ Fix a more flexible IRT model, such as the multidimensional nominal
response model, to get a better idea of how the item categories are
functioning

@ Using non-parametric smoothing techniques for more exploratory
approaches (such as from the KernSmoothIRT package)



Diagnostics

Exercise

Exercise

Now is a good time to check out several of the examples in the mirt ()
function, look through the HTML/pdf documentation, and review the
examples demonstrated so far in this talk. After that, you should be able
to complete the Exercise found in Exercise_01.html
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Estimation
Model estimation

IRT item parameters are estimated by maximizing the observed likelihood

o UL oxon]

o Evaluating the integrals results in the so-called marginal maximum
likelihood method (MML) since the 6 parameters are integrated out
of the equation

@ Maximizing this equation directly quickly becomes infeasible as the
number of items grow



Estimation

Model estimation

EM algorithm can be used instead to capitalize on a more manageable
complete-data likelihood structure, where each item (largely) can be
updated independently.

@ Using the likelihood equation, evaluate each response pattern over the
grid of @ values

@ Given the marginal evaluated response pattern, collect what the
‘expected’ table of collected response patterns should look like across
the grid of values (e.g., given @ = 1, we might expect to see
ro = 199.54 and r; = 800.66 for item 1)

@ Using the expectation table, ‘maximize’ the item parameters as if the
expectation table was what was really observed, using the 0 grid as
the predictor variable



Estimation

Pros and cons of EM

@ Observed-data information matrix not available and must be
approximated in other ways (e.g., S-EM, Monte Carlo, MH-RM, etc).
SE’s also not available as a consequence

o Effectively this approach removes the problem of maximizing all the
parameters at each iteration with the cumbersome observed-data
likelihood (Bock and Aitkin, 1982)

@ Missing data posses no problem to the ML estimator, and uses all
available data (full-information)

This is the default estimation method in mirt () and multipleGroup().



Estimation

Unfortunately . ..

Every new 6 in the model requires a new integral to be evaluated.

@ The difficult task now is to evaluate the likelihood equations
numerically, which requires high dimensional integration by
quadrature or simulation methods

@ Standard quadrature techniques become intractable as the dimensions
increase since the number of quadratures required increases
exponentially

@ Quasi-Monte Carlo and adaptive integration methods have been used
to circumvent this integration problem, but generally only work well
for a moderate number of dimensions (e.g., 3-5)

@ Fully Monte Carlo methods exist, however these come at the cost of
longer estimation times and often high computational demand,
especially if a pure Bayesian framework is adopted
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Stochastic MML estimation

An alternative approach is to capitalize on the complete-data likelihood

function,
N

L(®|Y,0) = [ ] Le(yil®, 61)g(6i|n, 2),
i=1

by imputing plausible values for the missing random effects.

@ Obtain ‘known’ values for 8 and maximize this function instead

@ This approach somewhat familiar to the joint ML framework. In joint
ML, estimates of @ are computed, item parameters updated given
new 6, then @ updated again given new item parameters, ad nosium
until all the parameters stopped moving by some tolerance

@ Joint ML estimation requires some very unconventional controlling
mechanisms to facilitate convergence, and likely is only viable for
Rasch models (suffers from the Neyman-Scott problem)
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MH-RM algorithm

Metropolis-Hastings Robbins-Monro (MH-RM) algorithm works well in this
situation since it deals with the random variables appropriately.

@ Use an MH sampler to obtain b values, and treat values as
provisionally ‘known’

o Update parameters using standard numerical optimization methods
(e.g., Newton-Raphson) with 1 iteration

@ Repeat a number of times to complete a burn-in period so that the
solutions is bouncing around the ML location

@ Continue, but use the Robbins-Monro noise cancellation method to
help remove the sampling error borne from the MH draws
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MH-RM algorithm

@ Consequence of the estimation is that the parameter information
matrix can be easily approximated

@ Original work suggested approximating the information matrix from
the estimation history, but | have found that approach leads to
extremely bad approximations if the number of iterations was too low,
or parameter variability was too high

e mirt computes a separate stage for the information matrix by keeping
the estimates fixed at their ML locations

@ Unfortunately, the log-likelihood must also be computed by further
stochastic means (but can be run in parallel)

The MH-RM scheme extends to other random effects as well (as we will
see in Workshop 2).
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Special EM models: The bi-factor and two-tier models

Special type of confirmatory model in which there are multiple ‘packs’ of
uncorrelated specific factors is known as the bi-factor or two-tier model

@ Have especially simple estimation forms because the EM algorithm
can be rearranged to create a highly reduced integration problem for
the item packets

o All specific factors are integrated with only one quadrature grid

# general factor, 2 specific factors loading on items 1-3, and 4-6
model <- c¢(1,1,1,2,2,2)
bmod <- bfactor(data, model) # 2 dimensional integration

# model ts equivalent to the following in mirt(),
# using standard integration (3 dimensions)
model <- mirt.model('

G =1-6
S1 =1-3
S2 = 4-6')

mmod <- mirt(data, model)
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Special EM models: The bi-factor and two-tier models

Figure 7: Bi-factor model that requires two dimensions for integration.
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Package specific functions

Functions more specific to the package.

fscores() — compute EAP, EAP for sum scores, MAP, WLE, ML
factor scores, plausible values (more on this next workshop)
itemplot () — individual item plots (information, trace lines,
confidence envelopes, etc.)

@ wald() — testing parameter hypotheses with the Wald tests
@ DIF() and DTF() - statistics for testing differential item and test

functioning using likelihood-ratio and Wald tests
createltem() — create a user defined item type which can be
estimated from the data

simdata() — simulate IRT data from given parameters
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Package specific functions

...and many more!

@ mirtCluster() — define a parallel object useful for speeding up
computations. Useful when computing Monte Carlo log-likelihoods,
factor scores, S-EM standard errors, etc.

@ mod2values() — create data.frame object of item parameters

@ averageMI() — multiple imputation averaging of plausible values
using Rubin’s method

o imputeMissing() — given a converged model, impute plausible
response values for the missing data. Useful for obtaining
approximate fit statistics not defined when missing data are present

@ key2binary() — expand collapsed tabulated data table to full dataset

@ extract.group(), extract.item() — internal extraction methods

@ probtrace(), iteminfo(), testinfo(), expected.item() —
lower level item and test statistics from estimated models
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simdata()

You might see this function used a lot in the package examples. The
function simulates plausible responses given the IRT models and 6 values
(both of which can be supplied). Requires slopes, intercepts, and the
itemtype.

# Unidimenstonal nonlinear factor pattern
theta <- rnorm(2000)
Theta <- cbind(theta, theta”2)

itemtype <- rep('dich', 6)
a <- matrix(c(

.8,.4
.4, .4,
ol p o

>

3 >

.8,NA,

.4,NA,

.7,NA), ncol=2, byrow = TRUE)

d <- matrix(seq(-2.5, 2.5, length.out = 6))

nonlindata <- simdata(a, d, 2000, itemtype=itemtype, Theta=Theta)
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Parameter standard errors/information matrix

Several methods exist in the package for computing the parameter
information matrix for the estimated parameters, which when inverted
yields asymptotic covariance matrix. These are passed to the SE.type
argument:

@ crossprod, Louis, and sandwich — Cross-product approximation,
exact observed information matrix, and sandwich covariance matrix
estimate (crossprod is the default because it is very cheap to
compute)

@ SEM: supplemented-EM, computes proportion of missing information
from (unaccelerated) EM history. Supports parallel computing

@ BL and Fisher: Bock and Leiberman (1970) approach to obtain
observed information matrix and expected information matrix (Fisher).
Not recommended when a moderate to large number of parameters
are estimated

@ MHRM: the MH-RM approach to estimating the parameter information
matrix
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Parameter standard errors only

If parameters are not theoretically symmetric due to estimation bounds
(e.g., 0 > g > 1) then the quadratic approximations from information
matrices may not be appropriate. Instead, you could use

@ boot.mirt () — for bootstrapped confidence intervals, or
@ PLCI.mirt () — for profiled-likelihood confidence intervals

Both functions support parallel computing, however PLCI .mirt ()
supports estimation of specific parameters (no need to compute often large
and potentially unstable information matrix).
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Miscellaneous

Many other things are possible in the estimation engine, including

@ optimizer — changing the default optimizer. Default is the BFGS
algorithm, but other are possible to impose bounds (L-BFGS-B) or
include non-linear parameter constraints (solnp or alabama)

@ method — default is EM quadrature integration, but may also be
quasi-Monte Carlo integration (QMCEM) or MHRM

@ survey.weights, accelerate, technical — for survey weights,
changing the EM acceleration scheme, and passing lower-level
technical arguments (including modifying latent distribution functions,
integration grids, and so on)
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Evaluated code

@ For convienience, code has been evaluated using knitr and hosted
online

o Github wiki (https://github.com/philchalmers/mirt/wiki).
@ Documentation and examples

@ User contributed examples
@ Exercises from previous workshops
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Multiple Groups

Multiple Group IRT J
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Multiple Group models

Multiple group analysis (MGA) takes into account empirical grouping
clusters that are thought to behave differently to the response data. For
instance, items may be more difficult for one group or another, may have
unequal slopes, etc., and these play a key role in determining the ‘fairness’
of a test.

@ MGA has two extreme ends: completely ignore group membership
(aka, a single group) or completely separate the data according to
membership (i.e., multiple single groups)

@ MGA becomes useful when models lie somewhere in the middle of
these extremes, where we try to find a simpler model than strict
independence while being mindful of population differences
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Multiple Group likelihood

The log-likelihood equation that is evaluated for these models is

Lliotas = LLgy + LLgy + - -+ LLg,

Parameters can therefore be constrained to be equal across group, or freely
estimated, and allows for nested model comparisons.

@ Special cases of MGA result in differential item functioning (DIF),
where items function differently depending on the group

e DIF also leads to differential test functioning (DTF), a further
extension of the DIF principle, but at the test level
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Multiple Group models

In mirt, the multipleGroup() function is used for MGA and defaults to
the completely independent groups approach.

@ invariance argument has keywords to constraint or relax various
parameters, such as ‘slopes’, ‘intercepts’, 'free_means’, etc.

@ mirt.model() syntax arguments with the CONSTRAINB keyword is
also very useful to constrain parameter between the groups to be
equal for testing
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Nested comparisons

Here's an example where we set the slopes to be across groups (Wald tests
with the wald() function may be useful here too if the information matrix
is computed).

mgl <- multipleGroup(dat, model = 1, group = group, verbose = FALSE)
mg2 <- multipleGroup(dat, model 1, group = group,

invariance = 'slopes', verbose = FALSE)
anova(mg2, mgl)
#i#
## Model 1: multipleGroup(data = dat, model = 1, group = group, invaria
#it verbose = FALSE)

## Model 2: multipleGroup(data = dat, model = 1, group = group, verbose

## AIC AICc SABIC BIC logLik X2 df P
## 1 29709.14 29709.44 29783.94 29860.20 -14830.57 NaN NaN NaN
## 2 29711.20 29711.67 29804.70 29900.02 -14825.60 9.94 6 0.1272
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MG invariance

The invariance argument provides a quick way to define equality
constraints across all groups simultaneously, and also allows the estimation
of group-level hyper parameters (e.g., latent means and variances).

e free_means - for freely estimating all latent means (reference group
constrained to a vector of 0)

o free_varcov, free_var, free_cov — for freely estimate elements
of the variance-covariance matrix across groups (reference group has
variances equal to 1 by default)

@ slopes — to constrain all the slopes to be equal across all groups

@ intercepts — to constrain all the intercepts to be equal across all
groups

Additionally, specifying specific item names (from colnames(data)) will
constrain all freely estimated parameters in the specified item(s) to be
equal across groups.
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Differential item functioning

DIF is a widely studied area in IRT to detect potential bias in items across
different populations. Formally, when

Pfocal(k = K‘H) 7& Preference(k - K|9)

then the item is said to demonstrate DIF.

o DIF tests generally require that groups are ‘equated’, either by ad-hoc
linking methods or by providing a set of anchor items to link the 6
metrics during estimation

o Different types of DIF exist, but largely these have been grouped into
uniform and non-uniform DIF

e many different methods have even been coded into R already; see the
difR package
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Differential item functioning

mirt supports two DIF approaches based on maximum-likelihood theory:
the Wald test, and the likelihood-ratio test. DIF testing may be run
manually through multipleGroup() or through the more automated
testing function DIF().

e DIF, from a ML framework, requires that a number of ‘anchor’ items
have been pre-selected (as small number of invariant items), and that
the group hyper-parameters are freed for all but one group. This
properly ‘equates’ the groups to remove population differences

o Constrains are added or removed, depending on the starting model,
and tested to determine whether the model improves/gets worse

@ ltems requiring free parameters across groups are said to contain DIF
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Differential item functioning

#test al and d for DIF (2 df)
DIF(constrainedMG, which.par = c('al', 'd'), scheme = 'drop')

#test d for DIF (1 df) with Wald for items 10 to 15
DIF(constrainedMG, which.par = c('d'), scheme = 'drop',
Wald = TRUE, items2test = 10:15)

# plot items showing DIF
DIF(constrainedMG, which.par = c('al', 'd'), plotdif = TRUE)

Item trace lines

-6 -4 -2 0 2 4 6
I I

I I I I I
Item 1 Item_2

P(8)
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Differential test functioning

DIF is great for detecting biased measurements between groups, but what
if we are interested in how DIF affect the test as a whole?

@ DIF effects may be very small and make little to no difference when
scoring the test

@ Some DIF effects may be in opposite directions, and therefore may
actually cancel out at the test level (e.g., Item 1: dg; =1, dg = 0;
Iltem 2: dg1 =0, dgx = 1)

@ With more complicated types of DIF this is harder to witness directly,
and therefore test statistics and plots are required
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Differential test functioning

@ Previously proposed DTF statistics were less than satisfactory (e.g.,
Raju et al., 1995). So, | came up with some new ones (Chalmers,
Counsell, Flora, in press).

@ Based on the test scoring functions, which in turn are built from item
scoring functions

@ Statistical variability collected from variability in the parameter
estimates through a multiple imputation technique to account for the
nonlinear/non-smooth functional form
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Differential test functioning

Two statistics proposed: a signed and unsigned DTF stat (sDTF and

uDTF), to account for scoring cancellation and overall area differences
between test scoring curves

sDTF = /(Tfeference(67¢) - Tfoca/(e’ ¢))g(0)

uDTF = /|Treference(67¢) - Tfoca/(e’qb)‘g(g)

where [ g(0) =1 and g(9) = C.

@ sDTF can be evaluated at single locations along 6 as a diagnostic tool
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Differential test functioning

Empirical example showing DTF (sDTF = 0.629, p < .002).

SDTF,

0
)

@o-

Figure 8: Total score plot with 95% confidence intervals around reference and
focal group (left), and variability of sDTF statistic across range of 6 (right).
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DTF simulations

Two simulations set up: 3PL and graded response models with various
design effects:

@ Varying sample size (500, 1000, 3000), DIF size (0.0, 0.5 and 1.0),
test size (30, 40, and 50), parameters containing DIF (slopes,
intercepts, slopes and intercepts), and number of items containing
DIF (4, 8, and 12 in the 3PLM design, and 4, 6, and 8 in the GRM
design)

@ Result? Nominal Type | error rates when no DTF was present in
multiple IRT models, and increasing power under many conditions of
DTF (uDTF better and differences in slopes, sDTF better at
difference in intercepts)
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Exercise

Exercise

Exercises pertaining to multiple group estimation and additional mirt
functions are available in Exercise_02.html.
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End of Workshop 1

This is the end of Workshop 1 (yay!). Just to review what we learned:

@ Basic properties of IRT (trace-lines, models, expected score functions,
etc)

@ Item-types that are commonly used for response data, which are
supported by mirt

@ Estimating single and multiple group IRT models with marginal
maximum likelihood estimation in mirt

@ Person, item, and model fit statistics

e Multiple-group estimation, DIF and DTF
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