Multidimensional ltem Response Theory Workshop
in R (Day 2)

Phil Chalmers

York University

February 11, 2015

@ Latent trait densities and customization
© Mixed Effects

© Latent trait prediction
@ Computerized Adaptive Tests

© mirtCAT package

© Closing

Organization

Workshop 2

Focus on this Workshop is more about two additional purpose of using
IRT: explaining variation and scoring the test. Also demonstrates
some flexible customizations approaches with the mirt package.

o Non-traditional latent densities and customizations with mirt

@ Modeling explanatory fixed and random item- and person-covariates
to explain test variation

@ Discuss various algorithms for scoring the test, and how they relate to
various test properties

@ Demonstrate how test scoring methods integrate with computerized
adaptive testing (CAT) applications

@ Hands-on creation of real-time (and off-line) CAT and
multidimensional CATs with the mirtCAT package

Latent trait densities and customization

Latent trait densities and customization

Latent trait densities and customization J

Latent trait densities and customization

Latent trait densities and customization

In Workshop 1,

@ We focused on using the default itemtype arguments to create
standard relatively standard IRT models that mirt uses natively

@ We also used the default latent density for estimating the models (the
multivariate normal density)

However, it is possible to customize both of these inputs using user-defined
R functions. These can offer a very flexible way to use mirt’s estimation
engine over and above what I've had time to code internally.

Latent trait densities and customization

Latent density

The technical list argument to mirt () accepts several arguments for
modifying the integration grid and functional density. These include:

o customTheta — a custom @ grid, in matrix form, used for integration.
If not defined, the grid is determined internally based on the number
of quadpts

@ customPriorFun — a custom function used to determine the
normalized density for integration in the EM algorithm. Must be of
the form function(Theta, Etable){...}, and return a numeric
vector with the same length as number of rows in Theta. Etable is
the pseudo-complete data-table in the E-step of the EM algorithm

The sirt package, written by Alexander Robitzsch, has some wonderful
examples of how to use these functions for creating specialized Rasch
models.

Latent trait densities and customization

Latent density example

Create a latent density function to be uniform between -6 and 6 with 100
equally spaced integration nodes.

den <- function(Theta, Etable) dunif(Theta, min = -6, max = 6)

Theta <- matrix(seq(-6, 6, length.out = 100))

custom_mod <- mirt(Science, 1, technical =
list(customPriorFun = den, customTheta = Theta))

coef (custom_mod, simplify=TRUE)$items

#i#t al d1 d2 d3
Comfort 0.257 4.721 2.578 -1.399
Work 0.330 2.888 0.927 -2.204
Future 0.739 5.449 2.678 -2.306
Benefit 0.275 3.259 0.997 -1.614

Latent trait densities and customization

Empirical histogram

A special type of customized density is included based on information in

the Etable argument, called the empirical histogram. This approximates
the latent density at each step of the EM by summing across the E-step

data-table to create a non-parametric smoothing of the density.

C
ha(0) =Y E;
i=1
ha(9)
g) = — 9\’
0 =50

Latent density is approximated at the same time as estimating the item
parameters; this generally causes instability in the estimates, and the
model may have difficulty converging (however, given that it is an
exploratory technique, that is not really an issue).

Latent trait densities and customization

Empirical histogram

eh <- mirt(SAT12_scored, 1, empiricalhist = TRUE)
plot(eh, type = 'empiricalhist')

Empirical Histogram

30 H \“ [
\

N
S
I

Expected Frequency

=
1)
I

Latent trait densities and customization

Empirical histogram

Also works in multiple group estimation (and DIF).

EH <- multipleGroup(dat, 1, group=group, empiricalhist = TRUE,
invariance = colnames(dat))
plot(EH, type = 'empiricalhist')

Empirical Histogram
Gl ©
G2 -

80

60

40

Expected Frequency

20 o

Latent trait densities and customization

createltem()

IRT models not included in the mirt package can be build and passed to
the estimation engine through mirt (), multipleGroup(), or
bfactor().

P.0old2PL <- function(par, Theta, ncat){
a <- par[1]; b <- par[2]
Pl <- 1 / (1 + exp(-1*a*(Theta - b)))
cbind(1-P1, P1)
}
x <- createltem('old2PL', par = c(a = .5, b = -2), est =
c(TRUE, TRUE), P = P.old2PL)
dat <- expand.table(LSAT7)
custom_mod <- mirt(dat, 1, itemtype = '0ld2PL', verbose = FALSE,
customItems = list(old2PL = x))
coef (custom_mod, simplify=TRUE)$items

a b
Item.1 0.989 -1.877
Item.2 1.081 -0.747
Item.3 1.708 -1.057
Item.4 0.766 -0.634
Item.5 0.737 -2.516

Latent trait densities and customization

Further customizations: starting values

Starting values can be found by passing pars = ’values’ to return a
data.frame object. This object is customizable and can be passed back
into the function. If the model has already been estimated mod2values ()
can be used (useful for providing better starting values).

values <- mirt(lsat, 1, pars = 'values')
values[1:2,]

group item class name parnum value lbound ubound est prior.type
1 all Item.1 dich al 1 0.851000 -Inf Inf TRUE none
2 all Item.1 dich d 2 1.859747 -Inf Inf TRUE none
prior_1 prior_2
1 NaN NaN
2 NaN NaN

values[1,'value'] <- 1 #change start value for parameter 1...
values[1, 'est'] <- FALSE #...and do not estimate it
mod <- mirt(lsat, 1, pars = values)

Helper function have also been constructed in the sirt package (see
?sirt::mirt.specify.partable) to modify this data.frame.

Mixed Effects

Mixed Effects IRT J

Mixed Effects

Mixed effects (i.e., explanatory) models

Often in IRT we want to know the effect of including additional
information not present in the test (i.e., external covariates), and if these
could help explain the observed response patterns. A large literature with
Rasch modeling has been focused on this area, however extending the
framework to include models other than Rasch has been slow.

@ Latent regression models are possible in mirt with two functions:
mirt () given a formula input and regression data, and
mixedmirt (), which is a much more general function for explanatory
IRT models with fixed and random effects

Mixed Effects

Latent regression models

The latent regression model attempts to decompose the 6 effects into
fixed-effect components to explain differences between individuals in
different populations.

O =XB+e,

where X is a design matrix containing person-level covariate data (e.g.,
gender indicated by Os and 1s, or continuous variables such as age), 5 is a
vector of fixed effect regression parameters, and ¢ is a residual with the
distribution MVN(0, X)

o If the IRT models are not from the Rasch family, various item-specific
slopes must be fixed to a constant in order to identify the X elements

Mixed Effects

Latent regression models

Latent regression simulation example with 8 = [0.5, —1], and
e ~ N(0,0.25).

beta <- c(0.5, -1); N <- 500
X1 <- rnorm(N); X2 <- rnorm(N)
covdata <- data.frame(X1 = X1, X2 = X2)
Theta <- matrix(betal[1] * X1 + betal[2] * X2 +
rnorm(N, sd = sqrt(0.25)))
a <- matrix(1, 10); d <- matrix(rnorm(10))
dat <- simdata(a, d, N, itemtype = 'dich', Theta = Theta)

#latent regression with X1 and X2 as predictors of Theta
modl <- mirt(dat, 1, 'Rasch', verbose = FALSE,

covdata = covdata, formula = ~ X1 + X2)
coef (modl, simplify = TRUE)

Mixed Effects

Latent regression models

al
Item_1 1 O
Item_2 1 -1.17
Item_ 3 1 1

$groupPars

$groupPars$means
MEAN_1

0

##

$groupPars$cov

F1

F1 0.203

##

##

$1lr.betas

F1
(Intercept) 0.000
X1 0.565
X2 -0.995

Mixed Effects

Mixed-effects modeling

Purpose of mixed-effects modeling is to include continuous or categorical
item and person predictors into the model directly by way of the intercept
parameters. An example of including a fixed effect predictor into the
model at the person level would be the inclusion of ‘Gender’, where an
indicator coding is used to change the expected probability to:

(u—g)

P = 1;07wv male) = + '

Notice here that 6 is not directly decomposed and instead additional
intercepts are modeled. This model is distinct from the latent regression
model, which has the form

(u—g)

(x 10,V Brae) = 8 + 1+ exp[—(a’6 + d]

where 0 = B2 X + €.

Mixed Effects

mixedmirt ()

mixedmirt () in the mirt package was design to include fixed and random
intercepts coefficients into the modeling framework directly.

o Effects organized to explain person effects (i.e., latent regression
models), but also can explain variability in the test itself (i.e., explain
why some items are more difficult than others, account for speeded
effects, etc.)

For the M4PL model,

(u—g)

P:
& I op(—(©a+ XB + 29))

where similar terms are the same as in the latent regression model, and Z§
controls the random intercept terms.

Mixed Effects

Mixed-effects modeling

The equation

(u—g)
1+ exp(—(®a+ X3 + Z6))

can be even further broken down to form the latent regression model.

P=g+

@ O can be decomposed into fixed and random components just like
the intercepts: ® = Vv +W(+ €

@ Hence, the above model can simultaneously capture item and person
effects

@ Generalizations of this equation are fairly simple to polytomous
responses, however intercept designs require slightly more care

Mixed Effects

mixedmirt ()

Conceptually, mixedmirt () will

@ breakdown intercepts into more complicated crossed item by person
designs (which, for Rasch models would result in the latent regression
model as a special case)

@ model random components in the intercepts (LLTM, multi-level IRT
for Rasch model) rather than treating all intercepts as fixed effects.
This allows intercept variability to be explained

o allow the 6 values to be decomposed into fixed effects (random
effects coming soon for more complete multi-level IRT!)

Estimation exclusively uses the MH-RM algorithm to obtain item and
regression parameter estimates, therefore the observed information matrix
can always be computed if standard errors/Wald tests are desired.

Mixed Effects

mixedmirt () syntax

Has the usual data and model arguments as before, however it also
supports

@ covdata — a data.frame of person-level covariate information, and
@ itemdesign — a data.frame of item design based effects

The fixed effects are controlled with

o fixed — a standard R formula to decompose the intercept effects
(e.g., ~ items + genderxIQ). Corresponds to the X3 effects

@ 1lr.fixed — an R formula to decompose the latent trait(s).
Corresponds to the V~ effects

Mixed Effects

mixedmirt ()

Random effect terms have a syntax similar to the nlme package:

@ random — an | separated R formula indicating random intercepts and
slope effects for the intercepts (e.g., ~ 1 | group) (Z4)

@ 1lr.random — (not yet supported) an | separated R formula
indicating random intercepts and slope effects for the trait (W¢)

By modeling variability with the random effects, fixed effects predictors
can be used to ‘explain’ different sources of variation (e.g., why schools
may be different, or why some items are more difficult than others).
Hence, random effects are generally interpreted as ‘residual variation’.

Mixed Effects

Syntax examples

Some syntax examples (notice that an items keyword is used to estimate

intercepts for each item)

Rasch latent regression model
modl <- mixedmirt(data, covdata, model,
fixed = ~ 0 + group + items)
equivalently in this case
mod2 <- mixedmirt(data, covdata, model,
lr.fixed = ~ group, fixed = ~ 0 +

2PL latent regression model

mod3 <- mixedmirt(data, covdata, model, itemtype =
lr.fixed = ~ group, fixed = ~ 0 +

similar to above, but using intercepts instead

mod4 <- mixedmirt(data, covdata, model, itemtype =
fixed = ~ 0 + group + items)

items)

'2PL',
items)

'2PL',

Mixed Effects

Syntax examples

multilevel Rasch model (random group intercepts)

rmod <- mixedmirt(data, covdata, model = 1, fixed = ~ 0 + items,
random = ~ 1|group)

rmodl <- mixedmirt(data, covdata, model = 1,
fixed = ~ 0 + group_means + items,
random = ~ 1|group)

crossed random effects
rmod2 <- mixedmirt(data, covdata, model = 1,
random = list(~ 1|group, ~ 1litems))

linear latent trait model (with residual)
itemdesign <- data.frame(itemorder = factor(c(rep('easier', 16),
rep('harder', 16))))
LLTM <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder,
random = ~ 1|items, itemdesign = itemdesign)

Latent trait prediction

Latent trait prediction and related methods

Latent trait prediction and related methods J

Latent trait prediction

Latent trait prediction

Ability/latent trait prediction () is often the focus of IRT analysis since
we may wish to compare individual abilities along the continuum given
their response patterns, or potentially compare scores between groups of
individuals.

e Precision of f estimate depends on how much information the test
provides (easy tests provide more accurate predictions for lower ability
individuals)

@ Bayesian methods, such as expected and maximum a posteriori
estimation, are also available, and the strength of the prior will also
contribute to the location and precision estimates (informative priors
will shrink the estimates and standard errors accordingly)

Latent trait prediction

ML ability example

Say that we wanted to estimate the ability of a subject who responded
with the pattern (1,1,0) to three items with parameters a; = a, = a3 = 1,
and d; =1, d =0, and d5 = —1. The likelihood/posterior function is

L(9) = [T [Pi(0) - (1 = Pi(6))'] - g(6),

i

where ; is either 0 or 1 for incorrect and correct endorsement, and g(6) is
a prior distribution.

@ ML for this response is just the argmax from the product of 3 item
trace-lines, where g(6) =1

@ Bayesian estimates typically use a normal prior in g(6) in computing
the posterior mean (EAP) or mode (MAP)

Latent trait prediction

Maximum-likelihood estimation

Say that we had some response pattern [1, 0, 1], and some predefined IRT
item parameters (a =[1,1,1], d =[0,-1,1], g = 0).

[PiL P2 P3
1.00 -
0.75-

0.50 =

P(6)

0.25-
0.00 -
' ' ' " ' ' ' " ' ' ' '
-50 -25 00 25 5050 -25 00 25 5050 -25 00 25 50
6

. ML = 0.806
0.3-

0.2-

I(6)

' ' ' ' '
-5.0 -25 0.0 25 5.0
6

Latent trait prediction

MAP and EAP estimation

Using the same parameters as the previous graphic, including additional

information about the distribution of 8 will lead to Bayesian estimates.
Here an N(0,1) prior is included.

PL

00- /
00-

P3

o f
0.00-
EI 00 25

:‘e—:x

P(e)

density

MAP = 0.305; EAP = 0.315

1)

Latent trait prediction

Uncertainty in predictions

@ It is often prudent to estimate the precision of 0 to approximate the
accuracy of the estimate

@ One suitable approach is to use information about the second-order
derivatives of the (weighted) log-likelihood/log-posterior distribution
(a.k.a., observed information)

%L

—— 1=)"t = AcoVv(d
aeaef) () (0)

—(

The square-root of the diagonal elements of ACOV/(f) give suitable
standard errors for each 6 value. More information implies smaller
standard errors.

Latent trait prediction

Ability prediction methods available in mirt

Six algorithms are available in the package to obtain values of latent
trait(s) and their standard errors, and are implemented in the fscores()
function.

@ Maximum likelihood (ML) — Maximize likelihood vector w.r.t. ¢
directly with iterative methods (returns Inf and -Inf for all/none
patterns)

@ Maximum a posteriori (MAP) — Given a multivariate prior maximize
the posterior distribution. Iterative method as well

@ Expected a posteriori (EAP) — Similar to MAP but is not iterative
and often a consequence of the MML estimation (mean versus mode
estimate)

@ Weighted Likelihood Estimation (WLE) — An iterative estimate of the
latent trait that weighs the scores based on how much test
information is available

@ EAP for summed scores — EAP estimates for 8 are derived for using
simple sum scores total via a recursive algorithm

@ Plausible value imputations — stochastic imputations of each
individual estimate (not used for fixed person estimates)

Latent trait prediction

fscores()

fs <- fscores(lsat_mod, method = 'EAP')

##

Method: EAP

##

Empirical Reliability:

F1

0.4522

head(fs)

#i# Item.1 Item.2 Item.3 Item.4 Item.5 F1 SE_F1
[1,] 0 0 0 0 0 -1.8699 0.6927
[2,] 0 0 0 0 1 -1.5272 0.6737
[3,] 0 0 0 1 0 -1.5139 0.6731
[4,] 0 0 0 1 1 -1.1853 0.6653
[5,] 0 0 1 0 0 -1.0947 0.6651
[6,] 0 0 1 0 1 -0.7667 0.6722

Latent trait prediction

fscores()

The empirical reliability printout (also returned numerically with

fscores(... returnER = TRUE)) is a marginalized reliability estimate
of the trait scores. This is highly related to classical test theory reliability
measures:
X=T+E
J§< = 0%— + 0’%
2
rxx: = 2UT 2
(0% +0g)

o With the IRT scores, 0% = var(f) and 02 = mean(SEy).

Latent trait prediction

fscores() estimates in each row

Because this question comes up so often, here is how to save the scores for
each observed response pattern in the data (corresponding to each row).

fs_full <- fscores(lsat_mod, method = 'MAP',
full.scores = TRUE, full.scores.SE = TRUE)
head(fs_full, 6)

F1 SE_F1
[1,] -1.816549 0.6750193
[2,] -1.816549 0.6750193
[3,] -1.816549 0.6750193
[4,] -1.816549 0.6750193
[5,] -1.816549 0.6750193
[6,] -1.816549 0.6750193

Latent trait prediction

Plausible values

Plausible values have a strong history when analyzing tests because they
can be used to make group inferences with Rubin’s (1987) imputation

methodology.

@ Each individual estimate is sampled from their respective posterior
(rather than obtaining some point estimate)
o May include latent regression effects for more informative posteriors
@ Not useful for making inferences about the individual, but collectively
the imprecision is captured in the estimate

@ Perform secondary analyses on multiple imputed sets, and average
over and collect the between /within variability

This technique is used in many large scale testing programs, such as PISA.

Latent trait prediction

Plausible values

pvdat <- simdata(matrix(1, 30), d = matrix(rnorm(30)), N = 500,
itemtype = 'dich', sigma = matrix(1.5))

pvmod <- mirt(pvdat, 1, 'Rasch', verbose = FALSE)

pvs <- fscores(pvmod, plausible.draws = 5)

sapply(pvs, var) #wvariance of imputed estimates

[1] 1.516913 1.494971 1.582133 1.610462 1.583809

mean (sapply(pvs, var)) #average variance

[1] 1.557658

compare to other point-estimate methods

EAP <- var(fscores(pvmod, method = 'EAP', full.scores = TRUE))
ML <- fscores(pvmod, method = 'ML', full.scores = TRUE)

ML <- var(ML[is.finite(ML)])

WLE <- var(fscores(pvmod, method = 'WLE', full.scores = TRUE))
print (c(EAP=EAP, ML=ML, WLE=WLE))

EAP ML WLE
1.3755688 1.841549 1.763129

Latent trait prediction

Customizing fscores ()

Much like the customization of latent densities in mirt (), fscores() will
accept a customized latent density for predicting 6 estimates (only makes
sense for Bayesian estimates EAP, MAP, and EAP for sum scores)

EAP estimation with a bimodal prior

fun <- function(Theta, ...) as.numeric(dnorm(Theta, -1.5, 1) +
dnorm(Theta, 1.5, 1))

Theta <- matriz(seq(—4, 4, length.out = 200))

ggplot2::qplot(Theta, fun(Theta) / sum(fun(Theta)), geom = 'line')

head(fscores(lsat_mod, custom_den = fun, verbose = FALSE))

Item.1 Item.2 Item.3 Item.4 Item.5 F1 SE_F1
[1,] 0 0 0 0 0 -2.6491 0.7624
[2,] 0 0 0 0 1 -2.2379 0.7347
[3,] 0 0 0 1 0 -2.2221 0.7340
[4,] 0 0 0 1 1 -1.8318 0.7275
[5,] 0 0 1 0 0 -1.7228 0.7321
##t [6,] 0 0 1 0 1 -1.3045 0.7872

Latent trait prediction
Information

ltem and test information with respect to ¢ J

Latent trait prediction

[tem and test information

Item and test information are very important concepts in IRT, are
intimately related to predicting latent trait estimates, and form the
building blocks of more advanced applications (such as computerized
adaptive testing; CAT)

@ The information in a test depends on the items used as well as the
ability of the subject, and is inversely related to the concept of
reliability

o Information, coined by R. A. Fisher, is directly related to the
steepness of the slopes in an item. The steeper a slope is, the more
information it provides around its inflection point

@ For example, easy items and tests tend to tell us very little about
individuals in the upper end of the 6 distribution (0ginstein
V.S. OHawking) but can tell us something about lower ability subjects
(whether 04, < Ocury < Onoe).

Latent trait prediction
ltem information

The Fisher (or expected) information function, F(6), is another theoretical
way to quantify uncertainty absent any particular observed response
pattern and distribution of 6.

oL

F(0) = ~E(-55)

e E.g., for the unidimensional 2PL model (where g = 0),

F(0) = aP(0) - (1 - P(0))

Fisher's information is important because it contains no reference to the
raw data (and therefore can be computed for items that have not been
responded to).

Latent trait prediction

IRT 2PL information functions

of
o

) 0
1.0 00
o7
Z, Los0
o w
0 0 2
6 6

Figure 1: Information functions from 2PL trace-lines with a = 0.75, d = 1 (top)
and a =2, d = —1 (bottom).

Latent trait prediction

IRT information functions

In mirt, information curves can be found in the plot() and itemplot()
functions.

SE computations only needed for imputation plot
modl <- mirt(Science, 1, SE = TRUE)
mod2 <- mirt(Science, 2)

plot(modl, type = 'infotrace')
itemplot(modl, 3, type = 'info')
itemplot(modl, 3, type = 'info', CE = TRUE)
3
3

itemplot(modl, 3, type "infoSE')
itemplot(modl, 3, type "infotrace')

"info')
'infocontour')

itemplot(mod2, 3, type
itemplot(mod2, 3, type

Latent trait prediction

Test information

Item information is additive, so for the entire test T/(0) = >, F;(6).
This relationship is true for both the observed and expected information
functions.

@ To find a standard error estimate for @ we can use the relationship
SE(0) =1/4/ TI(H)

@ A test is deemed accurate/reliable if it is able to measure 6 with
sufficient precision (i.e., small SE(6))

o Forshadow computerized applications — Select items that reduce
the expected standard error in some optimal way

Latent trait prediction

Test information

Test information is the default method argument to plot() in mirt.

plot(modl)
plot(mod2)

Test Information N
Test Information

Figure 2: Unidimensionald and multidimensional test information plots in mirt.

Latent trait prediction

Exercise

Exercise

You should be able to complete the Exercise found in Exercise_03.html
now. After that, we'll change gears and look at a different area of applied
IRT.

Computerized Adaptive Tests

Computerized adaptive testing

Administer tests by a computer, and dynamically adapt which items are
selected given the current estimate(s) of 6. This is the core of
computerized adaptive testing (CAT).

Computerized Adaptive Tests

Computerized adaptive testing

Several benefits to CAT.

e Uninformative items can progressively be avoided (e.g., high-ability
participants should not receive easy items)

o As such, tests can be shorter yet more efficient and accurate
@ More precise estimates, especially for those individuals in the extreme
ends of the distribution
Helps to avoid fatigue effects
Generally better item security (controlled remotely or locally)
Better control of item exposure (re-tests can be entirely different)

Computerized Adaptive Tests

Computerized adaptive testing components

@ Calibrated item bank (a la IRT) for a pool of items

@ Starting rules (initial 0's, pre-CAT data collection, etc)
@ Item selection algorithm

@ Updating @ algorithm

@ Termination criteria

@ (Optional) Include a pre-CAT stage

Points 1) and 2) are pretty straightforward, but the next 3-4 points are
largely where the fun occurs.

Computerized Adaptive Tests

[tem selection

The general idea for item selection is that, given én, find the next item
such that SE(6,1) would be the lowest possible value. In other words,
pick the next item so that the precision of 6 is maximized.

@ This reasoning was the primary inspiration for the use of the
maximum expected-information criteria, or just maximum-information
(MI) criterion for short

@ In unidimensional models, maximum expected information is
equivalent to minimum expected error

Additional criteria also exist which do not use information (e.g.,
Kullback-Leibler information, continuous entropy, etc).

Computerized Adaptive Tests

MI item selection

S
T

0.8058

SE(6)

. <]

0.8058

0 2 0
)]

Figure 3: Information and standard errors for three items given 6 = .8058

Computerized Adaptive Tests

Unidimensional classification CATs

Using similar methods, CATs can be used to classify individuals as above
or below various threshold values (e.g., determine whether students have
‘mastered’ the material).

@ Easiest method conceptually is to test whether the current estimate
confidence intervals include the cutoff value (call it 7). If

16—)|
SE,

> qz(]- - 05/2)

then terminate the CAT (estimate does not contain the cutoff value
as a plausible location).

@ Same logic can be applied to multidimensional CAT for classification
testing, which we now turn to.

Computerized Adaptive Tests

Multidimensional item selection

Multidimensional IRT models, on the other hand, are slightly more
complicated in CATs.

@ ltems may measure more than one trait at once,

@ Redundant information may exist if the latent traits are correlated

@ Some traits may be more important to measure than others (think
bifactor model)

When one or more of these criteria occur it may be more beneficial to
perform a multidimensional CAT instead of multi-unidimensional CATs.

Computerized Adaptive Tests

Multidimensional item selection

The selection process generally involves evaluating the new F(6) matrices
for all remaining items in the pool.

e E.g., information for M2PL with two factors is

7o) = (272) Po)- - po)

dian as

@ Similar to the unidimensional information, except now multiple a
parameters are included and the result is a matrix, not a scalar

Computerized Adaptive Tests

Multidimensional item selection

To compare matrices we should collapse all F,(6) into a scalars using

suitable criteria. One such criteria is the maximum determinant rule
(Segall, 1996)

D-rule = | TI(0) + F»(0)|
This optimally decreases the expected volume in ACOV/(6).

If prior information about the latent traits is to be included, then the
inverse of their variance may be included in the computations to create a
posterior selection rule.

DP-rule = | TI(6) + F,(6) + £(6) |

Computerized Adaptive Tests

Graphical representation of D-rule

Parameter confidence ellipse based on previous items

6,
zway Tway

6,

sway

o 0.0 5 0 o

Figure 4: Confidence ellipses for three items given 6= [-0.5,0.5]

Computerized Adaptive Tests
Multidimensional item selection

Alternative selection schemes are possible to favor item selection for
particular traits, such as the weighted trace of the information

T-rule = Tr((TI(A) + F»(A))W)

or ACOV(h)
A-rule = Tr((TI(B) + Fo(0)) W)

matrix, where W is a diagonal weight matrix, and the weighted rule

W-rule = w/(TI(6) + Fp(6))w,

where w is a weight vector.

Computerized Adaptive Tests

Update traits, and terminate test

After the item has been selected, and the response has been collected, 6 is
updated using one of the methods proposed earlier (alternatively, with the
expected a posteriori (EAP) or weighted likelihood estimation (WLE)).

Finally, the test is checked regarding whether it should be terminated.

° SE(G‘A) based on the observed information is less than some predefined
tolerance

a predefined number of items have been administered

the change in én and HA,,H is less than some §

testing time has run out

individuals can be classified above or below predefined cutoffs
and so on

Computerized Adaptive Tests

Exposure control

One possible issue in CATs is the overuse of items that contain a lot of
information (i.e., have large slopes/large factor loading commonalities).

@ More informative items get selected more often (naturally), but less
informative items rarely get selected

@ This causes over exposure of some items, which is counter-productive
if the whole item bank should be used

@ Several other negative consequences: harder to maintain item security,
loss of payout for calibrating items if they are never used, decrease in
content coverage, and so on

To help alleviate over exposure of items, several Exposure Control methods
have been proposed.

Computerized Adaptive Tests

Exposure control

One simple exposure control method is to simply sample from the items
with the most optimal criteria.

o E.g., instead of simply selecting the criteria with the largest M/,
sample from the top n criteria

@ Can also change the value of n across the CAT, where n may be
larger earlier on in the test (e.g., 5-4-3-2-1-1-1...)

Sampling is crude, but accomplished the goal. Other options, such as the
Sympson-Hetter approach, use simulation experiments to determine
whether an item gets administered:

@ Each item gets a unique SH; value between 0 and 1

@ When each item is selected, a value r is drawn from runif (1,
min=0, max=1)

o If SH; >= r, administer the item, otherwise remove it from the test
bank and try again with the next most optimal item

Computerized Adaptive Tests

Content balancing

Yet another area of interest is to ensure that various ‘Content Areas’ are
sampled from during the test (e.g., in a mathematics test, a certain
proportion of calculus, algebra, and geometry items items should appear)

@ Simple methods include classifying the items according to these
groups, declaring a proportion, and then selecting the items
throughout the test to minimize the observed versus required
proportions (Kingsbury and Zara, 1991)

@ Other methods are possible with MCATS, such as setting up bi-factor
models where each specific trait is related to a particular ‘content’
area (Segall, 1996)

mirtCAT package

The mirtCAT package

Building and analyzing unidimensional and multidimensional CAT
interfaces in R.

mirtCAT package

mirtCAT package

Why waste time building mirtCAT for the R environment?

@ R based solution to building CAT GUIs was non-existent

o CAT packages in R were only for simulation designs (e.g., catR,
catlrt, MAT) and contained a mix of flexibility and efficiency

@ Multidimensional models limited only the multidimensional 3PL model

@ None of the packages could handle mixed item types

| wanted an interface to collect survey data that was adaptive OR
non-adaptive that integrated directly with R, and could be run locally or
remotely. Thankfully, most of the core code work was already written in
the mirt and shiny packages.

mirtCAT package

mirtCAT package

There really only three main functions in the package:

@ mirtCAT() — used to run CAT designs off-line, or to generate GUIs
for real time CAT applications. Objects returned from this function
are of class mirtCAT’, and can be passed to the S3 methods
plot (), summary (), and print ()

@ generate_pattern() — generate potential response pattern for CAT
application. Useful for Monte Carlo work, and to test the CAT designs

@ generate.mirt_object() — generate a suitable mirt object from
population parameters if the MIRT model was not estimated from
empirical data

Other functions are available for more specialized work, but are essentially
never required (e.g., findNextItem(), updateDesign(), etc).

mirtCAT package

mirtCAT

mirtCAT(df, mo, ...)

@ df is a data.frame object containing question stems, options,
answers, and image stem paths

@ mo is an object defined by mirt containing the item/group parameters

@ depending on the purpose, one of these inputs can be missing (only
df supplied, a survey is generated, only mo is supplied, an off-line
MCAT is run for simulations; supplying both creates the adaptive
interface)

mirtCAT package

Main arguments

The primary arguments to mirtCAT (with default in brackets)

method — (’MAP’) @ estimation method

criteria — (’seq’) item selection criteria

start_item — (1) starting item, can be a character similar to method
local_pattern — (NULL) run a locally defined vector off-line

cl — (NULL) a socket-type object for running simulations in parallel
design_elements — (FALSE) return an object containing the CAT
design elements

For modifying other more specific elements in the GUI and CAT designs,
the following lists may be passed: design, shinyGUI, and preCAT.

mirtCAT package

A simple survey

options <- matrix(c("Strongly Disagree", "Disagree",
"Neutral", "Agree", "Strongly Agree"),
nrow = 3, ncol = 5, byrow = TRUE)
questions <- c("Building CATs with mirtCAT is difficult.",
"Building tests with mirtCAT requires
a lot of coding.",
"I would use mirtCAT in my research.")

df <- data.frame(Question = questions, Option = options,
Type = "radio")
results <- mirtCAT(df = df)

mirtCAT package

Several features available

Exposure control (controlled sampling, Sympson-Hetter)

Content balancing

Pre-CAT designs to collect data responses prior to beginning the CAT

Support for all models in mirt, which can be mixed in a single session

(e.g., 70% 3PL models, 30% GPCM)

e Many item selection criteria (sequential, random, KL, MI, MEPV, ...,
D-rule, DP-rule, W-rule, ...)

@ Implicit parallel computing support for Monte Carlo simulations

o Multiple 6 estimators (all estimators from the mirt package,
including custom priors)

o Customization of GUI elements

mirtCAT package

Tables of inputs

@ The list inputs are fairly verbose, and should be read from the help
files.

@ However, here is a cursory look at the tables presented in the current
version of the mirtCAT draft (Chalmers, submitted)

mirtCAT package

Single case simulated data example

To demonstrate how multidimensional CAT works from a theoretical
perspective, we can compare how measurement error changes when
administering item sequentially versus using CAT.

@ Several ways to do this, but the simplest is to set min_SEM to a small
value or min_items to the length of the test

mirtCAT package
Single case simulated data example

o Simulated 120 dichotomous items with two factors (r = 0.5)

@ The items were set up such that the first 30 measured the first
dimension only, next 30 contained multidimensional items (measuring
dimension one better), next 30 were multidimensional (measuring
dimension two better), and finally last 30 measured only dimension
two

cou > X>
>>ow O

mirtCAT package

Single case simulated data example

CAT Standard Errors

Theta_1 Theta_2

104 L

Item

Figure 5: A response vector given § = [—0.5,0.5] was drawn to obtain plausible
answers for the entire test.

mirtCAT package
Single case simulated data example

After the 120 items were administrated, the following information was
obtained:

e using MAP estimation: #; = —0.370, SE(f;) = 0.238, and
0, = 0.3307, SE(f,) = 0.199

@ as well, it took until the 73rd item before both SE estimates were
less than 0.4

Compare this now to a CAT application using the D-rule to select items,
terminating when all SE estimates were less than 0.4.

mirtCAT package

Single case simulated data example

CAT Standard Errors

0 4011859 65 41 3 93 31 87 6310724 96 82 5 1511021
Ly Ly

L P S R M
Theta 1 Theta 2

104
/"/H
05 /F
) /
I\ A /
[\ \ /
el | A =
|~
L/
/N -
N
10

s B e e A e
0 4011850 65 41 3 93 31 87 6310724 96 82 5 1511021
Item

Figu[e 6: Test was stqpped after 18 items. Final estimates: §; = —0.531,
SE(61) = 0.392, and 6, = 0.733, SE(#,) = 0.352

mirtCAT package

Example : mirtCAT GUI customization and further

examples

Example
Table 3 from the mirtCAT draft, and a worked example of a more complex

interface.

Also, various examples that have been posted on the Github wiki
https://github.com/philchalmers/mirtCAT/wiki that can be
sourced to better understand how to manipulate the output.

https://github.com/philchalmers/mirtCAT/wiki

mirtCAT package

mirtCAT for simulation work

When parameters are known a priori, as they are in simulation work, the
generate.mirt_object () function can be used to build a suitable mo
object. The following builds a 10 item bank of 4PL models.

a <- rlnorm(10, .2, .2)

d <- rnorm(10)

pars <- data.frame(al = a, d =d, g = 0.2, u= .95)

vcov <- matrix(2)

mirt_object <- generate.mirt_object(pars, itemtype = '4PL',
latent_covariance = vcov)

mirtCAT package

mirtCAT for simulation work

coef (mirt_object, simplify = TRUE)

$items

al d g u
Item.1 0.925 -0.127 0.2 0.95
Ttem.2 1.475 -1.104 0.2 0.95
Item.3 1.770 -0.109 0.2 0.95
Item.4 1.007 1.120 0.2 0.95
Item.5 1.262 -0.662 0.2 0.95
Item.6 1.686 -0.551 0.2 0.95
Item.7 0.853 -0.476 0.2 0.95
Item.8 1.449 -0.597 0.2 0.95
Item.9 1.362 0.258 0.2 0.95
Item.10 0.903 -1.004 0.2 0.95
##

$groupPars

$groupPars$means
MEAN_1

0

##

$groupPars$cov
F1

F1 2

mirtCAT package

mirtCAT for simulation work

For simulation work the generate.pattern() function will accept a
matrix input for Theta, returning multiple rows with plausible response
pertaining to each row in Theta. The response can then easily be passed
to mirtCAT() to run each row:

Theta <- matrix(rnorm(1000))
responses <- generate_pattern(mirt_object, Theta)
res <- mirtCAT(mo = mirt_object, ..., local_pattern = response)

@ This returns a list of estimated CAT objects to be summarized
@ Can include a cl object for parallel computing with the parallel
package

mirtCAT package

Comparison with other CAT packages

mirtCAT has been compared with 3 other R packages: catR, catlrt, for
unidimensional CATs, and MAT, for the multidimensional 3PL. All designs
contained 1000 items.

@ Across all simulations, results from mirtCAT were consistent with the
other packages (estimates r > .9999)
@ Estimation times widely differed though.
o For unidimensional models with N = 5000: catlrt (95 minutes), catR
(28 minutes), mirtCAT (11.5 minutes), mirtCAT in parallel (using 8
cores, 3 minutes)
o For multidimensional and N = 1000, MAT (259 seconds) and
mirtCAT (435 seconds)

mirtCAT package

Comparison with other CAT packages

However, mirtCAT encapsulates several features of the other CAT
packages in R

@ contains support for many different estimators (contains all estimators
from other packages, and then some), and item selection criteria for
unidimensional and multidimensional models (contains most, if not all,
item selection criteria available in other R packages)

o various CAT designs properties (exposure control, content balancing,

pre-CATs) not present in one or more packages

mixed item types (including custom items)

unidimensional and multidimensional IRT modeling support

GUI capabilities for real-time CATs

and so on.

mirtCAT package

Passing responses to fscores()

Because mirtCAT calls mirt to estimate various aspects, re-estimating
abilities once the test is complete is also possible.

responses <- summary(result, sort = FALSE)$scored_responses
fscores(mirt_object, response.pattern = responses,
method = "ML")

#i# Item.1 Item.2 Item.3 Item.4 Item.5 Item.6 Item.7 Item.8
[1,] 1 1 1 0 1 0 0 1
Item.10 F1 SE_F1

[1,] 1 0.5976364 0.8816145

mirtCAT package

Passing responses back to mirt

In the same light as with fscores(), data can be extracted from
mirtCAT and added to the original data.frame used to calibrate the
item parameters. This provides a fluid work-flow between collecting and
calibrating item parameters.

result <- mirtCAT(df, oldmodel, ...)
responses <- summary(result, sort = FALSE)$scored_responses
new_dat <- rbind(org_dat, responses)

newmodel <- mirt(new_dat, model, ...)
given new model, run mirtCAT() again....ad nosium
result <- mirtCAT(df, newmodel, ...)

responses <- summary(result, sort = FALSE)$scored_responses

mirtCAT package

Customizing GUI elements

@ Overview of GUI elements presented in the current version of the
mirtCAT draft

o Additional details are available in help (mirtCAT)

@ Include a majority of lower level changes, therefore languages other
than English can be used if the test developer wishes

mirtCAT package

Future work

Designing tests and surveys with mirtCAT is, IMHO, fairly easy. Most of
the work to set up tests with the shiny package has been extracted from
the user, and setting up CATs is nearly as simple using information from

mirt.

In the future | may consider adding:

testlet based questions (e.g., ETS style)

support for audio and video files

interactive item content (ggvis, googleVis)
multiple questions per-page (surveys only)
shadow testing design

whatever else users want to see (and is possible)

mirtCAT package

Exercise

Final Exercise
The final exercise file is located in Exercise_4.html

End of Workshops

This is the end of the two day Workshops (congratulations!). Just to
review what we learned today:

Customizing density functions for estimation model parameters and
person estimates in mirt

Non-parametric estimation of the latent density with empirical
histograms

Latent trait estimation algorithms, and their connection with test and
item information

The fundamentals of (multidimensional) computerized adaptive
testing

How MCATs and standard CATs can be organized and implemented
with the mirtCAT package

Closing

Closing

Additional information

mirt and mirtCAT are actively being developed by yours truly. The
development versions of the packages are obtainable on Github. Feature
requests and bugs can be sent there by opening ‘Issues’, or, if you are so
inclined, even code modifications that you wrote which you think would
improve the package (called ‘pull requests’).

e Github: https://github.com/philchalmers/mirt and
https://github.com/philchalmers/mirtCAT

o Github wiki's: https://github.com/philchalmers/mirt/wiki
and https://github.com/philchalmers/mirtCAT/wiki

For general questions about the package, or other IRT related topics on
analyzing data, there also is a Google mailing list which is free to join and
contribute to.

@ Google Forum:
https://groups.google.com/forum/#!forum/mirt-package

Closing

References

Chalmers, R. P. (in review). Generating Adaptive and Non-Adaptive Test
Interfaces for Multidimensional Item Response Theory Applications.

Chalmers, R. P. (in review). Extended Mixed Effect ltem Response Models.

Fischer, G. H. (1983). Logistic latent trait models with linear constraints.
Psychometrika, 48, 3-26.

Kingsbury GG, Zara AR (1991). A Comparison of Procedures for
Content-Sensitive Item Selection in Computerized Adaptive Tests. Applied
Measurement in Education, 4, 241-261.

Segall DO (1996). Multidimensional Adaptive Testing. Psychometrika, 61,
331-354.

	Latent trait densities and customization
	Mixed Effects
	Latent trait prediction
	Computerized Adaptive Tests
	mirtCAT package
	Closing

