| createGroup {mirt} | R Documentation | 
Initializes the proper S4 class and methods necessary for mirt functions to use in estimation for defining
customized group-level functions. To use the defined objects pass to the
mirt(..., customGroup = OBJECT) command, and ensure that the class parameters are properly labelled.
createGroup(
  par,
  est,
  den,
  nfact,
  standardize = FALSE,
  gr = NULL,
  hss = NULL,
  gen = NULL,
  lbound = NULL,
  ubound = NULL,
  derivType = "Richardson"
)
par | 
 a named vector of the starting values for the parameters  | 
est | 
 a logical vector indicating which parameters should be freely estimated by default  | 
den | 
 the probability density function given the Theta/ability values.
First input contains a vector of all the defined parameters and the second input
must be a matrix called   | 
nfact | 
 number of factors required for the model. E.g., for unidimensional models with only one
dimension of integration   | 
standardize | 
 logical; use standardization of the quadrature table method proposed by
Woods and Thissen (2006)? If TRUE, the logical elements named   | 
gr | 
 gradient function (vector of first derivatives) of the log-likelihood used in
estimation. The function must be of the form   | 
hss | 
 Hessian function (matrix of second derivatives) of the log-likelihood used in
estimation. If not specified a numeric approximation will be used.
The input is identical to the   | 
gen | 
 a function used when   | 
lbound | 
 optional vector indicating the lower bounds of the parameters. If not specified then the bounds will be set to -Inf  | 
ubound | 
 optional vector indicating the lower bounds of the parameters. If not specified then the bounds will be set to Inf  | 
derivType | 
 if the   | 
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
# normal density example, N(mu, sigma^2)
den <- function(obj, Theta) dnorm(Theta, obj@par[1], sqrt(obj@par[2]))
par <- c(mu = 0, sigma2 = .5)
est <- c(FALSE, TRUE)
lbound <- c(-Inf, 0)
grp <- createGroup(par, est, den, nfact = 1, lbound=lbound)
dat <- expand.table(LSAT6)
mod <- mirt(dat, 1, 'Rasch')
modcustom <- mirt(dat, 1, 'Rasch', customGroup=grp)
coef(mod)
## $Item_1
##     a1     d g u
## par  1 2.731 0 1
## 
## $Item_2
##     a1     d g u
## par  1 0.999 0 1
## 
## $Item_3
##     a1    d g u
## par  1 0.24 0 1
## 
## $Item_4
##     a1     d g u
## par  1 1.307 0 1
## 
## $Item_5
##     a1   d g u
## par  1 2.1 0 1
## 
## $GroupPars
##     MEAN_1 COV_11
## par      0  0.572
coef(modcustom)
## $Item_1
##     a1     d g u
## par  1 2.729 0 1
## 
## $Item_2
##     a1     d g u
## par  1 0.998 0 1
## 
## $Item_3
##     a1    d g u
## par  1 0.24 0 1
## 
## $Item_4
##     a1     d g u
## par  1 1.306 0 1
## 
## $Item_5
##     a1     d g u
## par  1 2.099 0 1
## 
## $GroupPars
##     mu sigma2
## par  0  0.569