imputeMissing {mirt} | R Documentation |
Given an estimated model from any of mirt's model fitting functions and an estimate of the
latent trait, impute plausible missing data values. Returns the original data in a
data.frame
without any NA values. If a list of Theta
values is supplied then a
list of complete datasets is returned instead.
imputeMissing(x, Theta, warn = TRUE, ...)
x |
an estimated model x from the mirt package |
Theta |
a matrix containing the estimates of the latent trait scores
(e.g., via |
warn |
logical; print warning messages? |
... |
additional arguments to pass |
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## No test:
dat <- expand.table(LSAT7)
(original <- mirt(dat, 1))
##
## Call:
## mirt(data = dat, model = 1)
##
## Full-information item factor analysis with 1 factor(s).
## Converged within 1e-04 tolerance after 28 EM iterations.
## mirt version: 1.43
## M-step optimizer: BFGS
## EM acceleration: Ramsay
## Number of rectangular quadrature: 61
## Latent density type: Gaussian
##
## Log-likelihood = -2658.805
## Estimated parameters: 10
## AIC = 5337.61
## BIC = 5386.688; SABIC = 5354.927
## G2 (21) = 31.7, p = 0.0628
## RMSEA = 0.023, CFI = NaN, TLI = NaN
NAperson <- sample(1:nrow(dat), 20, replace = TRUE)
NAitem <- sample(1:ncol(dat), 20, replace = TRUE)
for(i in 1:20)
dat[NAperson[i], NAitem[i]] <- NA
(mod <- mirt(dat, 1))
##
## Call:
## mirt(data = dat, model = 1)
##
## Full-information item factor analysis with 1 factor(s).
## Converged within 1e-04 tolerance after 39 EM iterations.
## mirt version: 1.43
## M-step optimizer: BFGS
## EM acceleration: Ramsay
## Number of rectangular quadrature: 61
## Latent density type: Gaussian
##
## Log-likelihood = -2651.701
## Estimated parameters: 10
## AIC = 5323.401
## BIC = 5372.479; SABIC = 5340.718
scores <- fscores(mod, method = 'MAP')
# re-estimate imputed dataset (good to do this multiple times and average over)
fulldata <- imputeMissing(mod, scores)
(fullmod <- mirt(fulldata, 1))
##
## Call:
## mirt(data = fulldata, model = 1)
##
## Full-information item factor analysis with 1 factor(s).
## Converged within 1e-04 tolerance after 25 EM iterations.
## mirt version: 1.43
## M-step optimizer: BFGS
## EM acceleration: Ramsay
## Number of rectangular quadrature: 61
## Latent density type: Gaussian
##
## Log-likelihood = -2661.213
## Estimated parameters: 10
## AIC = 5342.426
## BIC = 5391.503; SABIC = 5359.743
## G2 (21) = 33.03, p = 0.0459
## RMSEA = 0.024, CFI = NaN, TLI = NaN
# with multipleGroup
set.seed(1)
group <- sample(c('group1', 'group2'), 1000, TRUE)
mod2 <- multipleGroup(dat, 1, group, TOL=1e-2)
fs <- fscores(mod2)
fulldata2 <- imputeMissing(mod2, fs)
## End(No test)