| secondOrderTest {mirt} | R Documentation | 
Test whether terminated estimation criteria for a given model passes
the second order test by checking the positive definiteness of the resulting
Hessian matrix. This function, which accepts the symmetric Hessian/information
matrix as the input, returns TRUE if the matrix is positive definite
and FALSE otherwise.
secondOrderTest(mat, ..., method = "eigen")
mat | 
 symmetric matrix to test for positive definiteness (typically the Hessian at the highest point of model estimator, such as MLE or MAP)  | 
... | 
 arguments passed to either   | 
method | 
 method to use to test positive definiteness. Default is   | 
a matrix with all possible combinations
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
## No test: 
# PD matrix
mod <- mirt(Science, 1, SE=TRUE)
info <- solve(vcov(mod))   ## observed information
secondOrderTest(info)
## [1] TRUE
secondOrderTest(info, method = 'chol')
## [1] TRUE
secondOrderTest(info, method = 'det')
## [1] TRUE
# non-PD matrix
mat <- matrix(c(1,0,0,0,1,1,0,1,1), ncol=3)
mat
##      [,1] [,2] [,3]
## [1,]    1    0    0
## [2,]    0    1    1
## [3,]    0    1    1
secondOrderTest(mat)
## [1] FALSE
secondOrderTest(mat, method = 'chol')
## [1] FALSE
secondOrderTest(mat, method = 'det')
## [1] FALSE
## End(No test)