Stochastically compute random effects for MixedClass objects with Metropolis-Hastings samplers and averaging over the draws to obtain expected a posteriori predictions. Returns a list of the estimated effects.

randef(x, ndraws = 1000, thin = 10, return.draws = FALSE)

Arguments

x

an estimated model object from the mixedmirt function

ndraws

total number of draws to perform. Default is 1000

thin

amount of thinning to apply. Default is to use every 10th draw

return.draws

logical; return a list containing the thinned draws of the posterior?

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29.

Chalmers, R. P. (2015). Extended Mixed-Effects Item Response Models with the MH-RM Algorithm. Journal of Educational Measurement, 52, 200-222. doi:10.1111/jedm.12072 doi:10.18637/jss.v048.i06

Author

Phil Chalmers rphilip.chalmers@gmail.com

Examples

# \donttest{
# make an arbitrary groups
covdat <- data.frame(group = rep(paste0('group', 1:49), each=nrow(Science)/49))

# partial credit model
mod <- mixedmirt(Science, covdat, model=1, random = ~ 1|group)
summary(mod)
#> 
#> Call:
#> mixedmirt(data = Science, covdata = covdat, model = 1, random = ~1 | 
#>     group)
#> 
#> 
#> --------------
#> RANDOM EFFECT COVARIANCE(S):
#> Correlations on upper diagonal
#> 
#> $Theta
#>      F1
#> F1 0.95
#> 
#> $group
#>           COV_group
#> COV_group    0.0185
#> 

effects <- randef(mod, ndraws = 2000, thin = 20)
head(effects$Theta)
#>              F1
#> [1,]  0.4666782
#> [2,]  0.1358092
#> [3,] -0.5996250
#> [4,] -0.6091914
#> [5,]  0.0344100
#> [6,]  0.8838635
head(effects$group)
#>               group
#> group1  0.039407727
#> group2  0.029206628
#> group3  0.001350243
#> group4 -0.007189366
#> group5 -0.019588347
#> group6  0.005696431

# }