Package index
-
ASVAB - Description of ASVAB data
-
Bock1997 - Description of Bock 1997 data
-
DIF() - Differential item functioning statistics
-
DRF() - Differential Response Functioning statistics
-
DTF() - Differential test functioning statistics
-
DiscreteClass-class - Class "DiscreteClass"
-
LSAT6 - Description of LSAT6 data
-
LSAT7 - Description of LSAT7 data
-
M2() - Compute the M2 model fit statistic
-
MDIFF() - Compute multidimensional difficulty index
-
MDISC() - Compute multidimensional discrimination index
-
MixedClass-class - Class "MixedClass"
-
MixtureClass-class - Class "MixtureClass"
-
MultipleGroupClass-class - Class "MultipleGroupClass"
-
PLCI.mirt() - Compute profiled-likelihood (or posterior) confidence intervals
-
RCI() - Model-based Reliable Change Index
-
RMSD_DIF() - RMSD effect size statistic to quantify category-level DIF
-
SAT12 - Description of SAT12 data
-
SIBTEST() - (Generalized) Simultaneous Item Bias Test (SIBTEST)
-
SLF - Social Life Feelings Data
-
Science - Description of Science data
-
SingleGroupClass-class - Class "SingleGroupClass"
-
anova(<SingleGroupClass>) - Compare nested models with likelihood-based statistics
-
areainfo() - Function to calculate the area under a selection of information curves
-
averageMI() - Collapse values from multiple imputation draws
-
bfactor() - Full-Information Item Bi-factor and Two-Tier Analysis
-
boot.LR() - Parametric bootstrap likelihood-ratio test
-
boot.mirt() - Calculate bootstrapped standard errors for estimated models
-
coef(<SingleGroupClass>) - Extract raw coefs from model object
-
createGroup() - Create a user defined group-level object with correct generic functions
-
createItem() - Create a user defined item with correct generic functions
-
deAyala - Description of deAyala data
-
draw_parameters() - Draw plausible parameter instantiations from a given model
-
empirical_ES() - Empirical effect sizes based on latent trait estimates
-
empirical_plot() - Function to generate empirical unidimensional item and test plots
-
empirical_rxx() - Function to calculate the empirical (marginal) reliability
-
estfun.AllModelClass() - Extract Empirical Estimating Functions
-
expand.table() - Expand summary table of patterns and frequencies
-
expected.item() - Function to calculate expected value of item
-
expected.test() - Function to calculate expected test score
-
extract.group() - Extract a group from a multiple group mirt object
-
extract.item() - Extract an item object from mirt objects
-
extract.mirt() - Extract various elements from estimated model objects
-
fixedCalib() - Fixed-item calibration method
-
fixef() - Compute latent regression fixed effect expected values
-
fscores() - Compute factor score estimates (a.k.a, ability estimates, latent trait estimates, etc)
-
gen.difficulty() - Generalized item difficulty summaries
-
imputeMissing() - Imputing plausible data for missing values
-
itemGAM()plot(<itemGAM>) - Parametric smoothed regression lines for item response probability functions
-
itemfit() - Item fit statistics
-
iteminfo() - Function to calculate item information
-
itemplot() - Displays item surface and information plots
-
itemstats() - Generic item summary statistics
-
key2binary() - Score a test by converting response patterns to binary data
-
lagrange() - Lagrange test for freeing parameters
-
likert2int() - Convert ordered Likert-scale responses (character or factors) to integers
-
logLik(<SingleGroupClass>) - Extract log-likelihood
-
marginal_rxx() - Function to calculate the marginal reliability
-
mdirt() - Multidimensional discrete item response theory
-
mirt-package - Full information maximum likelihood estimation of IRT models.
-
mirt() - Full-Information Item Factor Analysis (Multidimensional Item Response Theory)
-
mirt.model() - Specify model information
-
mirtCluster() - Define a parallel cluster object to be used in internal functions
-
mixedmirt() - Mixed effects modeling for MIRT models
-
mod2values() - Convert an estimated mirt model to a data.frame
-
multipleGroup() - Multiple Group Estimation
-
numerical_deriv() - Compute numerical derivatives
-
personfit() - Person fit statistics
-
plot(<MultipleGroupClass>,<missing>)plot(<SingleGroupClass>,<missing>) - Plot various test-implied functions from models
-
poly2dich() - Change polytomous items to dichotomous item format
-
print(<SingleGroupClass>) - Print the model objects
-
print(<mirt_df>) - Print generic for customized data.frame console output
-
print(<mirt_list>) - Print generic for customized list console output
-
print(<mirt_matrix>) - Print generic for customized matrix console output
-
probtrace() - Function to calculate probability trace lines
-
randef() - Compute posterior estimates of random effect
-
read.mirt() - Translate mirt parameters into suitable structure for plink package
-
remap.distance() - Remap item categories to have integer distances of 1
-
residuals(<SingleGroupClass>) - Compute model residuals
-
reverse.score() - Reverse score one or more items from a response matrix
-
secondOrderTest() - Second-order test of convergence
-
show(<SingleGroupClass>) - Show model object
-
simdata() - Simulate response patterns
-
summary(<SingleGroupClass>) - Summary of model object
-
testinfo() - Function to calculate test information
-
thetaComb() - Create all possible combinations of vector input
-
traditional2mirt() - Convert traditional IRT metric into slope-intercept form used in mirt
-
vcov(<SingleGroupClass>) - Extract parameter variance covariance matrix
-
wald() - Wald statistics for mirt models