This function computes a set of RMSD "badness-of-fit" statistics when investing DIF across a set of grouping variables. In a first step, a (potentially highly constrained) multiple group model is fitted, while in a second step the item (and person) parameters are estimated based on all examines across all groups. Category level DIF is assessed based on how well the pseudo-table of counts match the (constrained) probability functions implied by the original multiple group model (while also weighing across the implied density function of the latent traits). If the RSMD fit is poor, indicating non-ignorable DIF, then the multiple-group model should be adjusted to better account for the large response bias due to using a pooled model. See Lee and von Davier (2020) and Buchholz and Hartig (2019) for details.
Arguments
- pooled_mod
a multiple-group model (used to compute the model-implied probability in the goodness-of-fit test)
- flag
a numeric value used as a cut-off to help flag larger RMSD values (e.g.,
flag = .03
will highlight only categories with RMSD values greater than .03)- probfun
logical; use probability functions to compute RMSD? If FALSE, the expected score functions will be integrated instead, which may be useful for collapsing across the categories in polytomous items
- dentype
density to use for the latent trait. Can be
'norm'
to use a normal Gaussian density where the mean/variance are extracted from the model object(default),'snorm'
for a standard normal distribution, or'empirical'
to use the density estimate obtained via the E-table
References
Buchholz, J., and Hartig, J. (2019). Comparing Attitudes Across Groups: An IRT-Based Item-Fit Statistic for the Analysis of Measurement Invariance. Applied Psychological Measurement, 43(3), 241-250. doi:10.1177/0146621617748323
Lee, S. S., and von Davier, M. (2020). Improving measurement properties of the PISA home possessions scale through partial invariance modeling. Psychological test and assessment modeling, 62(1):55-83.
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
# \donttest{
#----- generate some data
set.seed(12345)
a <- a2 <- matrix(abs(rnorm(15,1,.3)), ncol=1)
d <- d2 <- matrix(rnorm(15,0,.7),ncol=1)
# item 1 has DIF
d2[1] <- d[1] - .5
a2[1] <- a[1] + 1
itemtype <- rep('2PL', nrow(a))
N <- 1000
dataset1 <- simdata(a, d, N, itemtype)
dataset2 <- simdata(a2, d2, N, itemtype)
dat <- rbind(dataset1, dataset2)
group <- c(rep('D1', N), rep('D2', N))
#-----
# fully pooled model
pooled_mod <- multipleGroup(dat, 1, group=group,
invariance = c(colnames(dat), 'free_mean', 'free_var'))
coef(pooled_mod, simplify=TRUE)
#> $D1
#> $items
#> a1 d g u
#> Item_1 1.440 0.358 0 1
#> Item_2 1.136 -0.590 0 1
#> Item_3 0.996 -0.237 0 1
#> Item_4 0.902 0.921 0 1
#> Item_5 1.060 0.153 0 1
#> Item_6 0.440 0.637 0 1
#> Item_7 1.170 1.023 0 1
#> Item_8 0.904 -0.353 0 1
#> Item_9 0.875 -0.978 0 1
#> Item_10 0.665 -1.120 0 1
#> Item_11 0.939 1.243 0 1
#> Item_12 1.336 -0.194 0 1
#> Item_13 1.250 0.481 0 1
#> Item_14 1.050 0.444 0 1
#> Item_15 0.778 -0.064 0 1
#>
#> $means
#> F1
#> 0
#>
#> $cov
#> F1
#> F1 1
#>
#>
#> $D2
#> $items
#> a1 d g u
#> Item_1 1.440 0.358 0 1
#> Item_2 1.136 -0.590 0 1
#> Item_3 0.996 -0.237 0 1
#> Item_4 0.902 0.921 0 1
#> Item_5 1.060 0.153 0 1
#> Item_6 0.440 0.637 0 1
#> Item_7 1.170 1.023 0 1
#> Item_8 0.904 -0.353 0 1
#> Item_9 0.875 -0.978 0 1
#> Item_10 0.665 -1.120 0 1
#> Item_11 0.939 1.243 0 1
#> Item_12 1.336 -0.194 0 1
#> Item_13 1.250 0.481 0 1
#> Item_14 1.050 0.444 0 1
#> Item_15 0.778 -0.064 0 1
#>
#> $means
#> F1
#> -0.08
#>
#> $cov
#> F1
#> F1 1.167
#>
#>
RMSD_DIF(pooled_mod)
#> $D1
#> P.0 P.1
#> Item_1 0.056 0.056
#> Item_2 0.018 0.018
#> Item_3 0.014 0.014
#> Item_4 0.019 0.019
#> Item_5 0.010 0.010
#> Item_6 0.021 0.021
#> Item_7 0.016 0.016
#> Item_8 0.017 0.017
#> Item_9 0.019 0.019
#> Item_10 0.018 0.018
#> Item_11 0.013 0.013
#> Item_12 0.014 0.014
#> Item_13 0.018 0.018
#> Item_14 0.009 0.009
#> Item_15 0.011 0.011
#>
#> $D2
#> P.0 P.1
#> Item_1 0.053 0.053
#> Item_2 0.021 0.021
#> Item_3 0.013 0.013
#> Item_4 0.016 0.016
#> Item_5 0.008 0.008
#> Item_6 0.022 0.022
#> Item_7 0.017 0.017
#> Item_8 0.016 0.016
#> Item_9 0.017 0.017
#> Item_10 0.014 0.014
#> Item_11 0.021 0.021
#> Item_12 0.013 0.013
#> Item_13 0.011 0.011
#> Item_14 0.004 0.004
#> Item_15 0.014 0.014
#>
RMSD_DIF(pooled_mod, dentype = 'empirical')
#> $D1
#> P.0 P.1
#> Item_1 0.056 0.056
#> Item_2 0.018 0.018
#> Item_3 0.014 0.014
#> Item_4 0.019 0.019
#> Item_5 0.010 0.010
#> Item_6 0.021 0.021
#> Item_7 0.016 0.016
#> Item_8 0.017 0.017
#> Item_9 0.019 0.019
#> Item_10 0.018 0.018
#> Item_11 0.013 0.013
#> Item_12 0.014 0.014
#> Item_13 0.018 0.018
#> Item_14 0.009 0.009
#> Item_15 0.011 0.011
#>
#> $D2
#> P.0 P.1
#> Item_1 0.052 0.052
#> Item_2 0.021 0.021
#> Item_3 0.013 0.013
#> Item_4 0.016 0.016
#> Item_5 0.009 0.009
#> Item_6 0.022 0.022
#> Item_7 0.017 0.017
#> Item_8 0.016 0.016
#> Item_9 0.017 0.017
#> Item_10 0.014 0.014
#> Item_11 0.021 0.021
#> Item_12 0.013 0.013
#> Item_13 0.011 0.011
#> Item_14 0.004 0.004
#> Item_15 0.014 0.014
#>
RMSD_DIF(pooled_mod, flag = .03)
#> $D1
#> P.0 P.1
#> Item_1 0.056 0.056
#> Item_2 NA NA
#> Item_3 NA NA
#> Item_4 NA NA
#> Item_5 NA NA
#> Item_6 NA NA
#> Item_7 NA NA
#> Item_8 NA NA
#> Item_9 NA NA
#> Item_10 NA NA
#> Item_11 NA NA
#> Item_12 NA NA
#> Item_13 NA NA
#> Item_14 NA NA
#> Item_15 NA NA
#>
#> $D2
#> P.0 P.1
#> Item_1 0.053 0.053
#> Item_2 NA NA
#> Item_3 NA NA
#> Item_4 NA NA
#> Item_5 NA NA
#> Item_6 NA NA
#> Item_7 NA NA
#> Item_8 NA NA
#> Item_9 NA NA
#> Item_10 NA NA
#> Item_11 NA NA
#> Item_12 NA NA
#> Item_13 NA NA
#> Item_14 NA NA
#> Item_15 NA NA
#>
# more freely estimated model (item 1 has 2 parameters estimated)
MGmod <- multipleGroup(dat, 1, group=group,
invariance = c(colnames(dat)[-1], 'free_mean', 'free_var'))
coef(MGmod, simplify=TRUE)
#> $D1
#> $items
#> a1 d g u
#> Item_1 1.071 0.525 0 1
#> Item_2 1.178 -0.615 0 1
#> Item_3 1.031 -0.258 0 1
#> Item_4 0.933 0.902 0 1
#> Item_5 1.099 0.130 0 1
#> Item_6 0.455 0.627 0 1
#> Item_7 1.217 1.001 0 1
#> Item_8 0.926 -0.372 0 1
#> Item_9 0.905 -0.997 0 1
#> Item_10 0.692 -1.136 0 1
#> Item_11 0.967 1.222 0 1
#> Item_12 1.373 -0.222 0 1
#> Item_13 1.302 0.456 0 1
#> Item_14 1.079 0.421 0 1
#> Item_15 0.804 -0.080 0 1
#>
#> $means
#> F1
#> 0
#>
#> $cov
#> F1
#> F1 1
#>
#>
#> $D2
#> $items
#> a1 d g u
#> Item_1 2.100 0.083 0 1
#> Item_2 1.178 -0.615 0 1
#> Item_3 1.031 -0.258 0 1
#> Item_4 0.933 0.902 0 1
#> Item_5 1.099 0.130 0 1
#> Item_6 0.455 0.627 0 1
#> Item_7 1.217 1.001 0 1
#> Item_8 0.926 -0.372 0 1
#> Item_9 0.905 -0.997 0 1
#> Item_10 0.692 -1.136 0 1
#> Item_11 0.967 1.222 0 1
#> Item_12 1.373 -0.222 0 1
#> Item_13 1.302 0.456 0 1
#> Item_14 1.079 0.421 0 1
#> Item_15 0.804 -0.080 0 1
#>
#> $means
#> F1
#> -0.036
#>
#> $cov
#> F1
#> F1 1.033
#>
#>
# RMSD in item.1 now reduced (MG model accounts for DIF)
RMSD_DIF(MGmod)
#> $D1
#> P.0 P.1
#> Item_1 0.007 0.007
#> Item_2 0.015 0.015
#> Item_3 0.017 0.017
#> Item_4 0.015 0.015
#> Item_5 0.009 0.009
#> Item_6 0.020 0.020
#> Item_7 0.010 0.010
#> Item_8 0.020 0.020
#> Item_9 0.017 0.017
#> Item_10 0.018 0.018
#> Item_11 0.017 0.017
#> Item_12 0.010 0.010
#> Item_13 0.017 0.017
#> Item_14 0.013 0.013
#> Item_15 0.011 0.011
#>
#> $D2
#> P.0 P.1
#> Item_1 0.005 0.005
#> Item_2 0.020 0.020
#> Item_3 0.018 0.018
#> Item_4 0.011 0.011
#> Item_5 0.007 0.007
#> Item_6 0.022 0.022
#> Item_7 0.011 0.011
#> Item_8 0.017 0.017
#> Item_9 0.016 0.016
#> Item_10 0.016 0.016
#> Item_11 0.022 0.022
#> Item_12 0.008 0.008
#> Item_13 0.006 0.006
#> Item_14 0.009 0.009
#> Item_15 0.014 0.014
#>
RMSD_DIF(MGmod, flag = .03)
#> $D1
#> P.0 P.1
#> Item_1 NA NA
#> Item_2 NA NA
#> Item_3 NA NA
#> Item_4 NA NA
#> Item_5 NA NA
#> Item_6 NA NA
#> Item_7 NA NA
#> Item_8 NA NA
#> Item_9 NA NA
#> Item_10 NA NA
#> Item_11 NA NA
#> Item_12 NA NA
#> Item_13 NA NA
#> Item_14 NA NA
#> Item_15 NA NA
#>
#> $D2
#> P.0 P.1
#> Item_1 NA NA
#> Item_2 NA NA
#> Item_3 NA NA
#> Item_4 NA NA
#> Item_5 NA NA
#> Item_6 NA NA
#> Item_7 NA NA
#> Item_8 NA NA
#> Item_9 NA NA
#> Item_10 NA NA
#> Item_11 NA NA
#> Item_12 NA NA
#> Item_13 NA NA
#> Item_14 NA NA
#> Item_15 NA NA
#>
#################
# NA placeholders included when groups do not respond to specific items
a1 <- a2 <- rlnorm(20)
d <- d2 <- rnorm(20)
# item 5 contains DIF
a2[5] <- a1[5] + 1
d2[5] <- d[5] - 1/2
g <- rbeta(20, 5, 17)
dat1 <- simdata(a1, d, guess = g, N=1000, itemtype = '3PL')
dat1[, 11:13] <- NA # items 11:13 items NA for g1
dat2 <- simdata(a2, d2, guess = g, N=1000, itemtype = '3PL',
mu=1/4, sigma=matrix(.75))
dat2[,1:3] <- NA # items 1:3 items NA for g2
dat <- rbind(dat1, dat2)
group <- c(rep('g1', 1000), rep('g2', 1000))
mod <- multipleGroup(dat, "Theta = 1-20
PRIOR = (1-20, g, norm, -1, 0.5)",
group=group, itemtype='3PL',
invariance = c(colnames(dat), 'free_mean', 'free_var'))
coef(mod, simplify = TRUE)
#> $g1
#> $items
#> a1 d g u
#> Item_1 0.958 0.962 0.281 1
#> Item_2 0.476 -1.243 0.223 1
#> Item_3 1.459 -1.321 0.331 1
#> Item_4 1.685 0.851 0.227 1
#> Item_5 3.014 -0.148 0.264 1
#> Item_6 0.436 -1.155 0.254 1
#> Item_7 2.134 -2.246 0.145 1
#> Item_8 0.531 0.633 0.262 1
#> Item_9 1.011 0.449 0.258 1
#> Item_10 2.458 -0.681 0.176 1
#> Item_11 1.398 -0.124 0.252 1
#> Item_12 0.180 0.329 0.269 1
#> Item_13 0.809 0.736 0.292 1
#> Item_14 0.674 0.518 0.270 1
#> Item_15 2.931 -1.035 0.280 1
#> Item_16 0.418 0.595 0.256 1
#> Item_17 0.413 -0.241 0.253 1
#> Item_18 2.135 0.899 0.287 1
#> Item_19 -0.208 -2.328 0.277 1
#> Item_20 0.538 -0.132 0.262 1
#>
#> $means
#> Theta
#> 0
#>
#> $cov
#> Theta
#> Theta 1
#>
#>
#> $g2
#> $items
#> a1 d g u
#> Item_1 0.958 0.962 0.281 1
#> Item_2 0.476 -1.243 0.223 1
#> Item_3 1.459 -1.321 0.331 1
#> Item_4 1.685 0.851 0.227 1
#> Item_5 3.014 -0.148 0.264 1
#> Item_6 0.436 -1.155 0.254 1
#> Item_7 2.134 -2.246 0.145 1
#> Item_8 0.531 0.633 0.262 1
#> Item_9 1.011 0.449 0.258 1
#> Item_10 2.458 -0.681 0.176 1
#> Item_11 1.398 -0.124 0.252 1
#> Item_12 0.180 0.329 0.269 1
#> Item_13 0.809 0.736 0.292 1
#> Item_14 0.674 0.518 0.270 1
#> Item_15 2.931 -1.035 0.280 1
#> Item_16 0.418 0.595 0.256 1
#> Item_17 0.413 -0.241 0.253 1
#> Item_18 2.135 0.899 0.287 1
#> Item_19 -0.208 -2.328 0.277 1
#> Item_20 0.538 -0.132 0.262 1
#>
#> $means
#> Theta
#> 0.294
#>
#> $cov
#> Theta
#> Theta 0.745
#>
#>
RMSD_DIF(mod)
#> $g1
#> P.0 P.1
#> Item_1 0.004 0.004
#> Item_2 0.020 0.020
#> Item_3 0.009 0.009
#> Item_4 0.014 0.014
#> Item_5 0.028 0.028
#> Item_6 0.018 0.018
#> Item_7 0.019 0.019
#> Item_8 0.017 0.017
#> Item_9 0.016 0.016
#> Item_10 0.006 0.006
#> Item_11 NA NA
#> Item_12 NA NA
#> Item_13 NA NA
#> Item_14 0.009 0.009
#> Item_15 0.013 0.013
#> Item_16 0.020 0.020
#> Item_17 0.023 0.023
#> Item_18 0.004 0.004
#> Item_19 0.027 0.027
#> Item_20 0.009 0.009
#>
#> $g2
#> P.0 P.1
#> Item_1 NA NA
#> Item_2 NA NA
#> Item_3 NA NA
#> Item_4 0.014 0.014
#> Item_5 0.029 0.029
#> Item_6 0.014 0.014
#> Item_7 0.020 0.020
#> Item_8 0.019 0.019
#> Item_9 0.018 0.018
#> Item_10 0.011 0.011
#> Item_11 0.005 0.005
#> Item_12 0.007 0.007
#> Item_13 0.014 0.014
#> Item_14 0.006 0.006
#> Item_15 0.014 0.014
#> Item_16 0.026 0.026
#> Item_17 0.023 0.023
#> Item_18 0.008 0.008
#> Item_19 0.014 0.014
#> Item_20 0.010 0.010
#>
RMSD_DIF(mod, flag = .03)
#> $g1
#> P.0 P.1
#> Item_1 NA NA
#> Item_2 NA NA
#> Item_3 NA NA
#> Item_4 NA NA
#> Item_5 NA NA
#> Item_6 NA NA
#> Item_7 NA NA
#> Item_8 NA NA
#> Item_9 NA NA
#> Item_10 NA NA
#> Item_11 NA NA
#> Item_12 NA NA
#> Item_13 NA NA
#> Item_14 NA NA
#> Item_15 NA NA
#> Item_16 NA NA
#> Item_17 NA NA
#> Item_18 NA NA
#> Item_19 NA NA
#> Item_20 NA NA
#>
#> $g2
#> P.0 P.1
#> Item_1 NA NA
#> Item_2 NA NA
#> Item_3 NA NA
#> Item_4 NA NA
#> Item_5 NA NA
#> Item_6 NA NA
#> Item_7 NA NA
#> Item_8 NA NA
#> Item_9 NA NA
#> Item_10 NA NA
#> Item_11 NA NA
#> Item_12 NA NA
#> Item_13 NA NA
#> Item_14 NA NA
#> Item_15 NA NA
#> Item_16 NA NA
#> Item_17 NA NA
#> Item_18 NA NA
#> Item_19 NA NA
#> Item_20 NA NA
#>
#################
# polytomous example
set.seed(12345)
a <- a2 <- matrix(rlnorm(20,.2,.3))
# for the graded model, ensure that there is enough space between the intercepts,
# otherwise closer categories will not be selected often (minimum distance of 0.3 here)
diffs <- t(apply(matrix(runif(20*4, .3, 1), 20), 1, cumsum))
diffs <- -(diffs - rowMeans(diffs))
d <- d2 <- diffs + rnorm(20)
# item 1 has slope + dif for first intercept parameter
d2[1] <- d[1] - .5
a2[1] <- a[1] + 1
itemtype <- rep('graded', nrow(a))
N <- 1000
dataset1 <- simdata(a, d, N, itemtype)
dataset2 <- simdata(a2, d2, N, itemtype)
dat <- rbind(dataset1, dataset2)
group <- c(rep('D1', N), rep('D2', N))
#-----
# fully pooled model
pooled_mod <- multipleGroup(dat, 1, group=group,
invariance = c(colnames(dat), 'free_mean', 'free_var'))
coef(pooled_mod, simplify=TRUE)
#> $D1
#> $items
#> a1 d1 d2 d3 d4
#> Item_1 1.708 1.205 0.527 -0.453 -0.948
#> Item_2 1.517 -0.518 -0.992 -1.653 -2.434
#> Item_3 1.187 1.757 0.681 0.375 -0.638
#> Item_4 1.167 2.719 1.868 1.539 0.808
#> Item_5 1.410 0.485 -0.466 -0.867 -1.581
#> Item_6 0.683 -0.984 -1.396 -1.940 -2.910
#> Item_7 1.387 2.128 1.234 0.341 -0.386
#> Item_8 0.985 2.332 1.994 1.374 0.440
#> Item_9 1.043 1.597 0.850 0.024 -0.373
#> Item_10 0.906 -0.284 -1.281 -1.573 -2.038
#> Item_11 1.128 1.269 0.470 -0.460 -1.184
#> Item_12 2.016 0.268 -0.318 -1.128 -1.716
#> Item_13 1.356 -0.202 -0.835 -1.233 -2.016
#> Item_14 1.261 3.169 2.582 1.916 1.334
#> Item_15 0.928 2.307 1.957 1.151 0.268
#> Item_16 1.479 2.080 1.345 0.682 -0.305
#> Item_17 0.815 2.163 1.208 0.410 -0.557
#> Item_18 1.113 0.333 -0.481 -1.357 -2.072
#> Item_19 1.604 1.256 0.584 0.240 -0.145
#> Item_20 1.333 1.876 1.439 0.858 0.241
#>
#> $means
#> F1
#> 0
#>
#> $cov
#> F1
#> F1 1
#>
#>
#> $D2
#> $items
#> a1 d1 d2 d3 d4
#> Item_1 1.708 1.205 0.527 -0.453 -0.948
#> Item_2 1.517 -0.518 -0.992 -1.653 -2.434
#> Item_3 1.187 1.757 0.681 0.375 -0.638
#> Item_4 1.167 2.719 1.868 1.539 0.808
#> Item_5 1.410 0.485 -0.466 -0.867 -1.581
#> Item_6 0.683 -0.984 -1.396 -1.940 -2.910
#> Item_7 1.387 2.128 1.234 0.341 -0.386
#> Item_8 0.985 2.332 1.994 1.374 0.440
#> Item_9 1.043 1.597 0.850 0.024 -0.373
#> Item_10 0.906 -0.284 -1.281 -1.573 -2.038
#> Item_11 1.128 1.269 0.470 -0.460 -1.184
#> Item_12 2.016 0.268 -0.318 -1.128 -1.716
#> Item_13 1.356 -0.202 -0.835 -1.233 -2.016
#> Item_14 1.261 3.169 2.582 1.916 1.334
#> Item_15 0.928 2.307 1.957 1.151 0.268
#> Item_16 1.479 2.080 1.345 0.682 -0.305
#> Item_17 0.815 2.163 1.208 0.410 -0.557
#> Item_18 1.113 0.333 -0.481 -1.357 -2.072
#> Item_19 1.604 1.256 0.584 0.240 -0.145
#> Item_20 1.333 1.876 1.439 0.858 0.241
#>
#> $means
#> F1
#> -0.022
#>
#> $cov
#> F1
#> F1 1.182
#>
#>
# Item_1 fits poorly in several categories (RMSD > .05)
RMSD_DIF(pooled_mod)
#> $D1
#> P.1 P.2 P.3 P.4 P.5
#> Item_1 0.088 0.057 0.024 0.023 0.037
#> Item_2 0.014 0.008 0.010 0.011 0.012
#> Item_3 0.019 0.019 0.015 0.017 0.027
#> Item_4 0.024 0.010 0.010 0.014 0.028
#> Item_5 0.030 0.017 0.006 0.023 0.021
#> Item_6 0.010 0.015 0.015 0.019 0.016
#> Item_7 0.016 0.015 0.020 0.015 0.019
#> Item_8 0.014 0.008 0.012 0.021 0.022
#> Item_9 0.019 0.031 0.022 0.014 0.028
#> Item_10 0.025 0.015 0.010 0.011 0.032
#> Item_11 0.012 0.017 0.015 0.011 0.015
#> Item_12 0.013 0.011 0.021 0.013 0.018
#> Item_13 0.023 0.013 0.018 0.021 0.014
#> Item_14 0.009 0.011 0.005 0.022 0.029
#> Item_15 0.015 0.011 0.016 0.010 0.028
#> Item_16 0.016 0.025 0.020 0.022 0.012
#> Item_17 0.025 0.015 0.020 0.023 0.031
#> Item_18 0.016 0.015 0.017 0.016 0.023
#> Item_19 0.019 0.022 0.016 0.013 0.013
#> Item_20 0.033 0.011 0.012 0.012 0.025
#>
#> $D2
#> P.1 P.2 P.3 P.4 P.5
#> Item_1 0.101 0.059 0.036 0.018 0.040
#> Item_2 0.007 0.013 0.005 0.012 0.011
#> Item_3 0.035 0.028 0.017 0.030 0.016
#> Item_4 0.011 0.020 0.012 0.011 0.027
#> Item_5 0.017 0.017 0.010 0.013 0.016
#> Item_6 0.026 0.011 0.007 0.016 0.014
#> Item_7 0.017 0.013 0.017 0.019 0.020
#> Item_8 0.021 0.016 0.016 0.017 0.030
#> Item_9 0.019 0.016 0.014 0.015 0.020
#> Item_10 0.020 0.014 0.014 0.018 0.028
#> Item_11 0.018 0.021 0.017 0.013 0.019
#> Item_12 0.013 0.010 0.022 0.007 0.015
#> Item_13 0.018 0.013 0.013 0.012 0.017
#> Item_14 0.026 0.007 0.023 0.012 0.008
#> Item_15 0.019 0.010 0.014 0.017 0.023
#> Item_16 0.015 0.019 0.019 0.018 0.013
#> Item_17 0.017 0.018 0.028 0.024 0.012
#> Item_18 0.024 0.022 0.025 0.017 0.028
#> Item_19 0.027 0.017 0.014 0.009 0.024
#> Item_20 0.025 0.013 0.014 0.011 0.018
#>
RMSD_DIF(pooled_mod, flag = .05)
#> $D1
#> P.1 P.2 P.3 P.4 P.5
#> Item_1 0.088 0.057 NA NA NA
#> Item_2 NA NA NA NA NA
#> Item_3 NA NA NA NA NA
#> Item_4 NA NA NA NA NA
#> Item_5 NA NA NA NA NA
#> Item_6 NA NA NA NA NA
#> Item_7 NA NA NA NA NA
#> Item_8 NA NA NA NA NA
#> Item_9 NA NA NA NA NA
#> Item_10 NA NA NA NA NA
#> Item_11 NA NA NA NA NA
#> Item_12 NA NA NA NA NA
#> Item_13 NA NA NA NA NA
#> Item_14 NA NA NA NA NA
#> Item_15 NA NA NA NA NA
#> Item_16 NA NA NA NA NA
#> Item_17 NA NA NA NA NA
#> Item_18 NA NA NA NA NA
#> Item_19 NA NA NA NA NA
#> Item_20 NA NA NA NA NA
#>
#> $D2
#> P.1 P.2 P.3 P.4 P.5
#> Item_1 0.101 0.059 NA NA NA
#> Item_2 NA NA NA NA NA
#> Item_3 NA NA NA NA NA
#> Item_4 NA NA NA NA NA
#> Item_5 NA NA NA NA NA
#> Item_6 NA NA NA NA NA
#> Item_7 NA NA NA NA NA
#> Item_8 NA NA NA NA NA
#> Item_9 NA NA NA NA NA
#> Item_10 NA NA NA NA NA
#> Item_11 NA NA NA NA NA
#> Item_12 NA NA NA NA NA
#> Item_13 NA NA NA NA NA
#> Item_14 NA NA NA NA NA
#> Item_15 NA NA NA NA NA
#> Item_16 NA NA NA NA NA
#> Item_17 NA NA NA NA NA
#> Item_18 NA NA NA NA NA
#> Item_19 NA NA NA NA NA
#> Item_20 NA NA NA NA NA
#>
RMSD_DIF(pooled_mod, flag = .1, probfun = FALSE) # use expected score function
#> $D1
#> S(theta)
#> Item_1 0.184
#> Item_2 NA
#> Item_3 NA
#> Item_4 0.106
#> Item_5 NA
#> Item_6 NA
#> Item_7 NA
#> Item_8 NA
#> Item_9 NA
#> Item_10 NA
#> Item_11 NA
#> Item_12 NA
#> Item_13 NA
#> Item_14 NA
#> Item_15 NA
#> Item_16 NA
#> Item_17 0.101
#> Item_18 NA
#> Item_19 NA
#> Item_20 0.102
#>
#> $D2
#> S(theta)
#> Item_1 0.211
#> Item_2 NA
#> Item_3 NA
#> Item_4 NA
#> Item_5 NA
#> Item_6 NA
#> Item_7 NA
#> Item_8 NA
#> Item_9 NA
#> Item_10 NA
#> Item_11 NA
#> Item_12 NA
#> Item_13 NA
#> Item_14 NA
#> Item_15 NA
#> Item_16 NA
#> Item_17 NA
#> Item_18 NA
#> Item_19 NA
#> Item_20 NA
#>
# more freely estimated model (item 1 has more parameters estimated)
MGmod <- multipleGroup(dat, 1, group=group,
invariance = c(colnames(dat)[-1], 'free_mean', 'free_var'))
coef(MGmod, simplify=TRUE)
#> $D1
#> $items
#> a1 d1 d2 d3 d4
#> Item_1 1.293 1.471 0.527 -0.408 -0.925
#> Item_2 1.553 -0.527 -1.000 -1.659 -2.439
#> Item_3 1.226 1.754 0.675 0.368 -0.647
#> Item_4 1.201 2.716 1.864 1.534 0.802
#> Item_5 1.447 0.476 -0.475 -0.876 -1.590
#> Item_6 0.702 -0.989 -1.400 -1.944 -2.915
#> Item_7 1.426 2.122 1.227 0.333 -0.395
#> Item_8 1.009 2.325 1.987 1.368 0.433
#> Item_9 1.076 1.593 0.846 0.018 -0.380
#> Item_10 0.936 -0.290 -1.289 -1.581 -2.047
#> Item_11 1.157 1.261 0.463 -0.467 -1.191
#> Item_12 2.070 0.255 -0.331 -1.141 -1.728
#> Item_13 1.392 -0.211 -0.844 -1.242 -2.025
#> Item_14 1.290 3.158 2.571 1.906 1.324
#> Item_15 0.952 2.301 1.951 1.145 0.262
#> Item_16 1.516 2.070 1.334 0.671 -0.314
#> Item_17 0.835 2.158 1.202 0.405 -0.562
#> Item_18 1.141 0.326 -0.487 -1.363 -2.078
#> Item_19 1.643 1.245 0.573 0.230 -0.155
#> Item_20 1.371 1.869 1.432 0.851 0.234
#>
#> $means
#> F1
#> 0
#>
#> $cov
#> F1
#> F1 1
#>
#>
#> $D2
#> $items
#> a1 d1 d2 d3 d4
#> Item_1 2.523 0.906 0.520 -0.587 -1.079
#> Item_2 1.553 -0.527 -1.000 -1.659 -2.439
#> Item_3 1.226 1.754 0.675 0.368 -0.647
#> Item_4 1.201 2.716 1.864 1.534 0.802
#> Item_5 1.447 0.476 -0.475 -0.876 -1.590
#> Item_6 0.702 -0.989 -1.400 -1.944 -2.915
#> Item_7 1.426 2.122 1.227 0.333 -0.395
#> Item_8 1.009 2.325 1.987 1.368 0.433
#> Item_9 1.076 1.593 0.846 0.018 -0.380
#> Item_10 0.936 -0.290 -1.289 -1.581 -2.047
#> Item_11 1.157 1.261 0.463 -0.467 -1.191
#> Item_12 2.070 0.255 -0.331 -1.141 -1.728
#> Item_13 1.392 -0.211 -0.844 -1.242 -2.025
#> Item_14 1.290 3.158 2.571 1.906 1.324
#> Item_15 0.952 2.301 1.951 1.145 0.262
#> Item_16 1.516 2.070 1.334 0.671 -0.314
#> Item_17 0.835 2.158 1.202 0.405 -0.562
#> Item_18 1.141 0.326 -0.487 -1.363 -2.078
#> Item_19 1.643 1.245 0.573 0.230 -0.155
#> Item_20 1.371 1.869 1.432 0.851 0.234
#>
#> $means
#> F1
#> -0.009
#>
#> $cov
#> F1
#> F1 1.071
#>
#>
# RMSDs in Item_1 now reduced (MG model better accounts for DIF)
RMSD_DIF(MGmod)
#> $D1
#> P.1 P.2 P.3 P.4 P.5
#> Item_1 0.007 0.019 0.017 0.016 0.010
#> Item_2 0.016 0.009 0.009 0.011 0.015
#> Item_3 0.016 0.018 0.014 0.018 0.025
#> Item_4 0.021 0.010 0.010 0.014 0.022
#> Item_5 0.028 0.017 0.007 0.022 0.022
#> Item_6 0.009 0.016 0.015 0.018 0.015
#> Item_7 0.016 0.013 0.021 0.015 0.018
#> Item_8 0.012 0.008 0.012 0.022 0.021
#> Item_9 0.016 0.029 0.023 0.014 0.025
#> Item_10 0.023 0.015 0.010 0.011 0.031
#> Item_11 0.016 0.018 0.015 0.011 0.015
#> Item_12 0.010 0.010 0.022 0.012 0.020
#> Item_13 0.019 0.011 0.017 0.021 0.016
#> Item_14 0.012 0.010 0.005 0.023 0.032
#> Item_15 0.015 0.011 0.016 0.011 0.028
#> Item_16 0.013 0.024 0.020 0.022 0.015
#> Item_17 0.024 0.015 0.019 0.024 0.030
#> Item_18 0.019 0.016 0.017 0.016 0.020
#> Item_19 0.021 0.022 0.016 0.013 0.013
#> Item_20 0.029 0.011 0.012 0.012 0.022
#>
#> $D2
#> P.1 P.2 P.3 P.4 P.5
#> Item_1 0.026 0.003 0.019 0.007 0.010
#> Item_2 0.008 0.013 0.004 0.012 0.014
#> Item_3 0.032 0.027 0.016 0.031 0.014
#> Item_4 0.009 0.019 0.011 0.011 0.023
#> Item_5 0.021 0.017 0.010 0.014 0.017
#> Item_6 0.026 0.012 0.007 0.016 0.014
#> Item_7 0.020 0.013 0.019 0.018 0.018
#> Item_8 0.021 0.015 0.017 0.017 0.026
#> Item_9 0.017 0.015 0.015 0.015 0.019
#> Item_10 0.018 0.014 0.014 0.018 0.027
#> Item_11 0.020 0.021 0.017 0.013 0.017
#> Item_12 0.010 0.010 0.022 0.007 0.017
#> Item_13 0.015 0.012 0.013 0.013 0.014
#> Item_14 0.028 0.007 0.022 0.013 0.009
#> Item_15 0.018 0.010 0.015 0.017 0.024
#> Item_16 0.014 0.019 0.018 0.017 0.016
#> Item_17 0.017 0.017 0.028 0.025 0.013
#> Item_18 0.029 0.022 0.025 0.019 0.025
#> Item_19 0.027 0.016 0.015 0.010 0.024
#> Item_20 0.019 0.013 0.014 0.012 0.014
#>
RMSD_DIF(MGmod, flag = .05)
#> $D1
#> P.1 P.2 P.3 P.4 P.5
#> Item_1 NA NA NA NA NA
#> Item_2 NA NA NA NA NA
#> Item_3 NA NA NA NA NA
#> Item_4 NA NA NA NA NA
#> Item_5 NA NA NA NA NA
#> Item_6 NA NA NA NA NA
#> Item_7 NA NA NA NA NA
#> Item_8 NA NA NA NA NA
#> Item_9 NA NA NA NA NA
#> Item_10 NA NA NA NA NA
#> Item_11 NA NA NA NA NA
#> Item_12 NA NA NA NA NA
#> Item_13 NA NA NA NA NA
#> Item_14 NA NA NA NA NA
#> Item_15 NA NA NA NA NA
#> Item_16 NA NA NA NA NA
#> Item_17 NA NA NA NA NA
#> Item_18 NA NA NA NA NA
#> Item_19 NA NA NA NA NA
#> Item_20 NA NA NA NA NA
#>
#> $D2
#> P.1 P.2 P.3 P.4 P.5
#> Item_1 NA NA NA NA NA
#> Item_2 NA NA NA NA NA
#> Item_3 NA NA NA NA NA
#> Item_4 NA NA NA NA NA
#> Item_5 NA NA NA NA NA
#> Item_6 NA NA NA NA NA
#> Item_7 NA NA NA NA NA
#> Item_8 NA NA NA NA NA
#> Item_9 NA NA NA NA NA
#> Item_10 NA NA NA NA NA
#> Item_11 NA NA NA NA NA
#> Item_12 NA NA NA NA NA
#> Item_13 NA NA NA NA NA
#> Item_14 NA NA NA NA NA
#> Item_15 NA NA NA NA NA
#> Item_16 NA NA NA NA NA
#> Item_17 NA NA NA NA NA
#> Item_18 NA NA NA NA NA
#> Item_19 NA NA NA NA NA
#> Item_20 NA NA NA NA NA
#>
RMSD_DIF(MGmod, probfun = FALSE, flag = .1) # use expected score function
#> $D1
#> S(theta)
#> Item_1 NA
#> Item_2 NA
#> Item_3 NA
#> Item_4 NA
#> Item_5 NA
#> Item_6 NA
#> Item_7 NA
#> Item_8 NA
#> Item_9 NA
#> Item_10 NA
#> Item_11 NA
#> Item_12 NA
#> Item_13 NA
#> Item_14 NA
#> Item_15 NA
#> Item_16 NA
#> Item_17 0.104
#> Item_18 NA
#> Item_19 NA
#> Item_20 NA
#>
#> $D2
#> S(theta)
#> Item_1 NA
#> Item_2 NA
#> Item_3 NA
#> Item_4 NA
#> Item_5 NA
#> Item_6 NA
#> Item_7 NA
#> Item_8 NA
#> Item_9 NA
#> Item_10 NA
#> Item_11 NA
#> Item_12 NA
#> Item_13 NA
#> Item_14 NA
#> Item_15 NA
#> Item_16 NA
#> Item_17 NA
#> Item_18 NA
#> Item_19 NA
#> Item_20 NA
#>
# }