Skip to contents

multipleGroup performs a full-information maximum-likelihood multiple group analysis for any combination of dichotomous and polytomous data under the item response theory paradigm using either Cai's (2010) Metropolis-Hastings Robbins-Monro (MHRM) algorithm or with an EM algorithm approach. This function may be used for detecting differential item functioning (DIF), thought the DIF function may provide a more convenient approach. If the grouping variable is not specified then the dentype input can be modified to fit mixture models to estimate any latent group components.

Usage

multipleGroup(
  data,
  model = 1,
  group,
  itemtype = NULL,
  invariance = "",
  method = "EM",
  dentype = "Gaussian",
  itemdesign = NULL,
  item.formula = NULL,
  ...
)

Arguments

data

a matrix or data.frame that consists of numerically ordered data, organized in the form of integers, with missing data coded as NA

model

string to be passed to, or a model object returned from, mirt.model declaring how the global model is to be estimated (useful to apply constraints here)

group

a character or factor vector indicating group membership. If a character vector is supplied this will be automatically transformed into a factor variable. As well, the first level of the (factorized) grouping variable will be treated as the "reference" group

itemtype

can be same type of input as is documented in mirt, however may also be a ngroups by nitems matrix specifying the type of IRT models for each group, respectively. Rows of this input correspond to the levels of the group input. For mixture models the rows correspond to the respective mixture grouping variables to be constructed, and the IRT models should be within these mixtures

invariance

a character vector containing the following possible options:

'free_mean' or 'free_means'

freely estimate all latent means in all focal groups (reference group constrained to a vector of 0's)

'free_var', 'free_vars', 'free_variance', or 'free_variances'

freely estimate all latent variances in focal groups (reference group variances all constrained to 1)

'slopes'

to constrain all the slopes to be equal across all groups

'intercepts'

to constrain all the intercepts to be equal across all groups, note for nominal models this also includes the category specific slope parameters

Additionally, specifying specific item name bundles (from colnames(data)) will constrain all freely estimated parameters in each item to be equal across groups. This is useful for selecting 'anchor' items for vertical and horizontal scaling, and for detecting differential item functioning (DIF) across groups

method

a character object that is either 'EM', 'QMCEM', or 'MHRM' (default is 'EM'). See mirt for details

dentype

type of density form to use for the latent trait parameters. Current options include all of the methods described in mirt, as well as

  • 'mixture-#' estimates mixtures of Gaussian distributions, where the # placeholder represents the number of potential grouping variables (e.g., 'mixture-3' will estimate 3 underlying classes). Each class is assigned the group name MIXTURE_#, where # is the class number. Note that internally the mixture coefficients are stored as log values where the first mixture group coefficient is fixed at 0

itemdesign

see mirt for details

item.formula

see mirt for details

...

additional arguments to be passed to the estimation engine. See mirt for details and examples

Value

function returns an object of class MultipleGroupClass (MultipleGroupClass-class).

Details

By default the estimation in multipleGroup assumes that the models are maximally independent, and therefore could initially be performed by sub-setting the data and running identical models with mirt and aggregating the results (e.g., log-likelihood). However, constrains may be automatically imposed across groups by invoking various invariance keywords. Users may also supply a list of parameter equality constraints to by constrain argument, of define equality constraints using the mirt.model syntax (recommended).

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Magnus, B. E. and Garnier-Villarreal (2022). A multidimensional zero-inflated graded response model for ordinal symptom data. Psychological Methods, 27, 261-279.

Wall, M., M., Park, J., Y., and Moustaki I. (2015). IRT modeling in the presence of zero-inflation with application to psychiatric disorder severity. Applied Psychological Measurement 39: 583-597.

See also

Author

Phil Chalmers rphilip.chalmers@gmail.com

Examples

# \donttest{

# single factor
set.seed(12345)
a <- matrix(abs(rnorm(15,1,.3)), ncol=1)
d <- matrix(rnorm(15,0,.7),ncol=1)
itemtype <- rep('2PL', nrow(a))
N <- 1000
dataset1 <- simdata(a, d, N, itemtype)
dataset2 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5))
dat <- rbind(dataset1, dataset2)
group <- c(rep('D1', N), rep('D2', N))

# marginal information
itemstats(dat)
#> $overall
#>     N mean_total.score sd_total.score ave.r  sd.r alpha SEM.alpha
#>  2000            7.888          3.555 0.188 0.053 0.777     1.678
#> 
#> $itemstats
#>            N  mean    sd total.r total.r_if_rm alpha_if_rm
#> Item_1  2000 0.609 0.488   0.525         0.414       0.762
#> Item_2  2000 0.392 0.488   0.540         0.431       0.761
#> Item_3  2000 0.456 0.498   0.526         0.413       0.762
#> Item_4  2000 0.684 0.465   0.461         0.349       0.768
#> Item_5  2000 0.538 0.499   0.528         0.415       0.762
#> Item_6  2000 0.649 0.477   0.334         0.207       0.779
#> Item_7  2000 0.681 0.466   0.524         0.419       0.762
#> Item_8  2000 0.432 0.495   0.504         0.389       0.764
#> Item_9  2000 0.302 0.459   0.446         0.334       0.769
#> Item_10 2000 0.274 0.446   0.388         0.273       0.774
#> Item_11 2000 0.734 0.442   0.457         0.351       0.768
#> Item_12 2000 0.470 0.499   0.585         0.481       0.756
#> Item_13 2000 0.585 0.493   0.561         0.455       0.759
#> Item_14 2000 0.592 0.492   0.538         0.428       0.761
#> Item_15 2000 0.490 0.500   0.458         0.336       0.769
#> 
#> $proportions
#>             0     1
#> Item_1  0.392 0.609
#> Item_2  0.608 0.392
#> Item_3  0.544 0.456
#> Item_4  0.316 0.684
#> Item_5  0.462 0.538
#> Item_6  0.351 0.649
#> Item_7  0.318 0.681
#> Item_8  0.569 0.432
#> Item_9  0.698 0.302
#> Item_10 0.726 0.274
#> Item_11 0.266 0.734
#> Item_12 0.530 0.470
#> Item_13 0.416 0.585
#> Item_14 0.408 0.592
#> Item_15 0.509 0.490
#> 

# conditional information
itemstats(dat, group=group)
#> $D1
#> $D1$overall
#>     N mean_total.score sd_total.score ave.r  sd.r alpha SEM.alpha
#>  1000             7.82          3.346 0.159 0.047  0.74     1.705
#> 
#> $D1$itemstats
#>            N  mean    sd total.r total.r_if_rm alpha_if_rm
#> Item_1  1000 0.605 0.489   0.484         0.361       0.725
#> Item_2  1000 0.368 0.483   0.507         0.388       0.722
#> Item_3  1000 0.461 0.499   0.471         0.343       0.727
#> Item_4  1000 0.673 0.469   0.439         0.315       0.729
#> Item_5  1000 0.526 0.500   0.500         0.376       0.723
#> Item_6  1000 0.654 0.476   0.355         0.222       0.739
#> Item_7  1000 0.683 0.466   0.508         0.394       0.722
#> Item_8  1000 0.431 0.495   0.462         0.333       0.728
#> Item_9  1000 0.287 0.453   0.419         0.298       0.731
#> Item_10 1000 0.274 0.446   0.372         0.249       0.735
#> Item_11 1000 0.739 0.439   0.401         0.282       0.732
#> Item_12 1000 0.456 0.498   0.563         0.448       0.715
#> Item_13 1000 0.584 0.493   0.535         0.416       0.719
#> Item_14 1000 0.592 0.492   0.483         0.358       0.725
#> Item_15 1000 0.487 0.500   0.451         0.321       0.729
#> 
#> $D1$proportions
#>             0     1
#> Item_1  0.395 0.605
#> Item_2  0.632 0.368
#> Item_3  0.539 0.461
#> Item_4  0.327 0.673
#> Item_5  0.474 0.526
#> Item_6  0.346 0.654
#> Item_7  0.317 0.683
#> Item_8  0.569 0.431
#> Item_9  0.713 0.287
#> Item_10 0.726 0.274
#> Item_11 0.261 0.739
#> Item_12 0.544 0.456
#> Item_13 0.416 0.584
#> Item_14 0.408 0.592
#> Item_15 0.513 0.487
#> 
#> 
#> $D2
#> $D2$overall
#>     N mean_total.score sd_total.score ave.r  sd.r alpha SEM.alpha
#>  1000            7.955          3.754 0.217 0.065 0.807      1.65
#> 
#> $D2$itemstats
#>            N  mean    sd total.r total.r_if_rm alpha_if_rm
#> Item_1  1000 0.612 0.488   0.563         0.464       0.792
#> Item_2  1000 0.417 0.493   0.569         0.469       0.792
#> Item_3  1000 0.450 0.498   0.578         0.479       0.791
#> Item_4  1000 0.695 0.461   0.484         0.381       0.798
#> Item_5  1000 0.551 0.498   0.553         0.451       0.793
#> Item_6  1000 0.644 0.479   0.316         0.195       0.811
#> Item_7  1000 0.680 0.467   0.540         0.443       0.794
#> Item_8  1000 0.432 0.496   0.544         0.440       0.794
#> Item_9  1000 0.317 0.466   0.470         0.365       0.799
#> Item_10 1000 0.275 0.447   0.403         0.297       0.804
#> Item_11 1000 0.729 0.445   0.508         0.413       0.796
#> Item_12 1000 0.483 0.500   0.606         0.511       0.788
#> Item_13 1000 0.585 0.493   0.587         0.491       0.790
#> Item_14 1000 0.591 0.492   0.589         0.493       0.790
#> Item_15 1000 0.494 0.500   0.466         0.351       0.801
#> 
#> $D2$proportions
#>             0     1
#> Item_1  0.388 0.612
#> Item_2  0.583 0.417
#> Item_3  0.550 0.450
#> Item_4  0.305 0.695
#> Item_5  0.449 0.551
#> Item_6  0.356 0.644
#> Item_7  0.320 0.680
#> Item_8  0.568 0.432
#> Item_9  0.683 0.317
#> Item_10 0.725 0.275
#> Item_11 0.271 0.729
#> Item_12 0.517 0.483
#> Item_13 0.415 0.585
#> Item_14 0.409 0.591
#> Item_15 0.506 0.494
#> 
#> 

mod_configural <- multipleGroup(dat, 1, group = group) #completely separate analyses
# limited information fit statistics
M2(mod_configural)
#>             M2  df         p RMSEA RMSEA_5 RMSEA_95   SRMSR.D1   SRMSR.D2
#> stats 142.9866 180 0.9806548     0       0        0 0.02414868 0.01901262
#>            TLI CFI
#> stats 1.005381   1

mod_metric <- multipleGroup(dat, 1, group = group, invariance=c('slopes')) #equal slopes
# equal intercepts, free variance and means
mod_scalar2 <- multipleGroup(dat, 1, group = group,
                             invariance=c('slopes', 'intercepts', 'free_var','free_means'))
mod_scalar1 <- multipleGroup(dat, 1, group = group,  #fixed means
                             invariance=c('slopes', 'intercepts', 'free_var'))
mod_fullconstrain <- multipleGroup(dat, 1, group = group,
                             invariance=c('slopes', 'intercepts'))
extract.mirt(mod_fullconstrain, 'time') #time of estimation components
#> TOTAL:   Data  Estep  Mstep     SE   Post 
#>  0.395  0.074  0.096  0.207  0.000  0.001 

# optionally use Newton-Raphson for (generally) faster convergence in the
#  M-step's, though occasionally less stable
mod_fullconstrain <- multipleGroup(dat, 1, group = group, optimizer = 'NR',
                             invariance=c('slopes', 'intercepts'))
extract.mirt(mod_fullconstrain, 'time') #time of estimation components
#> TOTAL:   Data  Estep  Mstep     SE   Post 
#>  0.267  0.075  0.109  0.064  0.000  0.001 

summary(mod_scalar2)
#> 
#> ----------
#> GROUP: D1 
#>            F1     h2
#> Item_1  0.544 0.2962
#> Item_2  0.577 0.3324
#> Item_3  0.529 0.2799
#> Item_4  0.460 0.2118
#> Item_5  0.536 0.2877
#> Item_6  0.253 0.0639
#> Item_7  0.570 0.3247
#> Item_8  0.498 0.2479
#> Item_9  0.459 0.2104
#> Item_10 0.373 0.1393
#> Item_11 0.487 0.2368
#> Item_12 0.632 0.3998
#> Item_13 0.596 0.3547
#> Item_14 0.561 0.3147
#> Item_15 0.414 0.1715
#> 
#> SS loadings:  3.872 
#> Proportion Var:  0.258 
#> 
#> Factor correlations: 
#> 
#>    F1
#> F1  1
#> 
#> ----------
#> GROUP: D2 
#>            F1     h2
#> Item_1  0.634 0.4017
#> Item_2  0.665 0.4426
#> Item_3  0.619 0.3827
#> Item_4  0.548 0.3000
#> Item_5  0.626 0.3919
#> Item_6  0.313 0.0981
#> Item_7  0.659 0.4341
#> Item_8  0.587 0.3446
#> Item_9  0.546 0.2983
#> Item_10 0.453 0.2052
#> Item_11 0.575 0.3311
#> Item_12 0.718 0.5152
#> Item_13 0.683 0.4671
#> Item_14 0.650 0.4228
#> Item_15 0.498 0.2483
#> 
#> SS loadings:  5.284 
#> Proportion Var:  0.352 
#> 
#> Factor correlations: 
#> 
#>    F1
#> F1  1
coef(mod_scalar2, simplify=TRUE)
#> $D1
#> $items
#>            a1      d g u
#> Item_1  1.104  0.538 0 1
#> Item_2  1.201 -0.630 0 1
#> Item_3  1.061 -0.265 0 1
#> Item_4  0.882  0.900 0 1
#> Item_5  1.082  0.164 0 1
#> Item_6  0.445  0.636 0 1
#> Item_7  1.180  0.976 0 1
#> Item_8  0.977 -0.377 0 1
#> Item_9  0.879 -1.035 0 1
#> Item_10 0.685 -1.118 0 1
#> Item_11 0.948  1.213 0 1
#> Item_12 1.389 -0.224 0 1
#> Item_13 1.262  0.429 0 1
#> Item_14 1.153  0.453 0 1
#> Item_15 0.774 -0.070 0 1
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 
#> 
#> $D2
#> $items
#>            a1      d g u
#> Item_1  1.104  0.538 0 1
#> Item_2  1.201 -0.630 0 1
#> Item_3  1.061 -0.265 0 1
#> Item_4  0.882  0.900 0 1
#> Item_5  1.082  0.164 0 1
#> Item_6  0.445  0.636 0 1
#> Item_7  1.180  0.976 0 1
#> Item_8  0.977 -0.377 0 1
#> Item_9  0.879 -1.035 0 1
#> Item_10 0.685 -1.118 0 1
#> Item_11 0.948  1.213 0 1
#> Item_12 1.389 -0.224 0 1
#> Item_13 1.262  0.429 0 1
#> Item_14 1.153  0.453 0 1
#> Item_15 0.774 -0.070 0 1
#> 
#> $means
#>    F1 
#> 0.066 
#> 
#> $cov
#>       F1
#> F1 1.595
#> 
#> 
residuals(mod_scalar2)
#> $D1
#>         Item_1 Item_2 Item_3 Item_4 Item_5 Item_6 Item_7 Item_8 Item_9 Item_10
#> Item_1      NA -0.036 -0.056  0.036 -0.014  0.014  0.017 -0.020 -0.008  -0.066
#> Item_2   1.305     NA -0.052 -0.032 -0.031  0.033 -0.028  0.034  0.038   0.042
#> Item_3   3.144  2.659     NA -0.047  0.057  0.071 -0.037 -0.050  0.033  -0.047
#> Item_4   1.279  1.041  2.173     NA  0.029  0.035  0.032 -0.039 -0.038   0.032
#> Item_5   0.198  0.932  3.291  0.862     NA  0.029  0.048 -0.028  0.027  -0.027
#> Item_6   0.204  1.059  5.032  1.197  0.830     NA  0.020  0.034  0.023   0.041
#> Item_7   0.277  0.804  1.362  1.018  2.337  0.392     NA -0.023 -0.040   0.038
#> Item_8   0.402  1.143  2.483  1.545  0.774  1.125  0.518     NA -0.027   0.025
#> Item_9   0.067  1.478  1.062  1.471  0.717  0.523  1.631  0.726     NA   0.052
#> Item_10  4.303  1.756  2.228  1.054  0.744  1.649  1.453  0.610  2.692      NA
#> Item_11  0.361  3.951  0.988  1.197  0.910  1.320  0.139  2.072  2.295   1.368
#> Item_12  1.718  0.586  1.038  0.725  0.218  0.454  1.323  0.473  0.322   0.604
#> Item_13  0.194  3.315  1.368  1.158  0.797  0.517  0.045  0.395  0.200   2.690
#> Item_14  0.074  0.804  3.798  2.946  0.648  0.228  0.223  0.463  0.693   0.378
#> Item_15  0.164  1.266  0.869  6.383  4.884  1.982  0.583  1.563  1.130   2.406
#>         Item_11 Item_12 Item_13 Item_14 Item_15
#> Item_1   -0.019   0.041  -0.014  -0.009   0.013
#> Item_2   -0.063   0.024   0.058   0.028   0.036
#> Item_3   -0.031   0.032  -0.037  -0.062   0.029
#> Item_4    0.035   0.027  -0.034  -0.054   0.080
#> Item_5   -0.030   0.015   0.028  -0.025  -0.070
#> Item_6    0.036   0.021   0.023  -0.015   0.045
#> Item_7    0.012   0.036  -0.007   0.015   0.024
#> Item_8   -0.046   0.022   0.020  -0.022   0.040
#> Item_9   -0.048  -0.018  -0.014   0.026   0.034
#> Item_10   0.037   0.025   0.052  -0.019  -0.049
#> Item_11      NA   0.010  -0.024  -0.053   0.021
#> Item_12   0.094      NA  -0.016  -0.016   0.012
#> Item_13   0.555   0.254      NA  -0.013   0.022
#> Item_14   2.862   0.255   0.159      NA   0.009
#> Item_15   0.424   0.148   0.486   0.073      NA
#> 
#> $D2
#>         Item_1 Item_2 Item_3 Item_4 Item_5 Item_6 Item_7 Item_8 Item_9 Item_10
#> Item_1      NA -0.029  0.031 -0.026  0.021 -0.042 -0.006  0.039  0.010  -0.029
#> Item_2   0.861     NA  0.047 -0.060  0.049 -0.061 -0.036 -0.036  0.043   0.035
#> Item_3   0.973  2.251     NA  0.064  0.039 -0.029  0.033  0.045  0.042   0.031
#> Item_4   0.673  3.547  4.082     NA  0.034  0.045  0.029  0.033 -0.031  -0.053
#> Item_5   0.455  2.426  1.534  1.151     NA -0.042 -0.043 -0.030  0.034  -0.026
#> Item_6   1.750  3.773  0.861  2.016  1.752     NA -0.038  0.023 -0.060   0.022
#> Item_7   0.040  1.294  1.085  0.831  1.854  1.475     NA  0.023 -0.021   0.025
#> Item_8   1.530  1.310  1.985  1.122  0.915  0.545  0.539     NA -0.028  -0.026
#> Item_9   0.106  1.832  1.780  0.934  1.137  3.654  0.453  0.760     NA   0.037
#> Item_10  0.815  1.230  0.958  2.779  0.685  0.466  0.622  0.690  1.393      NA
#> Item_11  0.822  0.826  0.800  1.861  0.336  0.218  0.062  2.847  0.285   0.407
#> Item_12  0.087  1.536  1.097  0.639  0.309  0.454  0.096  0.556  0.398   0.520
#> Item_13  0.582  1.458  0.844  1.093  0.620  0.403  0.401  0.619  1.349   0.478
#> Item_14  0.403  1.550  0.914  1.292  0.544  0.798  0.534  3.153  0.137   0.344
#> Item_15  0.338  1.306  1.241  0.980  2.379  1.261  0.615  0.291  0.276   0.325
#>         Item_11 Item_12 Item_13 Item_14 Item_15
#> Item_1    0.029   0.009   0.024   0.020   0.018
#> Item_2    0.029  -0.039   0.038   0.039  -0.036
#> Item_3    0.028   0.033   0.029   0.030   0.035
#> Item_4    0.043  -0.025  -0.033   0.036  -0.031
#> Item_5    0.018  -0.018  -0.025   0.023  -0.049
#> Item_6    0.015  -0.021   0.020  -0.028  -0.036
#> Item_7   -0.008  -0.010  -0.020   0.023  -0.025
#> Item_8    0.053  -0.024  -0.025   0.056   0.017
#> Item_9   -0.017  -0.020  -0.037   0.012  -0.017
#> Item_10   0.020   0.023  -0.022   0.019   0.018
#> Item_11      NA   0.032   0.017   0.018   0.024
#> Item_12   1.010      NA   0.014  -0.022  -0.011
#> Item_13   0.280   0.185      NA   0.022  -0.012
#> Item_14   0.333   0.480   0.479      NA  -0.007
#> Item_15   0.580   0.131   0.145   0.048      NA
#> 
plot(mod_configural)

plot(mod_configural, type = 'info')

plot(mod_configural, type = 'trace')

plot(mod_configural, type = 'trace', which.items = 1:4)

itemplot(mod_configural, 2)

itemplot(mod_configural, 2, type = 'RE')


anova(mod_metric, mod_configural) #equal slopes only
#>                     AIC    SABIC       HQ      BIC    logLik    X2 df p
#> mod_metric     35937.61 36046.68 36030.15 36189.65 -17923.80           
#> mod_configural 35927.53 36072.96 36050.92 36263.58 -17903.76 40.08 15 0
anova(mod_scalar2, mod_metric) #equal intercepts, free variance and mean
#>                  AIC    SABIC       HQ      BIC    logLik      X2 df   p
#> mod_scalar2 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> mod_metric  35937.61 36046.68 36030.15 36189.65 -17923.80 -16.947 13 NaN
anova(mod_scalar1, mod_scalar2) #fix mean
#>                  AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> mod_scalar1 35893.96 35969.10 35957.71 36067.58 -17915.98               
#> mod_scalar2 35894.66 35972.22 35960.47 36073.89 -17915.33 1.296  1 0.255
anova(mod_fullconstrain, mod_scalar1) #fix variance
#>                        AIC    SABIC       HQ      BIC    logLik     X2 df p
#> mod_fullconstrain 35917.51 35990.22 35979.20 36085.53 -17928.75            
#> mod_scalar1       35893.96 35969.10 35957.71 36067.58 -17915.98 25.552  1 0

# compared all at once (in order of most constrained to least)
anova(mod_fullconstrain, mod_scalar2, mod_configural)
#>                        AIC    SABIC       HQ      BIC    logLik     X2 df     p
#> mod_fullconstrain 35917.51 35990.22 35979.20 36085.53 -17928.75                
#> mod_scalar2       35894.66 35972.22 35960.47 36073.89 -17915.33 26.848  2     0
#> mod_configural    35927.53 36072.96 36050.92 36263.58 -17903.76 23.133 28 0.726


# test whether first 6 slopes should be equal across groups
values <- multipleGroup(dat, 1, group = group, pars = 'values')
values
#>     group    item     class   name parnum  value lbound ubound   est const
#> 1      D1  Item_1      dich     a1      1  0.851   -Inf    Inf  TRUE  none
#> 2      D1  Item_1      dich      d      2  0.541   -Inf    Inf  TRUE  none
#> 3      D1  Item_1      dich      g      3  0.000      0      1 FALSE  none
#> 4      D1  Item_1      dich      u      4  1.000      0      1 FALSE  none
#> 5      D1  Item_2      dich     a1      5  0.851   -Inf    Inf  TRUE  none
#> 6      D1  Item_2      dich      d      6 -0.536   -Inf    Inf  TRUE  none
#> 7      D1  Item_2      dich      g      7  0.000      0      1 FALSE  none
#> 8      D1  Item_2      dich      u      8  1.000      0      1 FALSE  none
#> 9      D1  Item_3      dich     a1      9  0.851   -Inf    Inf  TRUE  none
#> 10     D1  Item_3      dich      d     10 -0.220   -Inf    Inf  TRUE  none
#> 11     D1  Item_3      dich      g     11  0.000      0      1 FALSE  none
#> 12     D1  Item_3      dich      u     12  1.000      0      1 FALSE  none
#> 13     D1  Item_4      dich     a1     13  0.851   -Inf    Inf  TRUE  none
#> 14     D1  Item_4      dich      d     14  0.941   -Inf    Inf  TRUE  none
#> 15     D1  Item_4      dich      g     15  0.000      0      1 FALSE  none
#> 16     D1  Item_4      dich      u     16  1.000      0      1 FALSE  none
#> 17     D1  Item_5      dich     a1     17  0.851   -Inf    Inf  TRUE  none
#> 18     D1  Item_5      dich      d     18  0.190   -Inf    Inf  TRUE  none
#> 19     D1  Item_5      dich      g     19  0.000      0      1 FALSE  none
#> 20     D1  Item_5      dich      u     20  1.000      0      1 FALSE  none
#> 21     D1  Item_6      dich     a1     21  0.851   -Inf    Inf  TRUE  none
#> 22     D1  Item_6      dich      d     22  0.752   -Inf    Inf  TRUE  none
#> 23     D1  Item_6      dich      g     23  0.000      0      1 FALSE  none
#> 24     D1  Item_6      dich      u     24  1.000      0      1 FALSE  none
#> 25     D1  Item_7      dich     a1     25  0.851   -Inf    Inf  TRUE  none
#> 26     D1  Item_7      dich      d     26  0.927   -Inf    Inf  TRUE  none
#> 27     D1  Item_7      dich      g     27  0.000      0      1 FALSE  none
#> 28     D1  Item_7      dich      u     28  1.000      0      1 FALSE  none
#> 29     D1  Item_8      dich     a1     29  0.851   -Inf    Inf  TRUE  none
#> 30     D1  Item_8      dich      d     30 -0.339   -Inf    Inf  TRUE  none
#> 31     D1  Item_8      dich      g     31  0.000      0      1 FALSE  none
#> 32     D1  Item_8      dich      u     32  1.000      0      1 FALSE  none
#> 33     D1  Item_9      dich     a1     33  0.851   -Inf    Inf  TRUE  none
#> 34     D1  Item_9      dich      d     34 -1.019   -Inf    Inf  TRUE  none
#> 35     D1  Item_9      dich      g     35  0.000      0      1 FALSE  none
#> 36     D1  Item_9      dich      u     36  1.000      0      1 FALSE  none
#> 37     D1 Item_10      dich     a1     37  0.851   -Inf    Inf  TRUE  none
#> 38     D1 Item_10      dich      d     38 -1.178   -Inf    Inf  TRUE  none
#> 39     D1 Item_10      dich      g     39  0.000      0      1 FALSE  none
#> 40     D1 Item_10      dich      u     40  1.000      0      1 FALSE  none
#> 41     D1 Item_11      dich     a1     41  0.851   -Inf    Inf  TRUE  none
#> 42     D1 Item_11      dich      d     42  1.228   -Inf    Inf  TRUE  none
#> 43     D1 Item_11      dich      g     43  0.000      0      1 FALSE  none
#> 44     D1 Item_11      dich      u     44  1.000      0      1 FALSE  none
#> 45     D1 Item_12      dich     a1     45  0.851   -Inf    Inf  TRUE  none
#> 46     D1 Item_12      dich      d     46 -0.150   -Inf    Inf  TRUE  none
#> 47     D1 Item_12      dich      g     47  0.000      0      1 FALSE  none
#> 48     D1 Item_12      dich      u     48  1.000      0      1 FALSE  none
#> 49     D1 Item_13      dich     a1     49  0.851   -Inf    Inf  TRUE  none
#> 50     D1 Item_13      dich      d     50  0.419   -Inf    Inf  TRUE  none
#> 51     D1 Item_13      dich      g     51  0.000      0      1 FALSE  none
#> 52     D1 Item_13      dich      u     52  1.000      0      1 FALSE  none
#> 53     D1 Item_14      dich     a1     53  0.851   -Inf    Inf  TRUE  none
#> 54     D1 Item_14      dich      d     54  0.455   -Inf    Inf  TRUE  none
#> 55     D1 Item_14      dich      g     55  0.000      0      1 FALSE  none
#> 56     D1 Item_14      dich      u     56  1.000      0      1 FALSE  none
#> 57     D1 Item_15      dich     a1     57  0.851   -Inf    Inf  TRUE  none
#> 58     D1 Item_15      dich      d     58 -0.047   -Inf    Inf  TRUE  none
#> 59     D1 Item_15      dich      g     59  0.000      0      1 FALSE  none
#> 60     D1 Item_15      dich      u     60  1.000      0      1 FALSE  none
#> 61     D1   GROUP GroupPars MEAN_1     61  0.000   -Inf    Inf FALSE  none
#> 62     D1   GROUP GroupPars COV_11     62  1.000      0    Inf FALSE  none
#> 63     D2  Item_1      dich     a1     63  0.851   -Inf    Inf  TRUE  none
#> 64     D2  Item_1      dich      d     64  0.541   -Inf    Inf  TRUE  none
#> 65     D2  Item_1      dich      g     65  0.000      0      1 FALSE  none
#> 66     D2  Item_1      dich      u     66  1.000      0      1 FALSE  none
#> 67     D2  Item_2      dich     a1     67  0.851   -Inf    Inf  TRUE  none
#> 68     D2  Item_2      dich      d     68 -0.536   -Inf    Inf  TRUE  none
#> 69     D2  Item_2      dich      g     69  0.000      0      1 FALSE  none
#> 70     D2  Item_2      dich      u     70  1.000      0      1 FALSE  none
#> 71     D2  Item_3      dich     a1     71  0.851   -Inf    Inf  TRUE  none
#> 72     D2  Item_3      dich      d     72 -0.220   -Inf    Inf  TRUE  none
#> 73     D2  Item_3      dich      g     73  0.000      0      1 FALSE  none
#> 74     D2  Item_3      dich      u     74  1.000      0      1 FALSE  none
#> 75     D2  Item_4      dich     a1     75  0.851   -Inf    Inf  TRUE  none
#> 76     D2  Item_4      dich      d     76  0.941   -Inf    Inf  TRUE  none
#> 77     D2  Item_4      dich      g     77  0.000      0      1 FALSE  none
#> 78     D2  Item_4      dich      u     78  1.000      0      1 FALSE  none
#> 79     D2  Item_5      dich     a1     79  0.851   -Inf    Inf  TRUE  none
#> 80     D2  Item_5      dich      d     80  0.190   -Inf    Inf  TRUE  none
#> 81     D2  Item_5      dich      g     81  0.000      0      1 FALSE  none
#> 82     D2  Item_5      dich      u     82  1.000      0      1 FALSE  none
#> 83     D2  Item_6      dich     a1     83  0.851   -Inf    Inf  TRUE  none
#> 84     D2  Item_6      dich      d     84  0.752   -Inf    Inf  TRUE  none
#> 85     D2  Item_6      dich      g     85  0.000      0      1 FALSE  none
#> 86     D2  Item_6      dich      u     86  1.000      0      1 FALSE  none
#> 87     D2  Item_7      dich     a1     87  0.851   -Inf    Inf  TRUE  none
#> 88     D2  Item_7      dich      d     88  0.927   -Inf    Inf  TRUE  none
#> 89     D2  Item_7      dich      g     89  0.000      0      1 FALSE  none
#> 90     D2  Item_7      dich      u     90  1.000      0      1 FALSE  none
#> 91     D2  Item_8      dich     a1     91  0.851   -Inf    Inf  TRUE  none
#> 92     D2  Item_8      dich      d     92 -0.339   -Inf    Inf  TRUE  none
#> 93     D2  Item_8      dich      g     93  0.000      0      1 FALSE  none
#> 94     D2  Item_8      dich      u     94  1.000      0      1 FALSE  none
#> 95     D2  Item_9      dich     a1     95  0.851   -Inf    Inf  TRUE  none
#> 96     D2  Item_9      dich      d     96 -1.019   -Inf    Inf  TRUE  none
#> 97     D2  Item_9      dich      g     97  0.000      0      1 FALSE  none
#> 98     D2  Item_9      dich      u     98  1.000      0      1 FALSE  none
#> 99     D2 Item_10      dich     a1     99  0.851   -Inf    Inf  TRUE  none
#> 100    D2 Item_10      dich      d    100 -1.178   -Inf    Inf  TRUE  none
#> 101    D2 Item_10      dich      g    101  0.000      0      1 FALSE  none
#> 102    D2 Item_10      dich      u    102  1.000      0      1 FALSE  none
#> 103    D2 Item_11      dich     a1    103  0.851   -Inf    Inf  TRUE  none
#> 104    D2 Item_11      dich      d    104  1.228   -Inf    Inf  TRUE  none
#> 105    D2 Item_11      dich      g    105  0.000      0      1 FALSE  none
#> 106    D2 Item_11      dich      u    106  1.000      0      1 FALSE  none
#> 107    D2 Item_12      dich     a1    107  0.851   -Inf    Inf  TRUE  none
#> 108    D2 Item_12      dich      d    108 -0.150   -Inf    Inf  TRUE  none
#> 109    D2 Item_12      dich      g    109  0.000      0      1 FALSE  none
#> 110    D2 Item_12      dich      u    110  1.000      0      1 FALSE  none
#> 111    D2 Item_13      dich     a1    111  0.851   -Inf    Inf  TRUE  none
#> 112    D2 Item_13      dich      d    112  0.419   -Inf    Inf  TRUE  none
#> 113    D2 Item_13      dich      g    113  0.000      0      1 FALSE  none
#> 114    D2 Item_13      dich      u    114  1.000      0      1 FALSE  none
#> 115    D2 Item_14      dich     a1    115  0.851   -Inf    Inf  TRUE  none
#> 116    D2 Item_14      dich      d    116  0.455   -Inf    Inf  TRUE  none
#> 117    D2 Item_14      dich      g    117  0.000      0      1 FALSE  none
#> 118    D2 Item_14      dich      u    118  1.000      0      1 FALSE  none
#> 119    D2 Item_15      dich     a1    119  0.851   -Inf    Inf  TRUE  none
#> 120    D2 Item_15      dich      d    120 -0.047   -Inf    Inf  TRUE  none
#> 121    D2 Item_15      dich      g    121  0.000      0      1 FALSE  none
#> 122    D2 Item_15      dich      u    122  1.000      0      1 FALSE  none
#> 123    D2   GROUP GroupPars MEAN_1    123  0.000   -Inf    Inf FALSE  none
#> 124    D2   GROUP GroupPars COV_11    124  1.000      0    Inf FALSE  none
#>     nconst prior.type prior_1 prior_2
#> 1     none       none     NaN     NaN
#> 2     none       none     NaN     NaN
#> 3     none       none     NaN     NaN
#> 4     none       none     NaN     NaN
#> 5     none       none     NaN     NaN
#> 6     none       none     NaN     NaN
#> 7     none       none     NaN     NaN
#> 8     none       none     NaN     NaN
#> 9     none       none     NaN     NaN
#> 10    none       none     NaN     NaN
#> 11    none       none     NaN     NaN
#> 12    none       none     NaN     NaN
#> 13    none       none     NaN     NaN
#> 14    none       none     NaN     NaN
#> 15    none       none     NaN     NaN
#> 16    none       none     NaN     NaN
#> 17    none       none     NaN     NaN
#> 18    none       none     NaN     NaN
#> 19    none       none     NaN     NaN
#> 20    none       none     NaN     NaN
#> 21    none       none     NaN     NaN
#> 22    none       none     NaN     NaN
#> 23    none       none     NaN     NaN
#> 24    none       none     NaN     NaN
#> 25    none       none     NaN     NaN
#> 26    none       none     NaN     NaN
#> 27    none       none     NaN     NaN
#> 28    none       none     NaN     NaN
#> 29    none       none     NaN     NaN
#> 30    none       none     NaN     NaN
#> 31    none       none     NaN     NaN
#> 32    none       none     NaN     NaN
#> 33    none       none     NaN     NaN
#> 34    none       none     NaN     NaN
#> 35    none       none     NaN     NaN
#> 36    none       none     NaN     NaN
#> 37    none       none     NaN     NaN
#> 38    none       none     NaN     NaN
#> 39    none       none     NaN     NaN
#> 40    none       none     NaN     NaN
#> 41    none       none     NaN     NaN
#> 42    none       none     NaN     NaN
#> 43    none       none     NaN     NaN
#> 44    none       none     NaN     NaN
#> 45    none       none     NaN     NaN
#> 46    none       none     NaN     NaN
#> 47    none       none     NaN     NaN
#> 48    none       none     NaN     NaN
#> 49    none       none     NaN     NaN
#> 50    none       none     NaN     NaN
#> 51    none       none     NaN     NaN
#> 52    none       none     NaN     NaN
#> 53    none       none     NaN     NaN
#> 54    none       none     NaN     NaN
#> 55    none       none     NaN     NaN
#> 56    none       none     NaN     NaN
#> 57    none       none     NaN     NaN
#> 58    none       none     NaN     NaN
#> 59    none       none     NaN     NaN
#> 60    none       none     NaN     NaN
#> 61    none       none     NaN     NaN
#> 62    none       none     NaN     NaN
#> 63    none       none     NaN     NaN
#> 64    none       none     NaN     NaN
#> 65    none       none     NaN     NaN
#> 66    none       none     NaN     NaN
#> 67    none       none     NaN     NaN
#> 68    none       none     NaN     NaN
#> 69    none       none     NaN     NaN
#> 70    none       none     NaN     NaN
#> 71    none       none     NaN     NaN
#> 72    none       none     NaN     NaN
#> 73    none       none     NaN     NaN
#> 74    none       none     NaN     NaN
#> 75    none       none     NaN     NaN
#> 76    none       none     NaN     NaN
#> 77    none       none     NaN     NaN
#> 78    none       none     NaN     NaN
#> 79    none       none     NaN     NaN
#> 80    none       none     NaN     NaN
#> 81    none       none     NaN     NaN
#> 82    none       none     NaN     NaN
#> 83    none       none     NaN     NaN
#> 84    none       none     NaN     NaN
#> 85    none       none     NaN     NaN
#> 86    none       none     NaN     NaN
#> 87    none       none     NaN     NaN
#> 88    none       none     NaN     NaN
#> 89    none       none     NaN     NaN
#> 90    none       none     NaN     NaN
#> 91    none       none     NaN     NaN
#> 92    none       none     NaN     NaN
#> 93    none       none     NaN     NaN
#> 94    none       none     NaN     NaN
#> 95    none       none     NaN     NaN
#> 96    none       none     NaN     NaN
#> 97    none       none     NaN     NaN
#> 98    none       none     NaN     NaN
#> 99    none       none     NaN     NaN
#> 100   none       none     NaN     NaN
#> 101   none       none     NaN     NaN
#> 102   none       none     NaN     NaN
#> 103   none       none     NaN     NaN
#> 104   none       none     NaN     NaN
#> 105   none       none     NaN     NaN
#> 106   none       none     NaN     NaN
#> 107   none       none     NaN     NaN
#> 108   none       none     NaN     NaN
#> 109   none       none     NaN     NaN
#> 110   none       none     NaN     NaN
#> 111   none       none     NaN     NaN
#> 112   none       none     NaN     NaN
#> 113   none       none     NaN     NaN
#> 114   none       none     NaN     NaN
#> 115   none       none     NaN     NaN
#> 116   none       none     NaN     NaN
#> 117   none       none     NaN     NaN
#> 118   none       none     NaN     NaN
#> 119   none       none     NaN     NaN
#> 120   none       none     NaN     NaN
#> 121   none       none     NaN     NaN
#> 122   none       none     NaN     NaN
#> 123   none       none     NaN     NaN
#> 124   none       none     NaN     NaN
constrain <- list(c(1, 63), c(5,67), c(9,71), c(13,75), c(17,79), c(21,83))
equalslopes <- multipleGroup(dat, 1, group = group, constrain = constrain)
anova(equalslopes, mod_configural)
#>                     AIC    SABIC       HQ      BIC    logLik     X2 df     p
#> equalslopes    35935.51 36066.40 36046.56 36237.96 -17913.76                
#> mod_configural 35927.53 36072.96 36050.92 36263.58 -17903.76 19.983  6 0.003

# same as above, but using mirt.model syntax
newmodel <- '
    F = 1-15
    CONSTRAINB = (1-6, a1)'
equalslopes <- multipleGroup(dat, newmodel, group = group)
coef(equalslopes, simplify=TRUE)
#> $D1
#> $items
#>            a1      d g u
#> Item_1  1.246  0.546 0 1
#> Item_2  1.356 -0.720 0 1
#> Item_3  1.199 -0.201 0 1
#> Item_4  1.006  0.861 0 1
#> Item_5  1.224  0.131 0 1
#> Item_6  0.515  0.673 0 1
#> Item_7  1.305  0.999 0 1
#> Item_8  0.943 -0.328 0 1
#> Item_9  0.916 -1.058 0 1
#> Item_10 0.731 -1.079 0 1
#> Item_11 0.851  1.186 0 1
#> Item_12 1.515 -0.251 0 1
#> Item_13 1.322  0.444 0 1
#> Item_14 1.058  0.451 0 1
#> Item_15 0.885 -0.061 0 1
#> 
#> $means
#> F 
#> 0 
#> 
#> $cov
#>   F
#> F 1
#> 
#> 
#> $D2
#> $items
#>            a1      d g u
#> Item_1  1.246  0.599 0 1
#> Item_2  1.356 -0.462 0 1
#> Item_3  1.199 -0.264 0 1
#> Item_4  1.006  1.001 0 1
#> Item_5  1.224  0.266 0 1
#> Item_6  0.515  0.631 0 1
#> Item_7  1.374  1.031 0 1
#> Item_8  1.268 -0.367 0 1
#> Item_9  1.061 -0.952 0 1
#> Item_10 0.826 -1.115 0 1
#> Item_11 1.282  1.308 0 1
#> Item_12 1.625 -0.107 0 1
#> Item_13 1.523  0.493 0 1
#> Item_14 1.545  0.532 0 1
#> Item_15 0.885 -0.030 0 1
#> 
#> $means
#> F 
#> 0 
#> 
#> $cov
#>   F
#> F 1
#> 
#> 

############
# vertical scaling (i.e., equating when groups answer items others do not)
dat2 <- dat
dat2[group == 'D1', 1:2] <- dat2[group != 'D1', 14:15] <- NA
head(dat2)
#>      Item_1 Item_2 Item_3 Item_4 Item_5 Item_6 Item_7 Item_8 Item_9 Item_10
#> [1,]     NA     NA      1      1      1      0      1      1      0       0
#> [2,]     NA     NA      1      1      1      1      1      0      1       0
#> [3,]     NA     NA      0      1      1      1      1      1      0       0
#> [4,]     NA     NA      1      1      1      1      1      1      0       0
#> [5,]     NA     NA      1      0      1      1      1      1      1       0
#> [6,]     NA     NA      1      1      1      1      1      0      0       0
#>      Item_11 Item_12 Item_13 Item_14 Item_15
#> [1,]       1       1       0       1       1
#> [2,]       0       1       1       1       1
#> [3,]       1       0       1       1       1
#> [4,]       1       1       1       1       1
#> [5,]       1       1       1       1       1
#> [6,]       1       1       1       1       0
tail(dat2)
#>         Item_1 Item_2 Item_3 Item_4 Item_5 Item_6 Item_7 Item_8 Item_9 Item_10
#> [1995,]      1      1      0      0      0      1      1      1      0       0
#> [1996,]      1      0      1      1      1      0      1      1      1       1
#> [1997,]      0      1      0      0      0      1      0      1      0       0
#> [1998,]      0      1      0      0      1      0      0      0      0       0
#> [1999,]      1      1      0      1      1      1      1      1      0       0
#> [2000,]      0      0      0      0      0      0      1      0      0       0
#>         Item_11 Item_12 Item_13 Item_14 Item_15
#> [1995,]       1       0       1      NA      NA
#> [1996,]       1       1       0      NA      NA
#> [1997,]       1       0       1      NA      NA
#> [1998,]       0       1       0      NA      NA
#> [1999,]       1       1       1      NA      NA
#> [2000,]       0       0       0      NA      NA

# items with missing responses need to be constrained across groups for identification
nms <- colnames(dat2)
mod <- multipleGroup(dat2, 1, group, invariance = nms[c(1:2, 14:15)])

# this will throw an error without proper constraints (SEs cannot be computed either)
# mod <- multipleGroup(dat2, 1, group)

# model still does not have anchors, therefore need to add a few (here use items 3-5)
mod_anchor <- multipleGroup(dat2, 1, group,
                            invariance = c(nms[c(1:5, 14:15)], 'free_means', 'free_var'))
coef(mod_anchor, simplify=TRUE)
#> $D1
#> $items
#>            a1      d g u
#> Item_1  1.108  0.542 0 1
#> Item_2  1.160 -0.564 0 1
#> Item_3  1.073 -0.272 0 1
#> Item_4  0.871  0.895 0 1
#> Item_5  1.089  0.160 0 1
#> Item_6  0.582  0.685 0 1
#> Item_7  1.292  1.009 0 1
#> Item_8  0.906 -0.328 0 1
#> Item_9  0.855 -1.049 0 1
#> Item_10 0.746 -1.089 0 1
#> Item_11 0.866  1.200 0 1
#> Item_12 1.432 -0.247 0 1
#> Item_13 1.244  0.440 0 1
#> Item_14 1.000  0.449 0 1
#> Item_15 0.852 -0.061 0 1
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 
#> 
#> $D2
#> $items
#>            a1      d g u
#> Item_1  1.108  0.542 0 1
#> Item_2  1.160 -0.564 0 1
#> Item_3  1.073 -0.272 0 1
#> Item_4  0.871  0.895 0 1
#> Item_5  1.089  0.160 0 1
#> Item_6  0.374  0.596 0 1
#> Item_7  1.090  0.942 0 1
#> Item_8  0.988 -0.437 0 1
#> Item_9  0.854 -1.018 0 1
#> Item_10 0.657 -1.164 0 1
#> Item_11 1.023  1.228 0 1
#> Item_12 1.324 -0.207 0 1
#> Item_13 1.212  0.399 0 1
#> Item_14 1.000  0.449 0 1
#> Item_15 0.852 -0.061 0 1
#> 
#> $means
#>    F1 
#> 0.077 
#> 
#> $cov
#>       F1
#> F1 1.658
#> 
#> 

# check if identified by computing information matrix
mod_anchor <- multipleGroup(dat2, 1, group, pars = mod2values(mod_anchor), TOL=NaN, SE=TRUE,
                            invariance = c(nms[c(1:5, 14:15)], 'free_means', 'free_var'))
mod_anchor
#> 
#> Call:
#> multipleGroup(data = dat2, model = 1, group = group, invariance = c(nms[c(1:5, 
#>     14:15)], "free_means", "free_var"), pars = mod2values(mod_anchor), 
#>     TOL = NaN, SE = TRUE)
#> 
#> Full-information item factor analysis with 1 factor(s).
#> Converged within NaN tolerance after 1 EM iterations.
#> mirt version: 1.43 
#> M-step optimizer: nlminb 
#> EM acceleration: Ramsay 
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian 
#> 
#> Information matrix estimated with method: Oakes
#> Second-order test: model is a possible local maximum
#> Condition number of information matrix =  87.67822
#> 
#> Log-likelihood = -15563.53
#> Estimated parameters: 62 
#> AIC = 31223.06
#> BIC = 31491.91; SABIC = 31339.41
#> 
coef(mod_anchor)
#> $D1
#> $Item_1
#>            a1     d  g  u
#> par     1.108 0.542  0  1
#> CI_2.5  0.842 0.330 NA NA
#> CI_97.5 1.375 0.753 NA NA
#> 
#> $Item_2
#>            a1      d  g  u
#> par     1.160 -0.564  0  1
#> CI_2.5  0.883 -0.785 NA NA
#> CI_97.5 1.436 -0.342 NA NA
#> 
#> $Item_3
#>            a1      d  g  u
#> par     1.073 -0.272  0  1
#> CI_2.5  0.896 -0.408 NA NA
#> CI_97.5 1.250 -0.137 NA NA
#> 
#> $Item_4
#>            a1     d  g  u
#> par     0.871 0.895  0  1
#> CI_2.5  0.710 0.765 NA NA
#> CI_97.5 1.031 1.026 NA NA
#> 
#> $Item_5
#>            a1     d  g  u
#> par     1.089 0.160  0  1
#> CI_2.5  0.906 0.024 NA NA
#> CI_97.5 1.272 0.295 NA NA
#> 
#> $Item_6
#>            a1     d  g  u
#> par     0.582 0.685  0  1
#> CI_2.5  0.405 0.543 NA NA
#> CI_97.5 0.760 0.828 NA NA
#> 
#> $Item_7
#>            a1     d  g  u
#> par     1.292 1.009  0  1
#> CI_2.5  1.027 0.818 NA NA
#> CI_97.5 1.558 1.199 NA NA
#> 
#> $Item_8
#>            a1      d  g  u
#> par     0.906 -0.328  0  1
#> CI_2.5  0.702 -0.476 NA NA
#> CI_97.5 1.111 -0.179 NA NA
#> 
#> $Item_9
#>            a1      d  g  u
#> par     0.855 -1.049  0  1
#> CI_2.5  0.642 -1.216 NA NA
#> CI_97.5 1.069 -0.882 NA NA
#> 
#> $Item_10
#>            a1      d  g  u
#> par     0.746 -1.089  0  1
#> CI_2.5  0.542 -1.253 NA NA
#> CI_97.5 0.950 -0.926 NA NA
#> 
#> $Item_11
#>            a1     d  g  u
#> par     0.866 1.200  0  1
#> CI_2.5  0.651 1.025 NA NA
#> CI_97.5 1.081 1.375 NA NA
#> 
#> $Item_12
#>            a1      d  g  u
#> par     1.432 -0.247  0  1
#> CI_2.5  1.152 -0.421 NA NA
#> CI_97.5 1.713 -0.074 NA NA
#> 
#> $Item_13
#>            a1     d  g  u
#> par     1.244 0.440  0  1
#> CI_2.5  0.994 0.273 NA NA
#> CI_97.5 1.494 0.607 NA NA
#> 
#> $Item_14
#>            a1     d  g  u
#> par     1.000 0.449  0  1
#> CI_2.5  0.785 0.294 NA NA
#> CI_97.5 1.215 0.603 NA NA
#> 
#> $Item_15
#>            a1      d  g  u
#> par     0.852 -0.061  0  1
#> CI_2.5  0.655 -0.205 NA NA
#> CI_97.5 1.049  0.083 NA NA
#> 
#> $GroupPars
#>         MEAN_1 COV_11
#> par          0      1
#> CI_2.5      NA     NA
#> CI_97.5     NA     NA
#> 
#> 
#> $D2
#> $Item_1
#>            a1     d  g  u
#> par     1.108 0.542  0  1
#> CI_2.5  0.842 0.330 NA NA
#> CI_97.5 1.375 0.753 NA NA
#> 
#> $Item_2
#>            a1      d  g  u
#> par     1.160 -0.564  0  1
#> CI_2.5  0.883 -0.785 NA NA
#> CI_97.5 1.436 -0.342 NA NA
#> 
#> $Item_3
#>            a1      d  g  u
#> par     1.073 -0.272  0  1
#> CI_2.5  0.896 -0.408 NA NA
#> CI_97.5 1.250 -0.137 NA NA
#> 
#> $Item_4
#>            a1     d  g  u
#> par     0.871 0.895  0  1
#> CI_2.5  0.710 0.765 NA NA
#> CI_97.5 1.031 1.026 NA NA
#> 
#> $Item_5
#>            a1     d  g  u
#> par     1.089 0.160  0  1
#> CI_2.5  0.906 0.024 NA NA
#> CI_97.5 1.272 0.295 NA NA
#> 
#> $Item_6
#>            a1     d  g  u
#> par     0.374 0.596  0  1
#> CI_2.5  0.236 0.454 NA NA
#> CI_97.5 0.512 0.738 NA NA
#> 
#> $Item_7
#>            a1     d  g  u
#> par     1.090 0.942  0  1
#> CI_2.5  0.823 0.722 NA NA
#> CI_97.5 1.357 1.163 NA NA
#> 
#> $Item_8
#>            a1      d  g  u
#> par     0.988 -0.437  0  1
#> CI_2.5  0.747 -0.636 NA NA
#> CI_97.5 1.228 -0.239 NA NA
#> 
#> $Item_9
#>            a1      d  g  u
#> par     0.854 -1.018  0  1
#> CI_2.5  0.635 -1.219 NA NA
#> CI_97.5 1.072 -0.817 NA NA
#> 
#> $Item_10
#>            a1      d  g  u
#> par     0.657 -1.164  0  1
#> CI_2.5  0.469 -1.350 NA NA
#> CI_97.5 0.845 -0.978 NA NA
#> 
#> $Item_11
#>            a1     d  g  u
#> par     1.023 1.228  0  1
#> CI_2.5  0.766 1.003 NA NA
#> CI_97.5 1.280 1.452 NA NA
#> 
#> $Item_12
#>            a1      d  g  u
#> par     1.324 -0.207  0  1
#> CI_2.5  1.010 -0.442 NA NA
#> CI_97.5 1.637  0.027 NA NA
#> 
#> $Item_13
#>            a1     d  g  u
#> par     1.212 0.399  0  1
#> CI_2.5  0.923 0.178 NA NA
#> CI_97.5 1.502 0.620 NA NA
#> 
#> $Item_14
#>            a1     d  g  u
#> par     1.000 0.449  0  1
#> CI_2.5  0.785 0.294 NA NA
#> CI_97.5 1.215 0.603 NA NA
#> 
#> $Item_15
#>            a1      d  g  u
#> par     0.852 -0.061  0  1
#> CI_2.5  0.655 -0.205 NA NA
#> CI_97.5 1.049  0.083 NA NA
#> 
#> $GroupPars
#>         MEAN_1 COV_11
#> par      0.008  1.658
#> CI_2.5  -0.148  1.093
#> CI_97.5  0.164  2.222
#> 
#> 
coef(mod_anchor, printSE=TRUE)
#> $D1
#> $Item_1
#>        a1     d logit(g) logit(u)
#> par 1.108 0.542     -999      999
#> SE  0.136 0.108       NA       NA
#> 
#> $Item_2
#>        a1      d logit(g) logit(u)
#> par 1.160 -0.564     -999      999
#> SE  0.141  0.113       NA       NA
#> 
#> $Item_3
#>        a1      d logit(g) logit(u)
#> par 1.073 -0.272     -999      999
#> SE  0.090  0.069       NA       NA
#> 
#> $Item_4
#>        a1     d logit(g) logit(u)
#> par 0.871 0.895     -999      999
#> SE  0.082 0.066       NA       NA
#> 
#> $Item_5
#>        a1     d logit(g) logit(u)
#> par 1.089 0.160     -999      999
#> SE  0.093 0.069       NA       NA
#> 
#> $Item_6
#>        a1     d logit(g) logit(u)
#> par 0.582 0.685     -999      999
#> SE  0.091 0.073       NA       NA
#> 
#> $Item_7
#>        a1     d logit(g) logit(u)
#> par 1.292 1.009     -999      999
#> SE  0.135 0.097       NA       NA
#> 
#> $Item_8
#>        a1      d logit(g) logit(u)
#> par 0.906 -0.328     -999      999
#> SE  0.104  0.076       NA       NA
#> 
#> $Item_9
#>        a1      d logit(g) logit(u)
#> par 0.855 -1.049     -999      999
#> SE  0.109  0.085       NA       NA
#> 
#> $Item_10
#>        a1      d logit(g) logit(u)
#> par 0.746 -1.089     -999      999
#> SE  0.104  0.083       NA       NA
#> 
#> $Item_11
#>        a1     d logit(g) logit(u)
#> par 0.866 1.200     -999      999
#> SE  0.110 0.089       NA       NA
#> 
#> $Item_12
#>        a1      d logit(g) logit(u)
#> par 1.432 -0.247     -999      999
#> SE  0.143  0.089       NA       NA
#> 
#> $Item_13
#>        a1     d logit(g) logit(u)
#> par 1.244 0.440     -999      999
#> SE  0.127 0.085       NA       NA
#> 
#> $Item_14
#>       a1     d logit(g) logit(u)
#> par 1.00 0.449     -999      999
#> SE  0.11 0.079       NA       NA
#> 
#> $Item_15
#>        a1      d logit(g) logit(u)
#> par 0.852 -0.061     -999      999
#> SE  0.100  0.073       NA       NA
#> 
#> $GroupPars
#>     MEAN_1 COV_11
#> par      0      1
#> SE      NA     NA
#> 
#> 
#> $D2
#> $Item_1
#>        a1     d logit(g) logit(u)
#> par 1.108 0.542     -999      999
#> SE  0.136 0.108       NA       NA
#> 
#> $Item_2
#>        a1      d logit(g) logit(u)
#> par 1.160 -0.564     -999      999
#> SE  0.141  0.113       NA       NA
#> 
#> $Item_3
#>        a1      d logit(g) logit(u)
#> par 1.073 -0.272     -999      999
#> SE  0.090  0.069       NA       NA
#> 
#> $Item_4
#>        a1     d logit(g) logit(u)
#> par 0.871 0.895     -999      999
#> SE  0.082 0.066       NA       NA
#> 
#> $Item_5
#>        a1     d logit(g) logit(u)
#> par 1.089 0.160     -999      999
#> SE  0.093 0.069       NA       NA
#> 
#> $Item_6
#>        a1     d logit(g) logit(u)
#> par 0.374 0.596     -999      999
#> SE  0.071 0.073       NA       NA
#> 
#> $Item_7
#>        a1     d logit(g) logit(u)
#> par 1.090 0.942     -999      999
#> SE  0.136 0.112       NA       NA
#> 
#> $Item_8
#>        a1      d logit(g) logit(u)
#> par 0.988 -0.437     -999      999
#> SE  0.123  0.101       NA       NA
#> 
#> $Item_9
#>        a1      d logit(g) logit(u)
#> par 0.854 -1.018     -999      999
#> SE  0.111  0.102       NA       NA
#> 
#> $Item_10
#>        a1      d logit(g) logit(u)
#> par 0.657 -1.164     -999      999
#> SE  0.096  0.095       NA       NA
#> 
#> $Item_11
#>        a1     d logit(g) logit(u)
#> par 1.023 1.228     -999      999
#> SE  0.131 0.114       NA       NA
#> 
#> $Item_12
#>        a1      d logit(g) logit(u)
#> par 1.324 -0.207     -999      999
#> SE  0.160  0.120       NA       NA
#> 
#> $Item_13
#>        a1     d logit(g) logit(u)
#> par 1.212 0.399     -999      999
#> SE  0.148 0.113       NA       NA
#> 
#> $Item_14
#>       a1     d logit(g) logit(u)
#> par 1.00 0.449     -999      999
#> SE  0.11 0.079       NA       NA
#> 
#> $Item_15
#>        a1      d logit(g) logit(u)
#> par 0.852 -0.061     -999      999
#> SE  0.100  0.073       NA       NA
#> 
#> $GroupPars
#>     MEAN_1 COV_11
#> par  0.008  1.658
#> SE   0.080  0.288
#> 
#> 


#############
# DIF test for each item (using all other items as anchors)
itemnames <- colnames(dat)
refmodel <- multipleGroup(dat, 1, group = group, SE=TRUE,
                          invariance=c('free_means', 'free_var', itemnames))

# loop over items (in practice, run in parallel to increase speed). May be better to use ?DIF
estmodels <- vector('list', ncol(dat))
for(i in 1:ncol(dat))
    estmodels[[i]] <- multipleGroup(dat, 1, group = group, verbose = FALSE,
                             invariance=c('free_means', 'free_var', itemnames[-i]))
anova(refmodel, estmodels[[1]])
#>                     AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel       35894.66 35972.22 35960.47 36073.89 -17915.33               
#> estmodels[[1]] 35898.45 35980.86 35968.37 36088.88 -17915.22 0.213  2 0.899
(anovas <- lapply(estmodels, function(x, refmodel) anova(refmodel, x),
   refmodel=refmodel))
#> [[1]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35898.45 35980.86 35968.37 36088.88 -17915.22 0.213  2 0.899
#> 
#> [[2]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35896.81 35979.22 35966.73 36087.24 -17914.41 1.847  2 0.397
#> 
#> [[3]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35893.66 35976.07 35963.58 36084.09 -17912.83 5.001  2 0.082
#> 
#> [[4]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35897.07 35979.48 35967.00 36087.50 -17914.54 1.586  2 0.453
#> 
#> [[5]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35897.97 35980.38 35967.89 36088.40 -17914.99 0.688  2 0.709
#> 
#> [[6]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df    p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33              
#> x        35894.87 35977.28 35964.79 36085.30 -17913.43 3.793  2 0.15
#> 
#> [[7]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35897.53 35979.94 35967.45 36087.96 -17914.76 1.131  2 0.568
#> 
#> [[8]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35897.20 35979.61 35967.12 36087.63 -17914.60 1.462  2 0.481
#> 
#> [[9]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35898.46 35980.87 35968.38 36088.89 -17915.23 0.197  2 0.906
#> 
#> [[10]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35897.67 35980.08 35967.59 36088.10 -17914.83 0.993  2 0.609
#> 
#> [[11]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35896.07 35978.48 35965.99 36086.50 -17914.03 2.593  2 0.273
#> 
#> [[12]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35897.57 35979.98 35967.49 36088.00 -17914.78 1.092  2 0.579
#> 
#> [[13]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35898.47 35980.88 35968.39 36088.90 -17915.23 0.192  2 0.908
#> 
#> [[14]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35896.15 35978.57 35966.08 36086.58 -17914.08 2.505  2 0.286
#> 
#> [[15]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35896.96 35979.37 35966.88 36087.39 -17914.48 1.699  2 0.428
#> 

# family-wise error control
p <- do.call(rbind, lapply(anovas, function(x) x[2, 'p']))
p.adjust(p, method = 'BH')
#>  [1] 0.9084068 0.8299977 0.8299977 0.8299977 0.8862361 0.8299977 0.8299977
#>  [8] 0.8299977 0.9084068 0.8299977 0.8299977 0.8299977 0.9084068 0.8299977
#> [15] 0.8299977

# same as above, except only test if slopes vary (1 df)
# constrain all intercepts
estmodels <- vector('list', ncol(dat))
for(i in 1:ncol(dat))
    estmodels[[i]] <- multipleGroup(dat, 1, group = group, verbose = FALSE,
                             invariance=c('free_means', 'free_var', 'intercepts',
                             itemnames[-i]))

(anovas <- lapply(estmodels, function(x, refmodel) anova(refmodel, x),
   refmodel=refmodel))
#> [[1]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35896.52 35976.50 35964.38 36081.35 -17915.26 0.143  1 0.705
#> 
#> [[2]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35896.60 35976.58 35964.46 36081.43 -17915.30 0.061  1 0.804
#> 
#> [[3]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35894.66 35974.65 35962.53 36079.49 -17914.33 1.997  1 0.158
#> 
#> [[4]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35896.39 35976.38 35964.26 36081.22 -17915.20 0.268  1 0.605
#> 
#> [[5]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35896.56 35976.54 35964.42 36081.39 -17915.28 0.103  1 0.748
#> 
#> [[6]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35893.62 35973.60 35961.48 36078.45 -17913.81 3.042  1 0.081
#> 
#> [[7]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35895.67 35975.66 35963.54 36080.50 -17914.84 0.985  1 0.321
#> 
#> [[8]]
#>               AIC    SABIC       HQ      BIC    logLik   X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33              
#> x        35896.27 35976.26 35964.13 36081.10 -17915.13 0.39  1 0.532
#> 
#> [[9]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35896.66 35976.64 35964.52 36081.49 -17915.33 0.001  1 0.979
#> 
#> [[10]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35896.12 35976.11 35963.99 36080.95 -17915.06 0.538  1 0.463
#> 
#> [[11]]
#>               AIC    SABIC       HQ      BIC    logLik   X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33              
#> x        35894.22 35974.21 35962.08 36079.05 -17914.11 2.44  1 0.118
#> 
#> [[12]]
#>               AIC    SABIC       HQ      BIC    logLik   X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33              
#> x        35895.87 35975.86 35963.74 36080.70 -17914.94 0.79  1 0.374
#> 
#> [[13]]
#>               AIC    SABIC       HQ      BIC    logLik   X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33              
#> x        35896.58 35976.57 35964.44 36081.41 -17915.29 0.08  1 0.778
#> 
#> [[14]]
#>               AIC    SABIC       HQ      BIC    logLik  X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33             
#> x        35894.16 35974.15 35962.02 36078.99 -17914.08 2.5  1 0.114
#> 
#> [[15]]
#>               AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> refmodel 35894.66 35972.22 35960.47 36073.89 -17915.33               
#> x        35894.99 35974.97 35962.85 36079.82 -17914.49 1.672  1 0.196
#> 

# quickly test with Wald test using DIF()
mod_configural2 <- multipleGroup(dat, 1, group = group, SE=TRUE)
DIF(mod_configural2, which.par = c('a1', 'd'), Wald=TRUE, p.adjust = 'fdr')
#> NOTE: No hyper-parameters were estimated in the DIF model. 
#>       For effective DIF testing, freeing the focal group hyper-parameters is recommended.
#>         groups      W df     p adj_p
#> Item_1   D1,D2  4.636  2 0.098 0.246
#> Item_2   D1,D2  7.265  2 0.026 0.099
#> Item_3   D1,D2 10.375  2 0.006 0.055
#> Item_4   D1,D2  3.210  2 0.201 0.335
#> Item_5   D1,D2  3.618  2 0.164 0.307
#> Item_6   D1,D2  0.820  2 0.664 0.804
#> Item_7   D1,D2  0.575  2  0.75 0.804
#> Item_8   D1,D2  5.782  2 0.056 0.167
#> Item_9   D1,D2  3.802  2 0.149 0.307
#> Item_10  D1,D2  0.722  2 0.697 0.804
#> Item_11  D1,D2  8.922  2 0.012 0.058
#> Item_12  D1,D2  2.340  2  0.31 0.463
#> Item_13  D1,D2  2.162  2 0.339 0.463
#> Item_14  D1,D2  9.848  2 0.007 0.055
#> Item_15  D1,D2  0.204  2 0.903 0.903



#############
# Three group model where the latent variable parameters are constrained to
# be equal in the focal groups

set.seed(12345)
a <- matrix(abs(rnorm(15,1,.3)), ncol=1)
d <- matrix(rnorm(15,0,.7),ncol=1)
itemtype <- rep('2PL', nrow(a))
N <- 1000
dataset1 <- simdata(a, d, N, itemtype)
dataset2 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5))
dataset3 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5))
dat <- rbind(dataset1, dataset2, dataset3)
group <- rep(c('D1', 'D2', 'D3'), each=N)

# marginal information
itemstats(dat)
#> $overall
#>     N mean_total.score sd_total.score ave.r  sd.r alpha SEM.alpha
#>  3000             7.89          3.567  0.19 0.054 0.779     1.676
#> 
#> $itemstats
#>            N  mean    sd total.r total.r_if_rm alpha_if_rm
#> Item_1  3000 0.605 0.489   0.525         0.415       0.764
#> Item_2  3000 0.403 0.491   0.563         0.458       0.761
#> Item_3  3000 0.457 0.498   0.504         0.388       0.767
#> Item_4  3000 0.676 0.468   0.458         0.345       0.770
#> Item_5  3000 0.545 0.498   0.539         0.429       0.763
#> Item_6  3000 0.645 0.478   0.334         0.207       0.782
#> Item_7  3000 0.688 0.464   0.529         0.426       0.764
#> Item_8  3000 0.427 0.495   0.498         0.382       0.767
#> Item_9  3000 0.292 0.455   0.454         0.344       0.770
#> Item_10 3000 0.284 0.451   0.393         0.279       0.775
#> Item_11 3000 0.738 0.440   0.451         0.345       0.770
#> Item_12 3000 0.460 0.499   0.598         0.496       0.757
#> Item_13 3000 0.591 0.492   0.556         0.449       0.761
#> Item_14 3000 0.591 0.492   0.548         0.441       0.762
#> Item_15 3000 0.488 0.500   0.452         0.330       0.772
#> 
#> $proportions
#>             0     1
#> Item_1  0.395 0.605
#> Item_2  0.597 0.403
#> Item_3  0.543 0.457
#> Item_4  0.324 0.676
#> Item_5  0.455 0.545
#> Item_6  0.355 0.645
#> Item_7  0.312 0.688
#> Item_8  0.573 0.427
#> Item_9  0.708 0.292
#> Item_10 0.716 0.284
#> Item_11 0.262 0.738
#> Item_12 0.540 0.460
#> Item_13 0.409 0.591
#> Item_14 0.409 0.591
#> Item_15 0.512 0.488
#> 

# conditional information
itemstats(dat, group=group)
#> $D1
#> $D1$overall
#>     N mean_total.score sd_total.score ave.r  sd.r alpha SEM.alpha
#>  1000             7.82          3.346 0.159 0.047  0.74     1.705
#> 
#> $D1$itemstats
#>            N  mean    sd total.r total.r_if_rm alpha_if_rm
#> Item_1  1000 0.605 0.489   0.484         0.361       0.725
#> Item_2  1000 0.368 0.483   0.507         0.388       0.722
#> Item_3  1000 0.461 0.499   0.471         0.343       0.727
#> Item_4  1000 0.673 0.469   0.439         0.315       0.729
#> Item_5  1000 0.526 0.500   0.500         0.376       0.723
#> Item_6  1000 0.654 0.476   0.355         0.222       0.739
#> Item_7  1000 0.683 0.466   0.508         0.394       0.722
#> Item_8  1000 0.431 0.495   0.462         0.333       0.728
#> Item_9  1000 0.287 0.453   0.419         0.298       0.731
#> Item_10 1000 0.274 0.446   0.372         0.249       0.735
#> Item_11 1000 0.739 0.439   0.401         0.282       0.732
#> Item_12 1000 0.456 0.498   0.563         0.448       0.715
#> Item_13 1000 0.584 0.493   0.535         0.416       0.719
#> Item_14 1000 0.592 0.492   0.483         0.358       0.725
#> Item_15 1000 0.487 0.500   0.451         0.321       0.729
#> 
#> $D1$proportions
#>             0     1
#> Item_1  0.395 0.605
#> Item_2  0.632 0.368
#> Item_3  0.539 0.461
#> Item_4  0.327 0.673
#> Item_5  0.474 0.526
#> Item_6  0.346 0.654
#> Item_7  0.317 0.683
#> Item_8  0.569 0.431
#> Item_9  0.713 0.287
#> Item_10 0.726 0.274
#> Item_11 0.261 0.739
#> Item_12 0.544 0.456
#> Item_13 0.416 0.584
#> Item_14 0.408 0.592
#> Item_15 0.513 0.487
#> 
#> 
#> $D2
#> $D2$overall
#>     N mean_total.score sd_total.score ave.r  sd.r alpha SEM.alpha
#>  1000            7.955          3.754 0.217 0.065 0.807      1.65
#> 
#> $D2$itemstats
#>            N  mean    sd total.r total.r_if_rm alpha_if_rm
#> Item_1  1000 0.612 0.488   0.563         0.464       0.792
#> Item_2  1000 0.417 0.493   0.569         0.469       0.792
#> Item_3  1000 0.450 0.498   0.578         0.479       0.791
#> Item_4  1000 0.695 0.461   0.484         0.381       0.798
#> Item_5  1000 0.551 0.498   0.553         0.451       0.793
#> Item_6  1000 0.644 0.479   0.316         0.195       0.811
#> Item_7  1000 0.680 0.467   0.540         0.443       0.794
#> Item_8  1000 0.432 0.496   0.544         0.440       0.794
#> Item_9  1000 0.317 0.466   0.470         0.365       0.799
#> Item_10 1000 0.275 0.447   0.403         0.297       0.804
#> Item_11 1000 0.729 0.445   0.508         0.413       0.796
#> Item_12 1000 0.483 0.500   0.606         0.511       0.788
#> Item_13 1000 0.585 0.493   0.587         0.491       0.790
#> Item_14 1000 0.591 0.492   0.589         0.493       0.790
#> Item_15 1000 0.494 0.500   0.466         0.351       0.801
#> 
#> $D2$proportions
#>             0     1
#> Item_1  0.388 0.612
#> Item_2  0.583 0.417
#> Item_3  0.550 0.450
#> Item_4  0.305 0.695
#> Item_5  0.449 0.551
#> Item_6  0.356 0.644
#> Item_7  0.320 0.680
#> Item_8  0.568 0.432
#> Item_9  0.683 0.317
#> Item_10 0.725 0.275
#> Item_11 0.271 0.729
#> Item_12 0.517 0.483
#> Item_13 0.415 0.585
#> Item_14 0.409 0.591
#> Item_15 0.506 0.494
#> 
#> 
#> $D3
#> $D3$overall
#>     N mean_total.score sd_total.score ave.r  sd.r alpha SEM.alpha
#>  1000            7.894          3.592 0.194 0.064 0.783     1.672
#> 
#> $D3$itemstats
#>            N  mean    sd total.r total.r_if_rm alpha_if_rm
#> Item_1  1000 0.599 0.490   0.526         0.416       0.769
#> Item_2  1000 0.424 0.494   0.610         0.512       0.761
#> Item_3  1000 0.459 0.499   0.460         0.340       0.776
#> Item_4  1000 0.659 0.474   0.452         0.338       0.775
#> Item_5  1000 0.557 0.497   0.562         0.456       0.766
#> Item_6  1000 0.638 0.481   0.334         0.208       0.786
#> Item_7  1000 0.700 0.458   0.539         0.439       0.767
#> Item_8  1000 0.419 0.494   0.485         0.369       0.773
#> Item_9  1000 0.272 0.445   0.470         0.365       0.773
#> Item_10 1000 0.303 0.460   0.405         0.290       0.779
#> Item_11 1000 0.747 0.435   0.438         0.333       0.776
#> Item_12 1000 0.442 0.497   0.622         0.526       0.759
#> Item_13 1000 0.604 0.489   0.545         0.438       0.767
#> Item_14 1000 0.589 0.492   0.569         0.465       0.765
#> Item_15 1000 0.482 0.500   0.439         0.317       0.778
#> 
#> $D3$proportions
#>             0     1
#> Item_1  0.401 0.599
#> Item_2  0.576 0.424
#> Item_3  0.541 0.459
#> Item_4  0.341 0.659
#> Item_5  0.443 0.557
#> Item_6  0.362 0.638
#> Item_7  0.300 0.700
#> Item_8  0.581 0.419
#> Item_9  0.728 0.272
#> Item_10 0.697 0.303
#> Item_11 0.253 0.747
#> Item_12 0.558 0.442
#> Item_13 0.396 0.604
#> Item_14 0.411 0.589
#> Item_15 0.518 0.482
#> 
#> 

model <- 'F1 = 1-15
          FREE[D2, D3] = (GROUP, MEAN_1), (GROUP, COV_11)
          CONSTRAINB[D2,D3] = (GROUP, MEAN_1), (GROUP, COV_11)'

mod <- multipleGroup(dat, model, group = group, invariance = colnames(dat))
coef(mod, simplify=TRUE)
#> $D1
#> $items
#>            a1      d g u
#> Item_1  1.089  0.517 0 1
#> Item_2  1.302 -0.601 0 1
#> Item_3  0.950 -0.251 0 1
#> Item_4  0.857  0.847 0 1
#> Item_5  1.119  0.195 0 1
#> Item_6  0.447  0.618 0 1
#> Item_7  1.209  1.023 0 1
#> Item_8  0.939 -0.396 0 1
#> Item_9  0.909 -1.110 0 1
#> Item_10 0.695 -1.073 0 1
#> Item_11 0.929  1.232 0 1
#> Item_12 1.454 -0.290 0 1
#> Item_13 1.216  0.457 0 1
#> Item_14 1.199  0.453 0 1
#> Item_15 0.751 -0.085 0 1
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 
#> 
#> $D2
#> $items
#>            a1      d g u
#> Item_1  1.089  0.517 0 1
#> Item_2  1.302 -0.601 0 1
#> Item_3  0.950 -0.251 0 1
#> Item_4  0.857  0.847 0 1
#> Item_5  1.119  0.195 0 1
#> Item_6  0.447  0.618 0 1
#> Item_7  1.209  1.023 0 1
#> Item_8  0.939 -0.396 0 1
#> Item_9  0.909 -1.110 0 1
#> Item_10 0.695 -1.073 0 1
#> Item_11 0.929  1.232 0 1
#> Item_12 1.454 -0.290 0 1
#> Item_13 1.216  0.457 0 1
#> Item_14 1.199  0.453 0 1
#> Item_15 0.751 -0.085 0 1
#> 
#> $means
#>    F1 
#> 0.055 
#> 
#> $cov
#>       F1
#> F1 1.467
#> 
#> 
#> $D3
#> $items
#>            a1      d g u
#> Item_1  1.089  0.517 0 1
#> Item_2  1.302 -0.601 0 1
#> Item_3  0.950 -0.251 0 1
#> Item_4  0.857  0.847 0 1
#> Item_5  1.119  0.195 0 1
#> Item_6  0.447  0.618 0 1
#> Item_7  1.209  1.023 0 1
#> Item_8  0.939 -0.396 0 1
#> Item_9  0.909 -1.110 0 1
#> Item_10 0.695 -1.073 0 1
#> Item_11 0.929  1.232 0 1
#> Item_12 1.454 -0.290 0 1
#> Item_13 1.216  0.457 0 1
#> Item_14 1.199  0.453 0 1
#> Item_15 0.751 -0.085 0 1
#> 
#> $means
#>    F1 
#> 0.055 
#> 
#> $cov
#>       F1
#> F1 1.467
#> 
#> 

#############
# Testing main effects in multiple independent grouping variables
set.seed(1234)
a <- matrix(abs(rnorm(15,1,.3)), ncol=1)
d <- matrix(rnorm(15,0,.7),ncol=1)
itemtype <- rep('2PL', nrow(a))
N <- 500

# generated data have interaction effect for latent means, as well as a
# main effect across D but no main effect across G
d11 <- simdata(a, d, N, itemtype, mu = 0)
d12 <- simdata(a, d, N, itemtype, mu = 0)
d13 <- simdata(a, d, N, itemtype, mu = 0)
d21 <- simdata(a, d, N, itemtype, mu = 1/2)
d22 <- simdata(a, d, N, itemtype, mu = 1/2)
d23 <- simdata(a, d, N, itemtype, mu = -1)
dat <- do.call(rbind, list(d11, d12, d13, d21, d22, d23))
group <- rep(c('G1.D1', 'G1.D2', 'G1.D3', 'G2.D1', 'G2.D2', 'G2.D3'), each=N)
table(group)
#> group
#> G1.D1 G1.D2 G1.D3 G2.D1 G2.D2 G2.D3 
#>   500   500   500   500   500   500 

# in practice, group would be organized in a data.frame as follows
df <- data.frame(group)
dfw <- tidyr::separate_wider_delim(df, group, delim='.', names = c('G', 'D'))
head(dfw)
#> # A tibble: 6 × 2
#>   G     D    
#>   <chr> <chr>
#> 1 G1    D1   
#> 2 G1    D1   
#> 3 G1    D1   
#> 4 G1    D1   
#> 5 G1    D1   
#> 6 G1    D1   

# for use with multipleGroup() combine into a single long group
group <- with(dfw, factor(G):factor(D))

# conditional information
itemstats(dat, group=group)
#> $`G1:D1`
#> $`G1:D1`$overall
#>    N mean_total.score sd_total.score ave.r  sd.r alpha SEM.alpha
#>  500            6.974          3.126 0.126 0.071 0.685     1.753
#> 
#> $`G1:D1`$itemstats
#>           N  mean    sd total.r total.r_if_rm alpha_if_rm
#> Item_1  500 0.456 0.499   0.418         0.273       0.673
#> Item_2  500 0.414 0.493   0.554         0.430       0.652
#> Item_3  500 0.398 0.490   0.543         0.418       0.654
#> Item_4  500 0.382 0.486   0.221         0.067       0.698
#> Item_5  500 0.806 0.396   0.360         0.243       0.676
#> Item_6  500 0.520 0.500   0.532         0.402       0.656
#> Item_7  500 0.452 0.498   0.454         0.314       0.667
#> Item_8  500 0.436 0.496   0.458         0.319       0.667
#> Item_9  500 0.600 0.490   0.379         0.233       0.678
#> Item_10 500 0.408 0.492   0.385         0.239       0.677
#> Item_11 500 0.324 0.468   0.472         0.344       0.664
#> Item_12 500 0.572 0.495   0.310         0.157       0.688
#> Item_13 500 0.334 0.472   0.347         0.204       0.681
#> Item_14 500 0.514 0.500   0.536         0.407       0.655
#> Item_15 500 0.358 0.480   0.472         0.340       0.664
#> 
#> $`G1:D1`$proportions
#>             0     1
#> Item_1  0.544 0.456
#> Item_2  0.586 0.414
#> Item_3  0.602 0.398
#> Item_4  0.618 0.382
#> Item_5  0.194 0.806
#> Item_6  0.480 0.520
#> Item_7  0.548 0.452
#> Item_8  0.564 0.436
#> Item_9  0.400 0.600
#> Item_10 0.592 0.408
#> Item_11 0.676 0.324
#> Item_12 0.428 0.572
#> Item_13 0.666 0.334
#> Item_14 0.486 0.514
#> Item_15 0.642 0.358
#> 
#> 
#> $`G1:D2`
#> $`G1:D2`$overall
#>    N mean_total.score sd_total.score ave.r  sd.r alpha SEM.alpha
#>  500            6.768          3.144 0.133 0.062 0.695     1.736
#> 
#> $`G1:D2`$itemstats
#>           N  mean    sd total.r total.r_if_rm alpha_if_rm
#> Item_1  500 0.468 0.499   0.410         0.265       0.685
#> Item_2  500 0.440 0.497   0.502         0.369       0.671
#> Item_3  500 0.366 0.482   0.552         0.431       0.664
#> Item_4  500 0.364 0.482   0.294         0.146       0.699
#> Item_5  500 0.800 0.400   0.437         0.326       0.678
#> Item_6  500 0.506 0.500   0.485         0.349       0.674
#> Item_7  500 0.424 0.495   0.440         0.300       0.680
#> Item_8  500 0.422 0.494   0.449         0.310       0.679
#> Item_9  500 0.584 0.493   0.376         0.230       0.689
#> Item_10 500 0.396 0.490   0.315         0.166       0.697
#> Item_11 500 0.242 0.429   0.451         0.332       0.677
#> Item_12 500 0.588 0.493   0.403         0.259       0.685
#> Item_13 500 0.326 0.469   0.360         0.220       0.690
#> Item_14 500 0.480 0.500   0.507         0.374       0.671
#> Item_15 500 0.362 0.481   0.566         0.448       0.662
#> 
#> $`G1:D2`$proportions
#>             0     1
#> Item_1  0.532 0.468
#> Item_2  0.560 0.440
#> Item_3  0.634 0.366
#> Item_4  0.636 0.364
#> Item_5  0.200 0.800
#> Item_6  0.494 0.506
#> Item_7  0.576 0.424
#> Item_8  0.578 0.422
#> Item_9  0.416 0.584
#> Item_10 0.604 0.396
#> Item_11 0.758 0.242
#> Item_12 0.412 0.588
#> Item_13 0.674 0.326
#> Item_14 0.520 0.480
#> Item_15 0.638 0.362
#> 
#> 
#> $`G1:D3`
#> $`G1:D3`$overall
#>    N mean_total.score sd_total.score ave.r  sd.r alpha SEM.alpha
#>  500            7.082          3.101 0.124 0.048  0.68     1.755
#> 
#> $`G1:D3`$itemstats
#>           N  mean    sd total.r total.r_if_rm alpha_if_rm
#> Item_1  500 0.458 0.499   0.385         0.236       0.671
#> Item_2  500 0.428 0.495   0.513         0.381       0.652
#> Item_3  500 0.426 0.495   0.511         0.379       0.652
#> Item_4  500 0.356 0.479   0.331         0.184       0.678
#> Item_5  500 0.798 0.402   0.433         0.319       0.662
#> Item_6  500 0.560 0.497   0.464         0.325       0.659
#> Item_7  500 0.458 0.499   0.394         0.246       0.670
#> Item_8  500 0.446 0.498   0.406         0.260       0.668
#> Item_9  500 0.582 0.494   0.411         0.266       0.667
#> Item_10 500 0.398 0.490   0.399         0.254       0.669
#> Item_11 500 0.292 0.455   0.399         0.265       0.667
#> Item_12 500 0.620 0.486   0.408         0.265       0.667
#> Item_13 500 0.346 0.476   0.388         0.246       0.670
#> Item_14 500 0.518 0.500   0.480         0.342       0.657
#> Item_15 500 0.396 0.490   0.484         0.349       0.656
#> 
#> $`G1:D3`$proportions
#>             0     1
#> Item_1  0.542 0.458
#> Item_2  0.572 0.428
#> Item_3  0.574 0.426
#> Item_4  0.644 0.356
#> Item_5  0.202 0.798
#> Item_6  0.440 0.560
#> Item_7  0.542 0.458
#> Item_8  0.554 0.446
#> Item_9  0.418 0.582
#> Item_10 0.602 0.398
#> Item_11 0.708 0.292
#> Item_12 0.380 0.620
#> Item_13 0.654 0.346
#> Item_14 0.482 0.518
#> Item_15 0.604 0.396
#> 
#> 
#> $`G2:D1`
#> $`G2:D1`$overall
#>    N mean_total.score sd_total.score ave.r  sd.r alpha SEM.alpha
#>  500            8.256           3.22 0.141 0.062 0.711     1.731
#> 
#> $`G2:D1`$itemstats
#>           N  mean    sd total.r total.r_if_rm alpha_if_rm
#> Item_1  500 0.582 0.494   0.435         0.299       0.699
#> Item_2  500 0.504 0.500   0.502         0.372       0.690
#> Item_3  500 0.482 0.500   0.518         0.390       0.688
#> Item_4  500 0.410 0.492   0.223         0.072       0.724
#> Item_5  500 0.872 0.334   0.390         0.296       0.700
#> Item_6  500 0.620 0.486   0.514         0.390       0.688
#> Item_7  500 0.490 0.500   0.439         0.301       0.698
#> Item_8  500 0.518 0.500   0.491         0.360       0.691
#> Item_9  500 0.652 0.477   0.435         0.304       0.698
#> Item_10 500 0.500 0.501   0.472         0.338       0.694
#> Item_11 500 0.348 0.477   0.408         0.274       0.701
#> Item_12 500 0.670 0.471   0.442         0.313       0.697
#> Item_13 500 0.442 0.497   0.439         0.302       0.698
#> Item_14 500 0.652 0.477   0.459         0.330       0.695
#> Item_15 500 0.514 0.500   0.513         0.384       0.688
#> 
#> $`G2:D1`$proportions
#>             0     1
#> Item_1  0.418 0.582
#> Item_2  0.496 0.504
#> Item_3  0.518 0.482
#> Item_4  0.590 0.410
#> Item_5  0.128 0.872
#> Item_6  0.380 0.620
#> Item_7  0.510 0.490
#> Item_8  0.482 0.518
#> Item_9  0.348 0.652
#> Item_10 0.500 0.500
#> Item_11 0.652 0.348
#> Item_12 0.330 0.670
#> Item_13 0.558 0.442
#> Item_14 0.348 0.652
#> Item_15 0.486 0.514
#> 
#> 
#> $`G2:D2`
#> $`G2:D2`$overall
#>    N mean_total.score sd_total.score ave.r  sd.r alpha SEM.alpha
#>  500            8.268          3.157 0.131 0.064 0.693      1.75
#> 
#> $`G2:D2`$itemstats
#>           N  mean    sd total.r total.r_if_rm alpha_if_rm
#> Item_1  500 0.576 0.495   0.303         0.151       0.696
#> Item_2  500 0.538 0.499   0.499         0.366       0.669
#> Item_3  500 0.516 0.500   0.533         0.405       0.664
#> Item_4  500 0.392 0.489   0.271         0.120       0.699
#> Item_5  500 0.836 0.371   0.438         0.336       0.675
#> Item_6  500 0.618 0.486   0.529         0.404       0.664
#> Item_7  500 0.518 0.500   0.458         0.319       0.675
#> Item_8  500 0.548 0.498   0.401         0.256       0.683
#> Item_9  500 0.646 0.479   0.373         0.232       0.686
#> Item_10 500 0.476 0.500   0.438         0.297       0.678
#> Item_11 500 0.392 0.489   0.396         0.254       0.683
#> Item_12 500 0.682 0.466   0.431         0.300       0.677
#> Item_13 500 0.434 0.496   0.448         0.309       0.676
#> Item_14 500 0.616 0.487   0.462         0.328       0.674
#> Item_15 500 0.480 0.500   0.543         0.416       0.662
#> 
#> $`G2:D2`$proportions
#>             0     1
#> Item_1  0.424 0.576
#> Item_2  0.462 0.538
#> Item_3  0.484 0.516
#> Item_4  0.608 0.392
#> Item_5  0.164 0.836
#> Item_6  0.382 0.618
#> Item_7  0.482 0.518
#> Item_8  0.452 0.548
#> Item_9  0.354 0.646
#> Item_10 0.524 0.476
#> Item_11 0.608 0.392
#> Item_12 0.318 0.682
#> Item_13 0.566 0.434
#> Item_14 0.384 0.616
#> Item_15 0.520 0.480
#> 
#> 
#> $`G2:D3`
#> $`G2:D3`$overall
#>    N mean_total.score sd_total.score ave.r  sd.r alpha SEM.alpha
#>  500             4.45          2.794  0.12 0.066 0.667     1.612
#> 
#> $`G2:D3`$itemstats
#>           N  mean    sd total.r total.r_if_rm alpha_if_rm
#> Item_1  500 0.348 0.477   0.409         0.252       0.655
#> Item_2  500 0.230 0.421   0.423         0.287       0.650
#> Item_3  500 0.164 0.371   0.488         0.377       0.641
#> Item_4  500 0.306 0.461   0.216         0.052       0.683
#> Item_5  500 0.616 0.487   0.529         0.386       0.635
#> Item_6  500 0.330 0.471   0.509         0.367       0.639
#> Item_7  500 0.254 0.436   0.368         0.223       0.659
#> Item_8  500 0.248 0.432   0.395         0.253       0.655
#> Item_9  500 0.416 0.493   0.419         0.258       0.655
#> Item_10 500 0.258 0.438   0.381         0.236       0.657
#> Item_11 500 0.190 0.393   0.389         0.261       0.654
#> Item_12 500 0.410 0.492   0.447         0.290       0.650
#> Item_13 500 0.208 0.406   0.380         0.246       0.656
#> Item_14 500 0.276 0.447   0.477         0.340       0.643
#> Item_15 500 0.196 0.397   0.496         0.378       0.640
#> 
#> $`G2:D3`$proportions
#>             0     1
#> Item_1  0.652 0.348
#> Item_2  0.770 0.230
#> Item_3  0.836 0.164
#> Item_4  0.694 0.306
#> Item_5  0.384 0.616
#> Item_6  0.670 0.330
#> Item_7  0.746 0.254
#> Item_8  0.752 0.248
#> Item_9  0.584 0.416
#> Item_10 0.742 0.258
#> Item_11 0.810 0.190
#> Item_12 0.590 0.410
#> Item_13 0.792 0.208
#> Item_14 0.724 0.276
#> Item_15 0.804 0.196
#> 
#> 

mod <- multipleGroup(dat, group = group, SE=TRUE,
                     invariance = c(colnames(dat), 'free_mean', 'free_var'))
coef(mod, simplify=TRUE)
#> $`G1:D1`
#> $items
#>            a1      d g u
#> Item_1  0.651 -0.080 0 1
#> Item_2  1.111 -0.388 0 1
#> Item_3  1.355 -0.622 0 1
#> Item_4  0.274 -0.549 0 1
#> Item_5  1.155  1.722 0 1
#> Item_6  1.110  0.137 0 1
#> Item_7  0.797 -0.314 0 1
#> Item_8  0.852 -0.302 0 1
#> Item_9  0.693  0.371 0 1
#> Item_10 0.698 -0.428 0 1
#> Item_11 0.816 -1.000 0 1
#> Item_12 0.761  0.428 0 1
#> Item_13 0.739 -0.715 0 1
#> Item_14 1.143  0.052 0 1
#> Item_15 1.218 -0.635 0 1
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 
#> 
#> $`G1:D2`
#> $items
#>            a1      d g u
#> Item_1  0.651 -0.080 0 1
#> Item_2  1.111 -0.388 0 1
#> Item_3  1.355 -0.622 0 1
#> Item_4  0.274 -0.549 0 1
#> Item_5  1.155  1.722 0 1
#> Item_6  1.110  0.137 0 1
#> Item_7  0.797 -0.314 0 1
#> Item_8  0.852 -0.302 0 1
#> Item_9  0.693  0.371 0 1
#> Item_10 0.698 -0.428 0 1
#> Item_11 0.816 -1.000 0 1
#> Item_12 0.761  0.428 0 1
#> Item_13 0.739 -0.715 0 1
#> Item_14 1.143  0.052 0 1
#> Item_15 1.218 -0.635 0 1
#> 
#> $means
#>     F1 
#> -0.073 
#> 
#> $cov
#>       F1
#> F1 1.014
#> 
#> 
#> $`G1:D3`
#> $items
#>            a1      d g u
#> Item_1  0.651 -0.080 0 1
#> Item_2  1.111 -0.388 0 1
#> Item_3  1.355 -0.622 0 1
#> Item_4  0.274 -0.549 0 1
#> Item_5  1.155  1.722 0 1
#> Item_6  1.110  0.137 0 1
#> Item_7  0.797 -0.314 0 1
#> Item_8  0.852 -0.302 0 1
#> Item_9  0.693  0.371 0 1
#> Item_10 0.698 -0.428 0 1
#> Item_11 0.816 -1.000 0 1
#> Item_12 0.761  0.428 0 1
#> Item_13 0.739 -0.715 0 1
#> Item_14 1.143  0.052 0 1
#> Item_15 1.218 -0.635 0 1
#> 
#> $means
#>    F1 
#> 0.058 
#> 
#> $cov
#>       F1
#> F1 0.906
#> 
#> 
#> $`G2:D1`
#> $items
#>            a1      d g u
#> Item_1  0.651 -0.080 0 1
#> Item_2  1.111 -0.388 0 1
#> Item_3  1.355 -0.622 0 1
#> Item_4  0.274 -0.549 0 1
#> Item_5  1.155  1.722 0 1
#> Item_6  1.110  0.137 0 1
#> Item_7  0.797 -0.314 0 1
#> Item_8  0.852 -0.302 0 1
#> Item_9  0.693  0.371 0 1
#> Item_10 0.698 -0.428 0 1
#> Item_11 0.816 -1.000 0 1
#> Item_12 0.761  0.428 0 1
#> Item_13 0.739 -0.715 0 1
#> Item_14 1.143  0.052 0 1
#> Item_15 1.218 -0.635 0 1
#> 
#> $means
#>    F1 
#> 0.489 
#> 
#> $cov
#>       F1
#> F1 1.073
#> 
#> 
#> $`G2:D2`
#> $items
#>            a1      d g u
#> Item_1  0.651 -0.080 0 1
#> Item_2  1.111 -0.388 0 1
#> Item_3  1.355 -0.622 0 1
#> Item_4  0.274 -0.549 0 1
#> Item_5  1.155  1.722 0 1
#> Item_6  1.110  0.137 0 1
#> Item_7  0.797 -0.314 0 1
#> Item_8  0.852 -0.302 0 1
#> Item_9  0.693  0.371 0 1
#> Item_10 0.698 -0.428 0 1
#> Item_11 0.816 -1.000 0 1
#> Item_12 0.761  0.428 0 1
#> Item_13 0.739 -0.715 0 1
#> Item_14 1.143  0.052 0 1
#> Item_15 1.218 -0.635 0 1
#> 
#> $means
#>    F1 
#> 0.496 
#> 
#> $cov
#>       F1
#> F1 1.051
#> 
#> 
#> $`G2:D3`
#> $items
#>            a1      d g u
#> Item_1  0.651 -0.080 0 1
#> Item_2  1.111 -0.388 0 1
#> Item_3  1.355 -0.622 0 1
#> Item_4  0.274 -0.549 0 1
#> Item_5  1.155  1.722 0 1
#> Item_6  1.110  0.137 0 1
#> Item_7  0.797 -0.314 0 1
#> Item_8  0.852 -0.302 0 1
#> Item_9  0.693  0.371 0 1
#> Item_10 0.698 -0.428 0 1
#> Item_11 0.816 -1.000 0 1
#> Item_12 0.761  0.428 0 1
#> Item_13 0.739 -0.715 0 1
#> Item_14 1.143  0.052 0 1
#> Item_15 1.218 -0.635 0 1
#> 
#> $means
#>    F1 
#> -1.03 
#> 
#> $cov
#>       F1
#> F1 1.047
#> 
#> 
sapply(coef(mod, simplify=TRUE), \(x) unname(x$means)) # mean estimates
#>       G1:D1       G1:D2       G1:D3       G2:D1       G2:D2       G2:D3 
#>  0.00000000 -0.07322592  0.05819135  0.48937111  0.49572481 -1.02999130 
wald(mod) # view parameter names for later testing
#>   a1.1.63.125.187.249.311    d.2.64.126.188.250.312   a1.5.67.129.191.253.315 
#>                     0.651                    -0.080                     1.111 
#>    d.6.68.130.192.254.316   a1.9.71.133.195.257.319   d.10.72.134.196.258.320 
#>                    -0.388                     1.355                    -0.622 
#>  a1.13.75.137.199.261.323   d.14.76.138.200.262.324  a1.17.79.141.203.265.327 
#>                     0.274                    -0.549                     1.155 
#>   d.18.80.142.204.266.328  a1.21.83.145.207.269.331   d.22.84.146.208.270.332 
#>                     1.722                     1.110                     0.137 
#>  a1.25.87.149.211.273.335   d.26.88.150.212.274.336  a1.29.91.153.215.277.339 
#>                     0.797                    -0.314                     0.852 
#>   d.30.92.154.216.278.340  a1.33.95.157.219.281.343   d.34.96.158.220.282.344 
#>                    -0.302                     0.693                     0.371 
#>  a1.37.99.161.223.285.347  d.38.100.162.224.286.348 a1.41.103.165.227.289.351 
#>                     0.698                    -0.428                     0.816 
#>  d.42.104.166.228.290.352 a1.45.107.169.231.293.355  d.46.108.170.232.294.356 
#>                    -1.000                     0.761                     0.428 
#> a1.49.111.173.235.297.359  d.50.112.174.236.298.360 a1.53.115.177.239.301.363 
#>                     0.739                    -0.715                     1.143 
#>  d.54.116.178.240.302.364 a1.57.119.181.243.305.367  d.58.120.182.244.306.368 
#>                     0.052                     1.218                    -0.635 
#>                MEAN_1.123                COV_11.124                MEAN_1.185 
#>                    -0.073                     1.014                     0.058 
#>                COV_11.186                MEAN_1.247                COV_11.248 
#>                     0.906                     0.489                     1.073 
#>                MEAN_1.309                COV_11.310                MEAN_1.371 
#>                     0.496                     1.051                    -1.030 
#>                COV_11.372 
#>                     1.047 

# test for main effect over G group (manually compute marginal mean)
wald(mod, "0 + MEAN_1.123 + MEAN_1.185 = MEAN_1.247 + MEAN_1.309 + MEAN_1.371")
#>            W df         p
#> 1 0.05078909  1 0.8216958

# test for main effect over D group  (manually compute marginal means)
wald(mod, c("0 + MEAN_1.247 = MEAN_1.123 + MEAN_1.309",
            "0 + MEAN_1.247 = MEAN_1.185 + MEAN_1.371"))
#>          W df p
#> 1 146.5313  2 0

# post-hoc tests (better practice would include p.adjust() )
wald(mod, "0 + MEAN_1.247 = MEAN_1.123 + MEAN_1.309") # D1 vs D2
#>           W df         p
#> 1 0.3832815  1 0.5358523
wald(mod, "0 + MEAN_1.247 = MEAN_1.185 + MEAN_1.371") # D1 vs D3
#>          W df p
#> 1 124.3293  1 0
wald(mod, "MEAN_1.123 + MEAN_1.309 = MEAN_1.185 + MEAN_1.371") # D2 vs D3
#>          W df p
#> 1 117.8156  1 0


#############
# multiple factors

a <- matrix(c(abs(rnorm(5,1,.3)), rep(0,15),abs(rnorm(5,1,.3)),
     rep(0,15),abs(rnorm(5,1,.3))), 15, 3)
d <- matrix(rnorm(15,0,.7),ncol=1)
mu <- c(-.4, -.7, .1)
sigma <- matrix(c(1.21,.297,1.232,.297,.81,.252,1.232,.252,1.96),3,3)
itemtype <- rep('2PL', nrow(a))
N <- 1000
dataset1 <- simdata(a, d, N, itemtype)
dataset2 <- simdata(a, d, N, itemtype, mu = mu, sigma = sigma)
dat <- rbind(dataset1, dataset2)
group <- c(rep('D1', N), rep('D2', N))

# group models
model <- '
   F1 = 1-5
   F2 = 6-10
   F3 = 11-15'

# define mirt cluster to use parallel architecture
if(interactive()) mirtCluster()

# EM approach (not as accurate with 3 factors, but generally good for quick model comparisons)
mod_configural <- multipleGroup(dat, model, group = group) #completely separate analyses
mod_metric <- multipleGroup(dat, model, group = group, invariance=c('slopes')) #equal slopes
mod_fullconstrain <- multipleGroup(dat, model, group = group, #equal means, slopes, intercepts
                             invariance=c('slopes', 'intercepts'))

anova(mod_metric, mod_configural)
#>                     AIC    SABIC       HQ      BIC    logLik     X2 df     p
#> mod_metric     36921.29 37030.37 37013.84 37173.33 -18415.65                
#> mod_configural 36916.10 37061.53 37039.49 37252.15 -18398.05 35.197 15 0.002
anova(mod_fullconstrain, mod_metric)
#>                        AIC    SABIC       HQ      BIC    logLik      X2 df p
#> mod_fullconstrain 37020.58 37093.29 37082.27 37188.60 -18480.29             
#> mod_metric        36921.29 37030.37 37013.84 37173.33 -18415.65 129.284 15 0

# same as above, but with MHRM (generally  more accurate with 3+ factors, but slower)
mod_configural <- multipleGroup(dat, model, group = group, method = 'MHRM')
mod_metric <- multipleGroup(dat, model, group = group, invariance=c('slopes'), method = 'MHRM')
mod_fullconstrain <- multipleGroup(dat, model, group = group, method = 'MHRM',
                             invariance=c('slopes', 'intercepts'))

anova(mod_metric, mod_configural)
#>                     AIC    SABIC       HQ      BIC    logLik     X2 df p
#> mod_metric     36927.79 37036.86 37020.33 37179.83 -18418.89            
#> mod_configural 36918.04 37063.47 37041.43 37254.10 -18399.02 39.745 15 0
anova(mod_fullconstrain, mod_metric)
#>                        AIC    SABIC       HQ      BIC    logLik     X2 df p
#> mod_fullconstrain 37023.82 37096.54 37085.52 37191.85 -18481.91            
#> mod_metric        36927.79 37036.86 37020.33 37179.83 -18418.89 126.04 15 0

############
# polytomous item example
set.seed(12345)
a <- matrix(abs(rnorm(15,1,.3)), ncol=1)
d <- matrix(rnorm(15,0,.7),ncol=1)
d <- cbind(d, d-1, d-2)
itemtype <- rep('graded', nrow(a))
N <- 1000
dataset1 <- simdata(a, d, N, itemtype)
dataset2 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5))
dat <- rbind(dataset1, dataset2)
group <- c(rep('D1', N), rep('D2', N))
model <- 'F1 = 1-15'

mod_configural <- multipleGroup(dat, model, group = group)
plot(mod_configural)

plot(mod_configural, type = 'SE')

itemplot(mod_configural, 1)

itemplot(mod_configural, 1, type = 'info')

plot(mod_configural, type = 'trace') # messy, score function typically better

plot(mod_configural, type = 'itemscore')


fs <- fscores(mod_configural, full.scores = FALSE)
#> 
#> Method:  EAP
#> 
#> Empirical Reliability:
#> 
#>     F1 
#> 0.7942 
#> 
#> Method:  EAP
#> 
#> Empirical Reliability:
#> 
#>     F1 
#> 0.7249 
head(fs[["D1"]])
#>      Item_1 Item_2 Item_3 Item_4 Item_5 Item_6 Item_7 Item_8 Item_9 Item_10
#> [1,]      0      0      0      0      0      0      0      0      0       0
#> [2,]      0      0      0      0      0      0      0      0      0       0
#> [3,]      0      0      0      0      0      0      0      0      0       0
#> [4,]      0      0      0      0      0      0      0      0      0       0
#> [5,]      0      0      0      0      0      0      0      0      0       0
#> [6,]      0      0      0      0      0      0      0      0      0       0
#>      Item_11 Item_12 Item_13 Item_14 Item_15        F1     SE_F1
#> [1,]       0       0       0       0       0 -2.137056 0.6262714
#> [2,]       0       0       0       1       0 -1.785692 0.5741235
#> [3,]       0       0       0       2       0 -1.726621 0.5800312
#> [4,]       0       0       0       3       0 -1.688716 0.5856268
#> [5,]       0       0       0       3       1 -1.439230 0.5535499
#> [6,]       0       2       0       0       0 -1.582715 0.5660598
fscores(mod_configural, method = 'EAPsum', full.scores = FALSE)
#>       df     X2  p.X2 SEM.alpha rxx.alpha rxx_F1
#> stats 39 42.374 0.328     3.869     0.784  0.776
#> 
#>       df     X2  p.X2 SEM.alpha rxx.alpha rxx_F1
#> stats 42 29.475 0.928     3.825     0.842  0.832
#> 
#> $D1
#>    Sum.Scores     F1 SE_F1 observed expected std.res
#> 0           0 -2.137 0.626        6    5.731   0.112
#> 1           1 -1.842 0.589        6   10.082   1.286
#> 2           2 -1.645 0.575       19   15.026   1.025
#> 3           3 -1.491 0.568       22   21.117   0.192
#> 4           4 -1.323 0.548       31   26.167   0.945
#> 5           5 -1.173 0.534       21   30.811   1.768
#> 6           6 -1.033 0.523       30   34.974   0.841
#> 7           7 -0.898 0.510       37   38.286   0.208
#> 8           8 -0.770 0.500       47   40.921   0.950
#> 9           9 -0.648 0.490       40   42.896   0.442
#> 10         10 -0.531 0.481       54   44.208   1.473
#> 11         11 -0.417 0.473       52   44.945   1.052
#> 12         12 -0.307 0.466       50   45.161   0.720
#> 13         13 -0.201 0.460       35   44.909   1.479
#> 14         14 -0.097 0.455       41   44.252   0.489
#> 15         15  0.005 0.450       33   43.244   1.558
#> 16         16  0.104 0.446       50   41.936   1.245
#> 17         17  0.202 0.443       38   40.375   0.374
#> 18         18  0.298 0.440       34   38.606   0.741
#> 19         19  0.394 0.437       40   36.668   0.550
#> 20         20  0.488 0.436       30   34.599   0.782
#> 21         21  0.582 0.435       42   32.431   1.680
#> 22         22  0.675 0.434       32   30.195   0.328
#> 23         23  0.768 0.434       28   27.920   0.015
#> 24         24  0.861 0.434       19   25.631   1.310
#> 25         25  0.954 0.435       34   23.350   2.204
#> 26         26  1.048 0.436       21   21.099   0.022
#> 27         27  1.142 0.438       18   18.899   0.207
#> 28         28  1.237 0.441       21   16.765   1.034
#> 29         29  1.334 0.444       10   14.717   1.229
#> 30         30  1.431 0.447       11   12.767   0.495
#> 31         31  1.530 0.451        8   10.931   0.887
#> 32         32  1.631 0.456        8    9.221   0.402
#> 33         33  1.733 0.461        8    7.648   0.127
#> 34         34  1.838 0.466        6    6.221   0.089
#> 35         35  1.946 0.472        1    4.949   1.775
#> 36         36  2.056 0.479        4    3.835   0.084
#> 37         37  2.169 0.486        6    2.881   1.838
#> 38         38  2.287 0.494        3    2.086   0.632
#> 39         39  2.409 0.503        3    1.445   1.293
#> 40         40  2.535 0.512        1    0.946   0.055
#> 41         41  2.668 0.522        0    0.580   0.761
#> 42         42  2.809 0.534        0    0.324   0.569
#> 43         43  2.955 0.544        0    0.158   0.397
#> 44         44  3.126 0.559        0    0.066   0.256
#> 45         45  3.345 0.584        0    0.019   0.137
#> 
#> $D2
#>    Sum.Scores     F1 SE_F1 observed expected std.res
#> 0           0 -2.051 0.591        9   11.036   0.613
#> 1           1 -1.750 0.548       23   16.140   1.708
#> 2           2 -1.554 0.530       22   20.995   0.219
#> 3           3 -1.412 0.524       31   27.050   0.759
#> 4           4 -1.240 0.493       35   30.434   0.828
#> 5           5 -1.095 0.475       33   33.197   0.034
#> 6           6 -0.964 0.460       34   35.476   0.248
#> 7           7 -0.836 0.444       32   36.880   0.804
#> 8           8 -0.718 0.431       32   37.812   0.945
#> 9           9 -0.607 0.419       31   38.353   1.187
#> 10         10 -0.501 0.409       28   38.516   1.695
#> 11         11 -0.400 0.400       46   38.404   1.226
#> 12         12 -0.303 0.393       41   38.063   0.476
#> 13         13 -0.210 0.386       36   37.526   0.249
#> 14         14 -0.119 0.381       33   36.830   0.631
#> 15         15 -0.031 0.376       37   36.003   0.166
#> 16         16  0.055 0.372       33   35.064   0.349
#> 17         17  0.140 0.369       33   34.032   0.177
#> 18         18  0.223 0.366       42   32.921   1.582
#> 19         19  0.305 0.364       28   31.744   0.665
#> 20         20  0.386 0.363       29   30.511   0.274
#> 21         21  0.466 0.362       30   29.230   0.142
#> 22         22  0.546 0.362       24   27.908   0.740
#> 23         23  0.626 0.362       28   26.553   0.281
#> 24         24  0.706 0.363       29   25.169   0.764
#> 25         25  0.787 0.364       27   23.761   0.664
#> 26         26  0.868 0.366       29   22.334   1.411
#> 27         27  0.950 0.369       19   20.892   0.414
#> 28         28  1.033 0.372       17   19.437   0.553
#> 29         29  1.117 0.376       13   17.975   1.174
#> 30         30  1.203 0.380       19   16.510   0.613
#> 31         31  1.291 0.385       17   15.044   0.504
#> 32         32  1.381 0.391       17   13.583   0.927
#> 33         33  1.473 0.398       16   12.135   1.109
#> 34         34  1.568 0.405       11   10.703   0.091
#> 35         35  1.667 0.414        8    9.299   0.426
#> 36         36  1.769 0.423       11    7.936   1.088
#> 37         37  1.874 0.433        3    6.617   1.406
#> 38         38  1.984 0.444        6    5.370   0.272
#> 39         39  2.101 0.457        4    4.219   0.107
#> 40         40  2.219 0.469        2    3.152   0.649
#> 41         41  2.344 0.482        2    2.236   0.158
#> 42         42  2.484 0.501        0    1.485   1.219
#> 43         43  2.612 0.511        0    0.842   0.918
#> 44         44  2.766 0.525        0    0.438   0.662
#> 45         45  2.988 0.555        0    0.185   0.431
#> 

# constrain slopes within each group to be equal (but not across groups)
model2 <- 'F1 = 1-15
           CONSTRAIN = (1-15, a1)'
mod_configural2 <- multipleGroup(dat, model2, group = group)
plot(mod_configural2, type = 'SE')

plot(mod_configural2, type = 'RE')

itemplot(mod_configural2, 10)


############
## empirical histogram example (normal and bimodal groups)
set.seed(1234)
a <- matrix(rlnorm(50, .2, .2))
d <- matrix(rnorm(50))
ThetaNormal <- matrix(rnorm(2000))
ThetaBimodal <- scale(matrix(c(rnorm(1000, -2), rnorm(1000,2)))) #bimodal
Theta <- rbind(ThetaNormal, ThetaBimodal)
dat <- simdata(a, d, 4000, itemtype = '2PL', Theta=Theta)
group <- rep(c('G1', 'G2'), each=2000)

EH <- multipleGroup(dat, 1, group=group, dentype="empiricalhist", invariance = colnames(dat))
coef(EH, simplify=TRUE)
#> $G1
#> $items
#>            a1      d g u
#> Item_1  0.759 -1.830 0 1
#> Item_2  1.062 -0.555 0 1
#> Item_3  1.235 -1.117 0 1
#> Item_4  0.611 -0.953 0 1
#> Item_5  1.088 -0.132 0 1
#> Item_6  1.054  0.502 0 1
#> Item_7  0.849  1.581 0 1
#> Item_8  0.870 -0.779 0 1
#> Item_9  0.902  1.658 0 1
#> Item_10 0.812 -1.188 0 1
#> Item_11 0.903  0.661 0 1
#> Item_12 0.841  2.646 0 1
#> Item_13 0.843 -0.064 0 1
#> Item_14 1.009 -0.600 0 1
#> Item_15 1.167  0.013 0 1
#> Item_16 1.008  1.886 0 1
#> Item_17 0.885 -1.124 0 1
#> Item_18 0.790  1.420 0 1
#> Item_19 0.799  1.316 0 1
#> Item_20 1.565  0.294 0 1
#> Item_21 1.002  0.001 0 1
#> Item_22 0.929 -0.497 0 1
#> Item_23 0.903 -0.383 0 1
#> Item_24 1.120  0.702 0 1
#> Item_25 0.850  2.002 0 1
#> Item_26 0.706 -0.208 0 1
#> Item_27 1.048 -1.279 0 1
#> Item_28 0.826 -0.770 0 1
#> Item_29 1.062  0.221 0 1
#> Item_30 0.737 -0.333 0 1
#> Item_31 1.208 -0.178 0 1
#> Item_32 0.917 -0.202 0 1
#> Item_33 0.859 -1.360 0 1
#> Item_34 0.913 -0.252 0 1
#> Item_35 0.767  0.886 0 1
#> Item_36 0.783  0.763 0 1
#> Item_37 0.630  0.550 0 1
#> Item_38 0.736 -0.405 0 1
#> Item_39 0.917 -0.166 0 1
#> Item_40 0.895 -1.251 0 1
#> Item_41 1.251 -0.040 0 1
#> Item_42 0.882  0.202 0 1
#> Item_43 0.796  1.639 0 1
#> Item_44 1.022  1.038 0 1
#> Item_45 0.812 -0.470 0 1
#> Item_46 0.807  0.336 0 1
#> Item_47 0.815 -1.121 0 1
#> Item_48 0.739  0.892 0 1
#> Item_49 0.904  1.036 0 1
#> Item_50 0.895  2.124 0 1
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 
#> 
#> $G2
#> $items
#>            a1      d g u
#> Item_1  0.759 -1.830 0 1
#> Item_2  1.062 -0.555 0 1
#> Item_3  1.235 -1.117 0 1
#> Item_4  0.611 -0.953 0 1
#> Item_5  1.088 -0.132 0 1
#> Item_6  1.054  0.502 0 1
#> Item_7  0.849  1.581 0 1
#> Item_8  0.870 -0.779 0 1
#> Item_9  0.902  1.658 0 1
#> Item_10 0.812 -1.188 0 1
#> Item_11 0.903  0.661 0 1
#> Item_12 0.841  2.646 0 1
#> Item_13 0.843 -0.064 0 1
#> Item_14 1.009 -0.600 0 1
#> Item_15 1.167  0.013 0 1
#> Item_16 1.008  1.886 0 1
#> Item_17 0.885 -1.124 0 1
#> Item_18 0.790  1.420 0 1
#> Item_19 0.799  1.316 0 1
#> Item_20 1.565  0.294 0 1
#> Item_21 1.002  0.001 0 1
#> Item_22 0.929 -0.497 0 1
#> Item_23 0.903 -0.383 0 1
#> Item_24 1.120  0.702 0 1
#> Item_25 0.850  2.002 0 1
#> Item_26 0.706 -0.208 0 1
#> Item_27 1.048 -1.279 0 1
#> Item_28 0.826 -0.770 0 1
#> Item_29 1.062  0.221 0 1
#> Item_30 0.737 -0.333 0 1
#> Item_31 1.208 -0.178 0 1
#> Item_32 0.917 -0.202 0 1
#> Item_33 0.859 -1.360 0 1
#> Item_34 0.913 -0.252 0 1
#> Item_35 0.767  0.886 0 1
#> Item_36 0.783  0.763 0 1
#> Item_37 0.630  0.550 0 1
#> Item_38 0.736 -0.405 0 1
#> Item_39 0.917 -0.166 0 1
#> Item_40 0.895 -1.251 0 1
#> Item_41 1.251 -0.040 0 1
#> Item_42 0.882  0.202 0 1
#> Item_43 0.796  1.639 0 1
#> Item_44 1.022  1.038 0 1
#> Item_45 0.812 -0.470 0 1
#> Item_46 0.807  0.336 0 1
#> Item_47 0.815 -1.121 0 1
#> Item_48 0.739  0.892 0 1
#> Item_49 0.904  1.036 0 1
#> Item_50 0.895  2.124 0 1
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 
#> 
plot(EH, type = 'empiricalhist', npts = 60)


# DIF test for item 1
EH1 <- multipleGroup(dat, 1, group=group, dentype="empiricalhist", invariance = colnames(dat)[-1])
anova(EH, EH1)
#>          AIC    SABIC       HQ      BIC    logLik    X2 df     p
#> EH  216599.8 217659.4 217358.4 218739.8 -107959.9               
#> EH1 216602.9 217668.7 217365.9 218755.4 -107959.4 0.916  2 0.632

#--------------------------------
# Mixture model (no prior group variable specified)

set.seed(12345)
nitems <- 20
a1 <- matrix(.75, ncol=1, nrow=nitems)
a2 <- matrix(1.25, ncol=1, nrow=nitems)
d1 <- matrix(rnorm(nitems,0,1),ncol=1)
d2 <- matrix(rnorm(nitems,0,1),ncol=1)
itemtype <- rep('2PL', nrow(a1))
N1 <- 500
N2 <- N1*2 # second class twice as large

dataset1 <- simdata(a1, d1, N1, itemtype)
dataset2 <- simdata(a2, d2, N2, itemtype)
dat <- rbind(dataset1, dataset2)
# group <- c(rep('D1', N1), rep('D2', N2))

# Mixture Rasch model (Rost, 1990)
models <- 'F1 = 1-20
           CONSTRAIN = (1-20, a1)'
mod_mix <- multipleGroup(dat, models, dentype = 'mixture-2', GenRandomPars = TRUE)
coef(mod_mix, simplify=TRUE)
#> $MIXTURE_1
#> $items
#>            a1      d g u
#> Item_1  1.302  0.772 0 1
#> Item_2  1.302  1.476 0 1
#> Item_3  1.302 -0.553 0 1
#> Item_4  1.302 -1.588 0 1
#> Item_5  1.302 -1.545 0 1
#> Item_6  1.302  2.084 0 1
#> Item_7  1.302 -0.510 0 1
#> Item_8  1.302  0.606 0 1
#> Item_9  1.302  0.550 0 1
#> Item_10 1.302 -0.167 0 1
#> Item_11 1.302  0.961 0 1
#> Item_12 1.302  2.156 0 1
#> Item_13 1.302  2.082 0 1
#> Item_14 1.302  1.733 0 1
#> Item_15 1.302  0.138 0 1
#> Item_16 1.302  0.434 0 1
#> Item_17 1.302 -0.368 0 1
#> Item_18 1.302 -1.633 0 1
#> Item_19 1.302  1.799 0 1
#> Item_20 1.302 -0.024 0 1
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 
#> $class_proportion
#>     pi
#>  0.655
#> 
#> 
#> $MIXTURE_2
#> $items
#>            a1      d g u
#> Item_1  0.681  0.664 0 1
#> Item_2  0.681  0.805 0 1
#> Item_3  0.681 -0.039 0 1
#> Item_4  0.681 -0.416 0 1
#> Item_5  0.681  0.530 0 1
#> Item_6  0.681 -2.045 0 1
#> Item_7  0.681  0.770 0 1
#> Item_8  0.681 -0.314 0 1
#> Item_9  0.681 -0.030 0 1
#> Item_10 0.681 -0.820 0 1
#> Item_11 0.681 -0.252 0 1
#> Item_12 0.681  1.939 0 1
#> Item_13 0.681  0.642 0 1
#> Item_14 0.681  0.593 0 1
#> Item_15 0.681 -0.749 0 1
#> Item_16 0.681  0.852 0 1
#> Item_17 0.681 -0.950 0 1
#> Item_18 0.681 -0.345 0 1
#> Item_19 0.681  1.230 0 1
#> Item_20 0.681  0.271 0 1
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 
#> $class_proportion
#>     pi
#>  0.345
#> 
#> 
summary(mod_mix)
#> 
#> ----------
#> GROUP: MIXTURE_1 
#>            F1    h2
#> Item_1  0.608 0.369
#> Item_2  0.608 0.369
#> Item_3  0.608 0.369
#> Item_4  0.608 0.369
#> Item_5  0.608 0.369
#> Item_6  0.608 0.369
#> Item_7  0.608 0.369
#> Item_8  0.608 0.369
#> Item_9  0.608 0.369
#> Item_10 0.608 0.369
#> Item_11 0.608 0.369
#> Item_12 0.608 0.369
#> Item_13 0.608 0.369
#> Item_14 0.608 0.369
#> Item_15 0.608 0.369
#> Item_16 0.608 0.369
#> Item_17 0.608 0.369
#> Item_18 0.608 0.369
#> Item_19 0.608 0.369
#> Item_20 0.608 0.369
#> 
#> SS loadings:  7.386 
#> Proportion Var:  0.369 
#> 
#> Factor correlations: 
#> 
#>    F1
#> F1  1
#> 
#> Class proportion:  0.655 
#> 
#> ----------
#> GROUP: MIXTURE_2 
#>            F1    h2
#> Item_1  0.371 0.138
#> Item_2  0.371 0.138
#> Item_3  0.371 0.138
#> Item_4  0.371 0.138
#> Item_5  0.371 0.138
#> Item_6  0.371 0.138
#> Item_7  0.371 0.138
#> Item_8  0.371 0.138
#> Item_9  0.371 0.138
#> Item_10 0.371 0.138
#> Item_11 0.371 0.138
#> Item_12 0.371 0.138
#> Item_13 0.371 0.138
#> Item_14 0.371 0.138
#> Item_15 0.371 0.138
#> Item_16 0.371 0.138
#> Item_17 0.371 0.138
#> Item_18 0.371 0.138
#> Item_19 0.371 0.138
#> Item_20 0.371 0.138
#> 
#> SS loadings:  2.758 
#> Proportion Var:  0.138 
#> 
#> Factor correlations: 
#> 
#>    F1
#> F1  1
#> 
#> Class proportion:  0.345 
plot(mod_mix)

plot(mod_mix, type = 'trace')

itemplot(mod_mix, 1, type = 'info')


head(fscores(mod_mix)) # theta estimates
#>         Class_1
#> [1,] -0.3609178
#> [2,] -1.6950807
#> [3,] -0.8217168
#> [4,]  0.8090483
#> [5,]  0.7936363
#> [6,]  0.2286020
head(fscores(mod_mix, method = 'classify')) # classification probability
#>         CLASS_1   CLASS_2
#> [1,] 0.04826707 0.9517329
#> [2,] 0.74223456 0.2577654
#> [3,] 0.02496631 0.9750337
#> [4,] 0.02929597 0.9707040
#> [5,] 0.07220958 0.9277904
#> [6,] 0.42428417 0.5757158
itemfit(mod_mix)
#>       item   S_X2 df.S_X2 RMSEA.S_X2 p.S_X2
#> 1   Item_1 30.498      12      0.032  0.002
#> 2   Item_2 36.271      12      0.037  0.000
#> 3   Item_3 15.756      12      0.014  0.203
#> 4   Item_4  9.334      11      0.000  0.591
#> 5   Item_5 21.638      12      0.023  0.042
#> 6   Item_6 26.071      13      0.026  0.017
#> 7   Item_7  8.624      12      0.000  0.735
#> 8   Item_8 16.652      12      0.016  0.163
#> 9   Item_9 22.772      12      0.024  0.030
#> 10 Item_10 14.622      12      0.012  0.263
#> 11 Item_11  7.357      12      0.000  0.833
#> 12 Item_12 14.964      12      0.013  0.243
#> 13 Item_13 10.222      12      0.000  0.597
#> 14 Item_14 17.414      13      0.015  0.181
#> 15 Item_15  9.436      12      0.000  0.665
#> 16 Item_16 11.408      12      0.000  0.494
#> 17 Item_17 16.483      12      0.016  0.170
#> 18 Item_18 11.717      11      0.007  0.385
#> 19 Item_19 11.425      12      0.000  0.493
#> 20 Item_20 15.291      12      0.014  0.226

# Mixture 2PL model
mod_mix2 <- multipleGroup(dat, 1, dentype = 'mixture-2', GenRandomPars = TRUE)
anova(mod_mix, mod_mix2)
#>               AIC    SABIC       HQ      BIC    logLik     X2 df    p
#> mod_mix  34628.19 34720.06 34713.30 34856.65 -17271.09               
#> mod_mix2 34655.23 34828.29 34815.56 35085.60 -17246.62 48.957 38 0.11
coef(mod_mix2, simplify=TRUE)
#> $MIXTURE_1
#> $items
#>            a1      d g u
#> Item_1  0.517  0.672 0 1
#> Item_2  0.516  0.826 0 1
#> Item_3  0.533 -0.012 0 1
#> Item_4  0.387 -0.363 0 1
#> Item_5  0.452  0.551 0 1
#> Item_6  0.727 -1.905 0 1
#> Item_7  1.032  0.879 0 1
#> Item_8  0.744 -0.275 0 1
#> Item_9  0.900  0.037 0 1
#> Item_10 0.709 -0.777 0 1
#> Item_11 0.538 -0.190 0 1
#> Item_12 0.915  2.079 0 1
#> Item_13 0.729  0.690 0 1
#> Item_14 1.183  0.722 0 1
#> Item_15 0.812 -0.717 0 1
#> Item_16 0.582  0.843 0 1
#> Item_17 0.791 -0.953 0 1
#> Item_18 0.657 -0.290 0 1
#> Item_19 0.498  1.222 0 1
#> Item_20 0.468  0.304 0 1
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 
#> $class_proportion
#>     pi
#>  0.349
#> 
#> 
#> $MIXTURE_2
#> $items
#>            a1      d g u
#> Item_1  1.118  0.710 0 1
#> Item_2  1.216  1.405 0 1
#> Item_3  1.244 -0.565 0 1
#> Item_4  1.684 -1.826 0 1
#> Item_5  1.669 -1.800 0 1
#> Item_6  1.473  2.151 0 1
#> Item_7  1.143 -0.510 0 1
#> Item_8  1.244  0.574 0 1
#> Item_9  1.272  0.507 0 1
#> Item_10 1.188 -0.183 0 1
#> Item_11 1.465  0.980 0 1
#> Item_12 1.403  2.208 0 1
#> Item_13 1.388  2.110 0 1
#> Item_14 1.062  1.599 0 1
#> Item_15 1.311  0.112 0 1
#> Item_16 1.191  0.410 0 1
#> Item_17 1.381 -0.387 0 1
#> Item_18 1.500 -1.798 0 1
#> Item_19 1.624  1.955 0 1
#> Item_20 1.353 -0.060 0 1
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 
#> $class_proportion
#>     pi
#>  0.651
#> 
#> 
itemfit(mod_mix2)
#>       item   S_X2 df.S_X2 RMSEA.S_X2 p.S_X2
#> 1   Item_1 21.271      12      0.023  0.047
#> 2   Item_2 44.619      13      0.040  0.000
#> 3   Item_3 14.259      12      0.011  0.284
#> 4   Item_4  6.550      11      0.000  0.834
#> 5   Item_5 20.639      12      0.022  0.056
#> 6   Item_6 27.956      13      0.028  0.009
#> 7   Item_7  8.628      12      0.000  0.734
#> 8   Item_8 16.261      12      0.015  0.180
#> 9   Item_9 21.304      12      0.023  0.046
#> 10 Item_10 11.460      12      0.000  0.490
#> 11 Item_11  7.091      12      0.000  0.852
#> 12 Item_12 13.838      12      0.010  0.311
#> 13 Item_13 10.444      12      0.000  0.577
#> 14 Item_14 15.704      13      0.012  0.265
#> 15 Item_15  9.439      12      0.000  0.665
#> 16 Item_16 10.128      12      0.000  0.605
#> 17 Item_17 17.474      12      0.017  0.133
#> 18 Item_18 11.833      11      0.007  0.376
#> 19 Item_19  8.071      11      0.000  0.707
#> 20 Item_20 14.542      12      0.012  0.267

# Compare to single group
mod <- mirt(dat)
anova(mod, mod_mix2)
#>               AIC    SABIC       HQ      BIC    logLik      X2 df p
#> mod      35276.70 35362.16 35355.88 35489.23 -17598.35             
#> mod_mix2 34655.23 34828.29 34815.56 35085.60 -17246.62 703.474 41 0

########################################
# Zero-inflated 2PL IRT model (Wall, Park, and Moustaki, 2015)

n <- 1000
nitems <- 20

a <- rep(2, nitems)
d <- rep(c(-2,-1,0,1,2), each=nitems/5)
zi_p <- 0.2 # Proportion of people in zero class

theta <- rnorm(n, 0, 1)
zeros <- matrix(0, n*zi_p, nitems)
nonzeros <- simdata(a, d, n*(1-zi_p), itemtype = '2PL',
                   Theta = as.matrix(theta[1:(n*(1-zi_p))]))
data <- rbind(nonzeros, zeros)

# define class with extreme theta but fixed item parameters
zi2PL <- "F = 1-20
          START [MIXTURE_1] = (GROUP, MEAN_1, -100), (GROUP, COV_11, .00001),
                              (1-20, a1, 1.0), (1-20, d, 0)
          FIXED [MIXTURE_1] = (GROUP, MEAN_1), (GROUP, COV_11),
                              (1-20, a1), (1-20, d)"

# define custom Theta integration grid that contains extreme theta + normal grid
technical <- list(customTheta = matrix(c(-100, seq(-6,6,length.out=61))))

# fit ZIM-IRT
zi2PL.fit <- multipleGroup(data, zi2PL, dentype = 'mixture-2', technical=technical)
coef(zi2PL.fit, simplify=TRUE)
#> $MIXTURE_1
#> $items
#>         a1 d g u
#> Item_1   1 0 0 1
#> Item_2   1 0 0 1
#> Item_3   1 0 0 1
#> Item_4   1 0 0 1
#> Item_5   1 0 0 1
#> Item_6   1 0 0 1
#> Item_7   1 0 0 1
#> Item_8   1 0 0 1
#> Item_9   1 0 0 1
#> Item_10  1 0 0 1
#> Item_11  1 0 0 1
#> Item_12  1 0 0 1
#> Item_13  1 0 0 1
#> Item_14  1 0 0 1
#> Item_15  1 0 0 1
#> Item_16  1 0 0 1
#> Item_17  1 0 0 1
#> Item_18  1 0 0 1
#> Item_19  1 0 0 1
#> Item_20  1 0 0 1
#> 
#> $means
#>    F 
#> -100 
#> 
#> $cov
#>   F
#> F 0
#> 
#> $class_proportion
#>     pi
#>  0.209
#> 
#> 
#> $MIXTURE_2
#> $items
#>            a1      d g u
#> Item_1  1.867 -2.089 0 1
#> Item_2  1.998 -1.979 0 1
#> Item_3  1.954 -1.932 0 1
#> Item_4  1.595 -1.841 0 1
#> Item_5  1.922 -0.986 0 1
#> Item_6  1.924 -0.926 0 1
#> Item_7  2.045 -1.209 0 1
#> Item_8  2.069 -1.005 0 1
#> Item_9  1.782  0.101 0 1
#> Item_10 1.942  0.195 0 1
#> Item_11 2.080  0.039 0 1
#> Item_12 1.956  0.039 0 1
#> Item_13 1.540  0.835 0 1
#> Item_14 2.047  1.092 0 1
#> Item_15 1.956  0.973 0 1
#> Item_16 1.807  1.026 0 1
#> Item_17 2.084  2.069 0 1
#> Item_18 1.917  2.153 0 1
#> Item_19 1.464  1.735 0 1
#> Item_20 1.739  1.920 0 1
#> 
#> $means
#> F 
#> 0 
#> 
#> $cov
#>   F
#> F 1
#> 
#> $class_proportion
#>     pi
#>  0.791
#> 
#> 

# classification estimates
pi_hat <- fscores(zi2PL.fit, method = 'classify')
head(pi_hat)
#>            CLASS_1 CLASS_2
#> [1,] 8.544142e-180       1
#> [2,]  2.267724e-14       1
#> [3,] 2.122840e-178       1
#> [4,] 4.509158e-210       1
#> [5,]  1.130538e-13       1
#> [6,] 9.974115e-149       1
tail(pi_hat)
#>           CLASS_1    CLASS_2
#>  [995,] 0.9243758 0.07562418
#>  [996,] 0.9243758 0.07562418
#>  [997,] 0.9243758 0.07562418
#>  [998,] 0.9243758 0.07562418
#>  [999,] 0.9243758 0.07562418
#> [1000,] 0.9243758 0.07562418

# EAP estimates (not useful for zip class)
fs <- fscores(zi2PL.fit)
head(fs)
#>           Class_1
#> [1,]  0.262140462
#> [2,] -1.762463343
#> [3,]  0.285984614
#> [4,]  0.562650718
#> [5,] -1.669323391
#> [6,]  0.005541674
tail(fs)
#>           Class_1
#>  [995,] -92.59647
#>  [996,] -92.59647
#>  [997,] -92.59647
#>  [998,] -92.59647
#>  [999,] -92.59647
#> [1000,] -92.59647

########################################
# Zero-inflated graded response model (Magnus and Garnier-Villarreal, 2022)

n <- 1000
nitems <- 20

a <- matrix(rlnorm(20,.2,.3))

# for the graded model, ensure that there is enough space between the intercepts,
# otherwise closer categories will not be selected often (minimum distance of 0.3 here)
diffs <- t(apply(matrix(runif(20*4, .3, 1), 20), 1, cumsum))
diffs <- -(diffs - rowMeans(diffs))
d <- diffs + rnorm(20)

zi_p <- 0.2 # Proportion of people in zero/lowest category class

theta <- rnorm(n, 0, 1)
zeros <- matrix(0, n*zi_p, nitems)
nonzeros <- simdata(a, d, n*(1-zi_p), itemtype = 'graded',
                    Theta = as.matrix(theta[1:(n*(1-zi_p))]))
data <- rbind(nonzeros, zeros)

# intercepts will be labelled as d1 through d4
apply(data, 2, table)
#>   Item_1 Item_2 Item_3 Item_4 Item_5 Item_6 Item_7 Item_8 Item_9 Item_10
#> 0    474    276    431    384    763    354    420    379    342     610
#> 1    128     61    107     26     69     99    140    137    116     114
#> 2     62    105    112     54     45     58    120    136    165      98
#> 3     89    135    159     87     37    135    118     70     68      34
#> 4    247    423    191    449     86    354    202    278    309     144
#>   Item_11 Item_12 Item_13 Item_14 Item_15 Item_16 Item_17 Item_18 Item_19
#> 0     393     756     668     605     463     321     683     664     406
#> 1     115     114      75     104      74      55      65      46      99
#> 2      54      62      55     113     119     123      58      46      66
#> 3     134      33      66      81      89     130      42      57      67
#> 4     304      35     136      97     255     371     152     187     362
#>   Item_20
#> 0     588
#> 1     103
#> 2      85
#> 3      50
#> 4     174

# ignoring zero inflation (bad idea)
modGRM <- mirt(data)
#> Warning: EM cycles terminated after 500 iterations.
coef(modGRM, simplify=TRUE)
#> $items
#>            a1     d1     d2     d3     d4
#> Item_1  2.540 -0.222 -1.106 -1.527 -2.166
#> Item_2  2.284  1.418  0.791 -0.010 -0.848
#> Item_3  1.771  0.167 -0.479 -1.108 -2.132
#> Item_4  3.367  0.392  0.141 -0.330 -1.021
#> Item_5  3.450 -2.805 -3.524 -4.104 -4.690
#> Item_6  2.003  0.715  0.013 -0.347 -1.145
#> Item_7  2.375  0.182 -0.781 -1.545 -2.404
#> Item_8  2.286  0.516 -0.465 -1.336 -1.795
#> Item_9  2.768  0.837 -0.152 -1.318 -1.801
#> Item_10 2.910 -1.290 -2.154 -3.033 -3.397
#> Item_11 2.681  0.382 -0.484 -0.857 -1.792
#> Item_12 1.734 -1.721 -2.648 -3.462 -4.224
#> Item_13 2.042 -1.306 -1.802 -2.209 -2.804
#> Item_14 1.914 -0.871 -1.516 -2.346 -3.184
#> Item_15 4.247 -0.504 -1.187 -2.250 -3.114
#> Item_16 2.628  1.020  0.501 -0.428 -1.305
#> Item_17 2.522 -1.628 -2.114 -2.605 -3.007
#> Item_18 2.547 -1.507 -1.835 -2.189 -2.675
#> Item_19 1.906  0.340 -0.291 -0.677 -1.065
#> Item_20 2.287 -0.906 -1.572 -2.181 -2.606
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 

# Define class with extreme theta but fixed item parameters
#   For GRM in zero-inflated class the intercept values are arbitrary
#   as the model forces the responses all into the first category (hence,
#   spacing arbitrarily set to 1)
ziGRM <- "F = 1-20
          START [MIXTURE_1] = (GROUP, MEAN_1, -100), (GROUP, COV_11, .00001),
                              (1-20, a1, 1.0),
                              (1-20, d1, 2), (1-20, d2, 1), (1-20, d3, 0), (1-20, d4, -1)
          FIXED [MIXTURE_1] = (GROUP, MEAN_1), (GROUP, COV_11),
                              (1-20, a1),
                              (1-20, d1), (1-20, d2), (1-20, d3), (1-20, d4)"

# define custom Theta integration grid that contains extreme theta + normal grid
technical <- list(customTheta = matrix(c(-100, seq(-6,6,length.out=61))))

# fit zero-inflated GRM
ziGRM.fit <- multipleGroup(data, ziGRM, dentype = 'mixture-2', technical=technical)
coef(ziGRM.fit, simplify=TRUE)
#> $MIXTURE_1
#> $items
#>         a1 d1 d2 d3 d4
#> Item_1   1  2  1  0 -1
#> Item_2   1  2  1  0 -1
#> Item_3   1  2  1  0 -1
#> Item_4   1  2  1  0 -1
#> Item_5   1  2  1  0 -1
#> Item_6   1  2  1  0 -1
#> Item_7   1  2  1  0 -1
#> Item_8   1  2  1  0 -1
#> Item_9   1  2  1  0 -1
#> Item_10  1  2  1  0 -1
#> Item_11  1  2  1  0 -1
#> Item_12  1  2  1  0 -1
#> Item_13  1  2  1  0 -1
#> Item_14  1  2  1  0 -1
#> Item_15  1  2  1  0 -1
#> Item_16  1  2  1  0 -1
#> Item_17  1  2  1  0 -1
#> Item_18  1  2  1  0 -1
#> Item_19  1  2  1  0 -1
#> Item_20  1  2  1  0 -1
#> 
#> $means
#>    F 
#> -100 
#> 
#> $cov
#>   F
#> F 0
#> 
#> $class_proportion
#>   pi
#>  0.2
#> 
#> 
#> $MIXTURE_2
#> $items
#>            a1     d1     d2     d3     d4
#> Item_1  1.287  0.857 -0.022 -0.438 -1.068
#> Item_2  0.764  2.477  1.751  0.932  0.124
#> Item_3  0.695  0.975  0.325 -0.293 -1.284
#> Item_4  1.711  1.782  1.532  1.064  0.381
#> Item_5  1.928 -1.382 -2.106 -2.689 -3.276
#> Item_6  0.751  1.601  0.875  0.518 -0.255
#> Item_7  1.137  1.198  0.242 -0.506 -1.343
#> Item_8  1.030  1.498  0.515 -0.332 -0.778
#> Item_9  1.307  1.994  0.998 -0.138 -0.604
#> Item_10 1.583 -0.062 -0.930 -1.809 -2.171
#> Item_11 1.308  1.508  0.644  0.276 -0.636
#> Item_12 0.886 -0.954 -1.873 -2.677 -3.431
#> Item_13 1.048 -0.420 -0.912 -1.315 -1.903
#> Item_14 0.946 -0.030 -0.668 -1.485 -2.310
#> Item_15 2.338  1.299  0.604 -0.475 -1.353
#> Item_16 1.154  2.119  1.582  0.664 -0.180
#> Item_17 1.363 -0.559 -1.046 -1.536 -1.937
#> Item_18 1.359 -0.428 -0.755 -1.108 -1.591
#> Item_19 0.725  1.173  0.539  0.161 -0.216
#> Item_20 1.179  0.077 -0.586 -1.190 -1.609
#> 
#> $means
#> F 
#> 0 
#> 
#> $cov
#>   F
#> F 1
#> 
#> $class_proportion
#>   pi
#>  0.8
#> 
#> 

# classification estimates
pi_hat <- fscores(ziGRM.fit, method = 'classify')
head(pi_hat)
#>            CLASS_1 CLASS_2
#> [1,] 7.494632e-176       1
#> [2,] 9.061521e-303       1
#> [3,] 8.797228e-303       1
#> [4,] 8.991330e-293       1
#> [5,] 2.992170e-231       1
#> [6,]  1.967058e-82       1
tail(pi_hat)
#>           CLASS_1     CLASS_2
#>  [995,] 0.9982456 0.001754397
#>  [996,] 0.9982456 0.001754397
#>  [997,] 0.9982456 0.001754397
#>  [998,] 0.9982456 0.001754397
#>  [999,] 0.9982456 0.001754397
#> [1000,] 0.9982456 0.001754397

# EAP estimates (not useful for zip class)
fs <- fscores(ziGRM.fit)
head(fs)
#>         Class_1
#> [1,] -0.5412083
#> [2,]  0.8572725
#> [3,]  1.5055425
#> [4,]  1.1937281
#> [5,]  0.2213622
#> [6,] -1.4092124
tail(fs)
#>           Class_1
#>  [995,] -99.82944
#>  [996,] -99.82944
#>  [997,] -99.82944
#>  [998,] -99.82944
#>  [999,] -99.82944
#> [1000,] -99.82944

# }