A generic function to extract the internal objects from estimated models.
Details
Objects which can be extracted from mirt objects include:
- logLik
observed log-likelihood
- logPrior
log term contributed by prior parameter distributions
- G2
goodness of fit statistic
- df
degrees of freedom
- p
p-value for G2 statistic
- RMSEA
root mean-square error of approximation based on G2
- CFI
CFI fit statistic
- TLI
TLI fit statistic
- AIC
AIC
- BIC
BIC
- SABIC
sample size adjusted BIC
- HQ
HQ
- F
unrotated standardized loadings matrix
- h2
factor communality estimates
- LLhistory
EM log-likelihood history
- tabdata
a tabular version of the raw response data input. Frequencies are stored in
freq
- freq
frequencies associated with
tabdata
- K
an integer vector indicating the number of unique elements for each item
- mins
an integer vector indicating the lowest category found in the input
data
- model
input model syntax
- method
estimation method used
- itemtype
a vector of item types for each respective item (e.g., 'graded', '2PL', etc)
- itemnames
a vector of item names from the input data
- factorNames
a vector of factor names from the model definition
- rowID
an integer vector indicating all valid row numbers used in the model estimation (when all cases are used this will be
1:nrow(data)
)- data
raw input data of item responses
- covdata
raw input data of data used as covariates
- tabdatalong
similar to
tabdata
, however the responses have been transformed into dummy coded variables- fulldatalong
analogous to
tabdatafull
, but for the raw input data instead of the tabulated frequencies- EMhistory
if saved, extract the EM iteration history
- exp_resp
expected probability of the unique response patterns
- survey.weights
if supplied, the vector of survey weights used during estimation (NULL if missing)
- converged
a logical value indicating whether the model terminated within the convergence criteria
- iterations
number of iterations it took to reach the convergence criteria
- nest
number of freely estimated parameters
- parvec
vector containing uniquely estimated parameters
- vcov
parameter covariance matrix (associated with parvec)
- condnum
the condition number of the Hessian (if computed). Otherwise NA
- constrain
a list of item parameter constraints to indicate which item parameters were equal during estimation
- Prior
prior density distribution for the latent traits
- thetaPosterior
posterior distribution for latent traits when using EM algorithm
- key
if supplied, the data scoring key
- nfact
number of latent traits/factors
- nitems
number of items
- ngroups
number of groups
- groupNames
character vector of unique group names
- group
a character vector indicating the group membership
- invariance
a character vector indicating
invariance
input frommultipleGroup
- secondordertest
a logical indicating whether the model passed the second-order test based on the Hessian matrix. Indicates whether model is a potential local maximum solution
- SEMconv
logical; check whether the supplemented EM information matrix converged. Will be
NA
if not applicable- time
estimation time, broken into different sections
References
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
# \donttest{
mod <- mirt(Science, 1)
extract.mirt(mod, 'logLik')
#> [1] -1608.87
extract.mirt(mod, 'F')
#> F1
#> Comfort 0.5220496
#> Work 0.5844686
#> Future 0.8030199
#> Benefit 0.5410276
#multiple group model
grp <- rep(c('G1', 'G2'), each = nrow(Science)/2)
mod2 <- multipleGroup(Science, 1, grp)
grp1 <- extract.group(mod2, 1) #extract single group model
extract.mirt(mod2, 'parvec')
#> [1] 0.8316800 4.8913029 2.5597789 -1.3592138 0.8289135 2.4772334
#> [7] 0.7025447 -2.1135580 2.8809926 5.4820292 2.2126281 -2.5451325
#> [13] 0.6920437 3.0133748 0.8608953 -1.5516666 1.1955161 4.8900152
#> [19] 2.6929286 -1.5545256 1.7621713 3.6416308 1.1724290 -2.5499919
#> [25] 2.4324588 6.4188352 2.6336468 -1.8297283 1.4875546 3.8081350
#> [31] 1.1473714 -1.8343958
extract.mirt(grp1, 'parvec')
#> [1] 0.8316800 4.8913029 2.5597789 -1.3592138 0.8289135 2.4772334
#> [7] 0.7025447 -2.1135580 2.8809926 5.4820292 2.2126281 -2.5451325
#> [13] 0.6920437 3.0133748 0.8608953 -1.5516666
# }