R/mirt.R
mirt.Rd
mirt
fits a maximum likelihood (or maximum a posteriori) factor analysis model
to any mixture of dichotomous and polytomous data under the item response theory paradigm
using either Cai's (2010) Metropolis-Hastings Robbins-Monro (MHRM) algorithm, with
an EM algorithm approach outlined by Bock and Aitkin (1981) using rectangular or
quasi-Monte Carlo integration grids, or with the stochastic EM (i.e., the first two stages
of the MH-RM algorithm). Models containing 'explanatory' person or item level predictors
can only be included by using the mixedmirt
function, though latent
regression models can be fit using the formula
input in this function.
Tests that form a two-tier or bi-factor structure should be estimated with the
bfactor
function, which uses a dimension reduction EM algorithm for
modeling item parcels. Multiple group analyses (useful for DIF and DTF testing) are
also available using the multipleGroup
function.
mirt(
data,
model = 1,
itemtype = NULL,
guess = 0,
upper = 1,
SE = FALSE,
covdata = NULL,
formula = NULL,
SE.type = "Oakes",
method = "EM",
optimizer = NULL,
dentype = "Gaussian",
pars = NULL,
constrain = NULL,
calcNull = FALSE,
draws = 5000,
survey.weights = NULL,
quadpts = NULL,
TOL = NULL,
gpcm_mats = list(),
grsm.block = NULL,
rsm.block = NULL,
monopoly.k = 1L,
key = NULL,
large = FALSE,
GenRandomPars = FALSE,
accelerate = "Ramsay",
verbose = TRUE,
solnp_args = list(),
nloptr_args = list(),
spline_args = list(),
control = list(),
technical = list(),
...
)
a matrix
or data.frame
that consists of
numerically ordered data, with missing data coded as NA
(to convert from an ordered factor
data.frame
see data.matrix
)
a string to be passed (or an object returned from) mirt.model
,
declaring how the IRT model is to be estimated (loadings, constraints, priors, etc).
For exploratory IRT models, a single numeric value indicating the number
of factors to extract is also supported. Default is 1, indicating that a unidimensional
model will be fit unless otherwise specified
type of items to be modeled, declared as a vector for each item or a single value
which will be recycled for each item. The NULL
default assumes that the items follow a graded or
2PL structure, however they may be changed to the following:
'Rasch'
- Rasch/partial credit model by constraining slopes to 1 and freely estimating
the variance parameters (alternatively, can be specified by applying equality constraints to the
slope parameters in 'gpcm'
; Rasch, 1960)
'2PL'
, '3PL'
, '3PLu'
, and '4PL'
- 2-4 parameter logistic model,
where 3PL
estimates the lower asymptote only while 3PLu
estimates the upper asymptote only
(Lord and Novick, 1968; Lord, 1980)
'5PL'
- 5 parameter logistic model to estimate asymmetric logistic
response curves. Currently restricted to unidimensional models
'CLL'
- complementary log-log link model.
Currently restricted to unidimensional models
'ULL'
- unipolar log-logistic model (Lucke, 2015). Note the use of this itemtype
will automatically use a log-normal distribution for the latent traits
'graded'
- graded response model (Samejima, 1969)
'grsm'
- graded ratings scale model in the
classical IRT parameterization (restricted to unidimensional models; Muraki, 1992)
'gpcm'
and 'gpcmIRT'
- generalized partial credit model in the slope-intercept
and classical parameterization. 'gpcmIRT'
is restricted to unidimensional models. Note that
optional scoring matrices for 'gpcm'
are available with the gpcm_mats
input (Muraki, 1992)
'rsm'
- Rasch rating scale model using the 'gpcmIRT'
structure
(unidimensional only; Andrich, 1978)
'nominal'
- nominal response model (Bock, 1972)
'ideal'
- dichotomous ideal point model (Maydeu-Olivares, 2006)
'ggum'
- generalized graded unfolding model (Roberts, Donoghue, & Laughlin, 2000)
and its multidimensional extension
'sequential'
- multidimensional sequential response model (Tutz, 1990) in slope-intercept form
'Tutz'
- same as the 'sequential'
itemtype, except the slopes are fixed to 1
and the latent variance terms are freely estimated (similar to the 'Rasch'
itemtype input)
'PC2PL'
and 'PC3PL'
- 2-3 parameter partially compensatory model.
Note that constraining the slopes to be equal across items will reduce the model to
Embretson's (a.k.a. Whitely's) multicomponent model (1980).
'2PLNRM'
, '3PLNRM'
, '3PLuNRM'
, and '4PLNRM'
- 2-4 parameter nested
logistic model, where 3PLNRM
estimates the lower asymptote only while 3PLuNRM
estimates
the upper asymptote only (Suh and Bolt, 2010)
'spline'
- spline response model with the bs
(default)
or the ns
function (Winsberg, Thissen, and Wainer, 1984)
'monopoly'
- monotonic polynomial model for unidimensional tests
for dichotomous and polytomous response data (Falk and Cai, 2016)
Additionally, user defined item classes can also be defined using the createItem
function
fixed pseudo-guessing parameters. Can be entered as a single value to assign a global guessing parameter or may be entered as a numeric vector corresponding to each item
fixed upper bound parameters for 4-PL model. Can be entered as a single value to assign a global guessing parameter or may be entered as a numeric vector corresponding to each item
logical; estimate the standard errors by computing the parameter information matrix?
See SE.type
for the type of estimates available
a data.frame of data used for latent regression models
an R formula (or list of formulas) indicating how the latent traits
can be regressed using external covariates in covdata
. If a named list
of formulas is supplied (where the names correspond to the latent trait names in model
)
then specific regression effects can be estimated for each factor. Supplying a single formula
will estimate the regression parameters for all latent traits by default
type of estimation method to use for calculating the parameter information matrix
for computing standard errors and wald
tests. Can be:
'Richardson'
, 'forward'
, or 'central'
for the numerical Richardson,
forward difference, and central difference evaluation of observed Hessian matrix
'crossprod'
and 'Louis'
for standard error computations based on the variance of the
Fisher scores as well as Louis' (1982) exact computation of the observed information matrix.
Note that Louis' estimates can take a long time to obtain for large sample sizes and long tests
'sandwich'
for the sandwich covariance estimate based on the
'crossprod'
and 'Oakes'
estimates (see Chalmers, 2018, for details)
'sandwich.Louis'
for the sandwich covariance estimate based on the
'crossprod'
and 'Louis'
estimates
'Oakes'
for Oakes' (1999) method using a central difference approximation
(see Chalmers, 2018, for details)
'SEM'
for the supplemented EM (disables the accelerate
option automatically; EM only)
'Fisher'
for the expected information, 'complete'
for information based
on the complete-data Hessian used in EM algorithm
'MHRM'
and 'FMHRM'
for stochastic approximations of observed information matrix
based on the Robbins-Monro filter or a fixed number of MHRM draws without the RM filter.
These are the only options supported when method = 'MHRM'
'numerical'
to obtain the numerical estimate from a call to optim
when method = 'BL'
Note that both the 'SEM'
method becomes very sensitive if the ML solution has
has not been reached with sufficient precision, and may be further sensitive
if the history of the EM cycles is not stable/sufficient for convergence of the respective estimates.
Increasing the number of iterations (increasing NCYCLES
and decreasing
TOL
, see below) will help to improve the accuracy, and can be
run in parallel if a mirtCluster
object has been defined (this will be
used for Oakes' method as well). Additionally,
inspecting the symmetry of the ACOV matrix for convergence issues by passing
technical = list(symmetric = FALSE)
can be helpful to determine if a sufficient
solution has been reached
a character object specifying the estimation algorithm to be used. The default is
'EM'
, for the standard EM algorithm with fixed quadrature, 'QMCEM'
for
quasi-Monte Carlo EM estimation, or 'MCEM'
for Monte Carlo EM estimation.
The option 'MHRM'
may also be passed to use the MH-RM algorithm,
'SEM'
for the Stochastic EM algorithm (first
two stages of the MH-RM stage using an optimizer other than a single Newton-Raphson iteration),
and 'BL'
for the Bock and Lieberman
approach (generally not recommended for longer tests).
The 'EM'
is generally effective with 1-3 factors, but methods such as the 'QMCEM'
,
'MCEM'
, 'SEM'
, or 'MHRM'
should be used when the dimensions are 3 or more. Note that
when the optimizer is stochastic the associated SE.type
is automatically changed to
SE.type = 'MHRM'
by default to avoid the use of quadrature
a character indicating which numerical optimizer to use. By default, the EM
algorithm will use the 'BFGS'
when there are no upper and lower bounds box-constraints and
'nlminb'
when there are.
Other options include the Newton-Raphson ('NR'
),
which can be more efficient than the 'BFGS'
but not as stable for more complex
IRT models (such as the nominal or nested logit models)
and the related 'NR1'
which is also the Newton-Raphson
but consists of only 1 update that has been coupled with RM Hessian (only
applicable when the MH-RM algorithm is used). The MH-RM algorithm uses the 'NR1'
by default,
though currently the 'BFGS'
, 'L-BFGS-B'
, and 'NR'
are also supported with this method (with
fewer iterations by default) to emulate stochastic EM updates.
As well, the 'Nelder-Mead'
and 'SANN'
estimators are available, but their routine use generally is not required or recommended.
Additionally, estimation subroutines from the Rsolnp
and nloptr
packages are available by passing the arguments 'solnp'
and 'nloptr'
,
respectively. This should be used in conjunction with the solnp_args
and
nloptr_args
specified below. If equality constraints were specified in the
model definition only the parameter with the lowest parnum
in the pars = 'values'
data.frame is used in the estimation vector passed
to the objective function, and group hyper-parameters are omitted.
Equality an inequality functions should be of the form function(p, optim_args)
,
where optim_args
is a list of internally parameters that largely can be ignored
when defining constraints (though use of browser()
here may be helpful)
type of density form to use for the latent trait parameters. Current options include
'Gaussian'
(default) assumes a multivariate Gaussian distribution with an associated
mean vector and variance-covariance matrix
'empiricalhist'
or 'EH'
estimates latent distribution using an empirical histogram described by
Bock and Aitkin (1981). Only applicable for unidimensional models estimated with the EM algorithm.
For this option, the number of cycles, TOL, and quadpts are adjusted accommodate for
less precision during estimation (namely: TOL = 3e-5
, NCYCLES = 2000
, quadpts = 121
)
'empiricalhist_Woods'
or 'EHW'
estimates latent distribution using an empirical histogram described by
Bock and Aitkin (1981), with the same specifications as in dentype = 'empiricalhist'
,
but with the extrapolation-interpolation method described by Woods (2007). NOTE: to improve stability
in the presence of extreme response styles (i.e., all highest or lowest in each item) the technical
option
zeroExtreme = TRUE
may be required to down-weight the contribution of these problematic patterns
'Davidian-#'
estimates semi-parametric Davidian curves described by Woods and Lin (2009),
where the #
placeholder represents the number of Davidian parameters to estimate
(e.g., 'Davidian-6'
will estimate 6 smoothing parameters). By default, the number of
quadpts
is increased to 121, and this method is only applicable for
unidimensional models estimated with the EM algorithm
Note that when itemtype = 'ULL'
then a log-normal(0,1) density is used to support the unipolar scaling
a data.frame with the structure of how the starting values, parameter numbers,
estimation logical values, etc, are defined. The user may observe how the model defines the
values by using pars = 'values'
, and this object can in turn be modified and input back
into the estimation with pars = mymodifiedpars
a list of user declared equality constraints. To see how to define the
parameters correctly use pars = 'values'
initially to see how the parameters are
labeled. To constrain parameters to be equal create a list with separate concatenated
vectors signifying which parameters to constrain. For example, to set parameters 1 and 5
equal, and also set parameters 2, 6, and 10 equal use
constrain = list(c(1,5), c(2,6,10))
. Constraints can also be specified using the
mirt.model
syntax (recommended)
logical; calculate the Null model for additional fit statistics (e.g., TLI)? Only applicable if the data contains no NA's and the data is not overly sparse
the number of Monte Carlo draws to estimate the log-likelihood for the MH-RM algorithm. Default is 5000
a optional numeric vector of survey weights to apply for each case in the
data (EM estimation only). If not specified, all cases are weighted equally (the standard IRT
approach). The sum of the survey.weights
must equal the total sample size for proper
weighting to be applied
number of quadrature points per dimension (must be larger than 2).
By default the number of quadrature uses the following scheme:
switch(as.character(nfact), '1'=61, '2'=31, '3'=15, '4'=9, '5'=7, 3)
.
However, if the method input is set to 'QMCEM'
and this argument is left blank then
the default number of quasi-Monte Carlo integration nodes will be set to 5000 in total
convergence threshold for EM or MH-RM; defaults are .0001 and .001. If
SE.type = 'SEM'
and this value is not specified, the default is set to 1e-5
.
To evaluate the model using only the starting values pass TOL = NaN
, and
to evaluate the starting values without the log-likelihood pass TOL = NA
a list of matrices specifying how the scoring coefficients in the (generalized)
partial credit model should be constructed. If omitted, the standard gpcm format will be used
(i.e., seq(0, k, by = 1)
for each trait). This input should be used if traits
should be scored different for each category (e.g., matrix(c(0:3, 1,0,0,0), 4, 2)
for a
two-dimensional model where the first trait is scored like a gpcm, but the second trait is only
positively indicated when the first category is selected). Can be used when itemtype
s
are 'gpcm'
or 'Rasch'
, but only when the respective element in
gpcm_mats
is not NULL
an optional numeric vector indicating where the blocking should occur when
using the grsm, NA represents items that do not belong to the grsm block (other items that may
be estimated in the test data). For example, to specify two blocks of 3 with a 2PL item for
the last item: grsm.block = c(rep(1,3), rep(2,3), NA)
. If NULL the all items are assumed
to be within the same group and therefore have the same number of item categories
same as grsm.block
, but for 'rsm'
blocks
a vector of values (or a single value to repeated for each item) which indicate
the degree of the monotone polynomial fitted, where the monotone polynomial
corresponds to monopoly.k * 2 + 1
(e.g., monopoly.k = 2
fits a
5th degree polynomial). Default is monopoly.k = 1
, which fits a 3rd degree polynomial
a numeric vector of the response scoring key. Required when using nested logit item
types, and must be the same length as the number of items used. Items that are not nested logit
will ignore this vector, so use NA
in item locations that are not applicable
a logical
indicating whether unique response patterns should be obtained prior
to performing the estimation so as to avoid repeating computations on identical patterns.
The default TRUE
provides the correct degrees of freedom for the model since all unique patterns
are tallied (typically only affects goodness of fit statistics such as G2, but also will influence
nested model comparison methods such as anova(mod1, mod2)
), while FALSE
will use the
number of rows in data
as a placeholder for the total degrees of freedom. As such, model
objects should only be compared if all flags were set to TRUE
or all were set to FALSE
Alternatively, if the collapse table of frequencies is desired for the purpose of saving computations
(i.e., only computing the collapsed frequencies for the data onte-time) then a character vector can
be passed with the arguement large = 'return'
to return a list of all the desired
table information used by mirt
. This list object can then be reused by passing it back
into the large
argument to avoid re-tallying the data again
(again, useful when the dataset are very large and computing the tabulated data is
computationally burdensome). This strategy is shown below:
e.g., internaldat <- mirt(Science, 1, large = 'return')
e.g.,
mod <- mirt(Science, 1, large = internaldat)
logical; generate random starting values prior to optimization instead of using the fixed internal starting values?
a character vector indicating the type of acceleration to use. Default
is 'Ramsay'
, but may also be 'squarem'
for the SQUAREM procedure (specifically,
the gSqS3 approach) described in Varadhan and Roldand (2008).
To disable the acceleration, pass 'none'
logical; print observed- (EM) or complete-data (MHRM) log-likelihood after each iteration cycle? Default is TRUE
a list of arguments to be passed to the solnp::solnp()
function for
equality constraints, inequality constraints, etc
a list of arguments to be passed to the nloptr::nloptr()
function for equality constraints, inequality constraints, etc
a named list of lists containing information to be passed to the bs
(default)
and ns
for each spline itemtype. Each element must refer to the name of the itemtype with the
spline, while the internal list names refer to the arguments which are passed. For example, if item 2 were called
'read2', and item 5 were called 'read5', both of which were of itemtype 'spline' but item 5 should use the
ns
form, then a modified list for each input might be of the form:
spline_args = list(read2 = list(degree = 4),
read5 = list(fun = 'ns', knots = c(-2, 2)))
This code input changes the bs()
splines function to have a degree = 4
input,
while the second element changes to the ns()
function with knots set a c(-2, 2)
a list passed to the respective optimizers (i.e., optim()
, nlminb()
,
etc). Additional arguments have been included for the 'NR'
optimizer: 'tol'
for the convergence tolerance in the M-step (default is TOL/1000
), while the default
number of iterations for the Newton-Raphson optimizer is 50 (modified with the 'maxit'
control input)
a list containing lower level technical parameters for estimation. May be:
maximum number of EM or MH-RM cycles; defaults are 500 and 2000
maximum number of quadratures, which you can increase if you have more than 4GB or RAM on your PC; default 20000
range of integration grid for each dimension; default is c(-6, 6)
. Note that
when itemtype = 'ULL'
a log-normal distribution is used and the range is change to
c(.01, and 6^2)
, where the second term is the square of the theta_lim
input instead
seed number used during estimation. Default is 12345
standard error tolerance criteria for the S-EM and MHRM computation of the information matrix. Default is 1e-3
logical; force S-EM/Oakes information matrix estimates to be symmetric? Default is TRUE so that computation of standard errors are more stable. Setting this to FALSE can help to detect solutions that have not reached the ML estimate
ratio of values used to define the S-EM window based on the
observed likelihood differences across EM iterations. The default is
c(0, 1 - SEtol)
, which provides nearly the very full S-EM window (i.e.,
nearly all EM cycles used). To use the a smaller SEM window change the window to
to something like c(.9, .999)
to start at a point farther into the EM history
logical; include warning messages during estimation? Default is TRUE
logical; include general messages during estimation? Default is TRUE
a numeric vector used to explicitly declare the number of response
categories for each item. This should only be used when constructing mirt model for
reasons other than parameter estimation (such as to obtain factor scores), and requires
that the input data all have 0 as the lowest category. The format is the same as the
extract.mirt(mod, 'K')
slot in all converged models
a custom function used to determine the normalized density for
integration in the EM algorithm. Must be of the form function(Theta, Etable){...}
,
and return a numeric vector with the same length as number of rows in Theta
. The
Etable
input contains the aggregated table generated from the current E-step
computations. For proper integration, the returned vector should sum to
1 (i.e., normalized). Note that if using the Etable
it will be NULL
on the first call, therefore the prior will have to deal with this issue accordingly
logical; assign extreme response patterns a survey.weight
of 0
(formally equivalent to removing these data vectors during estimation)?
When dentype = 'EHW'
, where Woods' extrapolation is utilized,
this option may be required if the extrapolation causes expected densities to tend towards
positive or negative infinity. The default is FALSE
a custom Theta
grid, in matrix form, used for integration.
If not defined, the grid is determined internally based on the number of quadpts
same specification as the constrain
list argument,
however imposes a negative equality constraint instead (e.g., \(a12 = -a21\), which
is specified as nconstrain = list(c(12, 21))
). Note that each specification
in the list must be of length 2, where the second element is taken to be -1 times the
first element
the deviation term used in numerical estimates when computing the ACOV matrix with the 'forward' or 'central' numerical approaches, as well as Oakes' method with the Richardson extrapolation. Default is 1e-5
logical; use the parallel cluster defined by mirtCluster
?
Default is TRUE
logical; store the iteration history when using the EM algorithm?
Default is FALSE. When TRUE, use extract.mirt
to extract
logical; include the internal constraints when using certain
IRT models (e.g., 'grsm' itemtype). Disable this if you want to use special optimizers
such as the solnp. Default is TRUE
a vector of two values specifying the numerator and exponent
values for the RM gain function \((val1 / cycle)^val2\).
Default is c(0.10, 0.75)
number of burn in cycles (stage 1) in MH-RM; default is 150
number of SEM cycles (stage 2) in MH-RM; default is 100
number of Metropolis-Hasting draws to use in the MH-RM at each iteration; default is 5
a vector of values used to tune the MH sampler. Larger values will
cause the acceptance ratio to decrease. One value is required for each group in
unconditional item factor analysis (mixedmirt()
requires additional values
for random effect). If null, these values are determined internally, attempting to
tune the acceptance of the draws to be between .1 and .4
number of fixed draws to use when SE=TRUE
and SE.type = 'FMHRM'
and the maximum number of draws when SE.type = 'MHRM'
. Default is 2000
a function used to determine the number of quadrature points to draw for the
'MCEM'
method. Must include one argument which indicates the iteration number of the
EM cycle. Default is function(cycles) 500 + (cycles - 1)*2
, which starts the number of
draws at 500 and increases by 2 after each full EM iteration
logical; compute the information matrix when using the MH-RM algorithm
only if the model converged within a suitable number of iterations? Default is TRUE
logical; compute the observed log-likelihood when using the MH-RM algorithm
only if the model converged within a suitable number of iterations? Default is TRUE
logical; attempt to keep the variance-covariance matrix of the latent traits
positive definite during estimation in the EM algorithm? This generally improves the convergence
properties when the traits are highly correlated. Default is TRUE
additional arguments to be passed
Specification of the confirmatory item factor analysis model follows many of
the rules in the structural equation modeling framework for confirmatory factor analysis. The
variances of the latent factors are automatically fixed to 1 to help
facilitate model identification. All parameters may be fixed to constant
values or set equal to other parameters using the appropriate declarations.
Confirmatory models may also contain 'explanatory' person or item level predictors, though
including predictors is currently limited to the mixedmirt
function.
When specifying a single number greater than 1 as the model
input to mirt
an exploratory IRT model will be estimated. Rotation and target matrix options are available
if they are passed to generic functions such as summary-method
and
fscores
. Factor means and variances are fixed to ensure proper identification.
If the model is an exploratory item factor analysis estimation will begin
by computing a matrix of quasi-polychoric correlations. A
factor analysis with nfact
is then extracted and item parameters are
estimated by \(a_{ij} = f_{ij}/u_j\), where \(f_{ij}\) is the factor
loading for the jth item on the ith factor, and \(u_j\) is
the square root of the factor uniqueness, \(\sqrt{1 - h_j^2}\). The
initial intercept parameters are determined by calculating the inverse
normal of the item facility (i.e., item easiness), \(q_j\), to obtain
\(d_j = q_j / u_j\). A similar implementation is also used for obtaining
initial values for polytomous items.
Internally the \(g\) and \(u\) parameters are transformed using a logit
transformation (\(log(x/(1-x))\)), and can be reversed by using \(1 / (1 + exp(-x))\)
following convergence. This also applies when computing confidence intervals for these
parameters, and is done so automatically if coef(mod, rawug = FALSE)
.
As such, when applying prior distributions to these parameters it is recommended to use a prior
that ranges from negative infinity to positive infinity, such as the normally distributed
prior via the 'norm'
input (see mirt.model
).
Unrestricted full-information factor analysis is known to have problems with convergence, and some items may need to be constrained or removed entirely to allow for an acceptable solution. As a general rule dichotomous items with means greater than .95, or items that are only .05 greater than the guessing parameter, should be considered for removal from the analysis or treated with prior parameter distributions. The same type of reasoning is applicable when including upper bound parameters as well. For polytomous items, if categories are rarely endorsed then this will cause similar issues. Also, increasing the number of quadrature points per dimension, or using the quasi-Monte Carlo integration method, may help to stabilize the estimation process in higher dimensions. Finally, solutions that are not well defined also will have difficulty converging, and can indicate that the model has been misspecified (e.g., extracting too many dimensions).
For the MH-RM algorithm, when the number of iterations grows very high (e.g., greater than 1500)
or when Max Change = .2500
values are repeatedly printed
to the console too often (indicating that the parameters were being constrained since they are
naturally moving in steps greater than 0.25) then the model may either be ill defined or have a
very flat likelihood surface, and genuine maximum-likelihood parameter estimates may be difficult
to find. Standard errors are computed following the model convergence by passing
SE = TRUE
, to perform an addition MH-RM stage but treating the maximum-likelihood
estimates as fixed points.
Additional functions are available in the package which can be useful pre- and post-estimation. These are:
mirt.model
Define the IRT model specification use special syntax. Useful for defining between and within group parameter constraints, prior parameter distributions, and specifying the slope coefficients for each factor
coef-method
Extract raw coefficients from the model, along with their standard errors and confidence intervals
summary-method
Extract standardized loadings from model. Accepts a rotate
argument for exploratory
item response model
anova-method
Compare nested models using likelihood ratio statistics as well as information criteria such as the AIC and BIC
residuals-method
Compute pairwise residuals between each item using methods such as the LD statistic (Chen & Thissen, 1997), as well as response pattern residuals
plot-method
Plot various types of test level plots including the test score and information functions and more
itemplot
Plot various types of item level plots, including the score, standard error, and information functions, and more
createItem
Create a customized itemtype
that does not currently exist in the package
imputeMissing
Impute missing data given some computed Theta matrix
fscores
Find predicted scores for the latent traits using estimation methods such as EAP, MAP, ML, WLE, and EAPsum
wald
Compute Wald statistics follow the convergence of a model with a suitable information matrix
M2
Limited information goodness of fit test statistic based to determine how well the model fits the data
itemfit
and personfit
Goodness of fit statistics at the item and person levels, such as the S-X2, infit, outfit, and more
boot.mirt
Compute estimated parameter confidence intervals via the bootstrap methods
mirtCluster
Define a cluster for the package functions to use for capitalizing on multi-core architecture to utilize available CPUs when possible. Will help to decrease estimation times for tasks that can be run in parallel
The parameter labels use the follow convention, here using two factors and \(K\) as the total number of categories (using \(k\) for specific category instances).
Only one intercept estimated, and the latent variance of \(\theta\) is freely estimated. If the data have more than two categories then a partial credit model is used instead (see 'gpcm' below). $$P(x = 1|\theta, d) = \frac{1}{1 + exp(-(\theta + d))}$$
Depending on the model \(u\) may be equal to 1 and \(g\) may be equal to 0. $$P(x = 1|\theta, \psi) = g + \frac{(u - g)}{ 1 + exp(-(a_1 * \theta_1 + a_2 * \theta_2 + d))}$$
Currently restricted to unidimensional models
$$P(x = 1|\theta, \psi) = g + \frac{(u - g)}{
1 + exp(-(a_1 * \theta_1 + d))^S}$$
where \(S\) allows for asymmetry in the response function and
is transformation constrained to be greater than 0 (i.e., log(S)
is estimated rather than S
)
Complementary log-log model (see Shim, Bonifay, and Wiedermann, 2022) $$P(x = 1|\theta, b) = 1 - exp(-exp(\theta - b))$$ Currently restricted to unidimensional dichotomous data.
The graded model consists of sequential 2PL models, $$P(x = k | \theta, \psi) = P(x \ge k | \theta, \phi) - P(x \ge k + 1 | \theta, \phi)$$ Note that \(P(x \ge 1 | \theta, \phi) = 1\) while \(P(x \ge K + 1 | \theta, \phi) = 0\)
The unipolar log-logistic model (ULL; Lucke, 2015) is defined the same as the graded response model, however $$P(x \le k | \theta, \psi) = \frac{\lambda_k\theta^\eta}{1 + \lambda_k\theta^\eta}$$. Internally the \(\lambda\) parameters are exponentiated to keep them positive, and should therefore the reported estimates should be interpreted in log units
A more constrained version of the graded model where graded spacing is equal across item blocks and only adjusted by a single 'difficulty' parameter (c) while the latent variance of \(\theta\) is freely estimated (see Muraki, 1990 for this exact form). This is restricted to unidimensional models only.
For the gpcm the \(d\) values are treated as fixed and ordered values from \(0:(K-1)\) (in the nominal model \(d_0\) is also set to 0). Additionally, for identification in the nominal model \(ak_0 = 0\), \(ak_{(K-1)} = (K - 1)\). $$P(x = k | \theta, \psi) = \frac{exp(ak_{k-1} * (a_1 * \theta_1 + a_2 * \theta_2) + d_{k-1})} {\sum_{k=1}^K exp(ak_{k-1} * (a_1 * \theta_1 + a_2 * \theta_2) + d_{k-1})}$$
For the partial credit model (when itemtype = 'Rasch'
; unidimensional only) the above
model is further constrained so that \(ak = (0,1,\ldots, K-1)\), \(a_1 = 1\), and the
latent variance of \(\theta_1\) is freely estimated. Alternatively, the partial credit model
can be obtained by containing all the slope parameters in the gpcms to be equal.
More specific scoring function may be included by passing a suitable list or matrices
to the gpcm_mats
input argument.
In the nominal model this parametrization helps to identify the empirical ordering of the categories by inspecting the \(ak\) values. Larger values indicate that the item category is more positively related to the latent trait(s) being measured. For instance, if an item was truly ordinal (such as a Likert scale), and had 4 response categories, we would expect to see \(ak_0 < ak_1 < ak_2 < ak_3\) following estimation. If on the other hand \(ak_0 > ak_1\) then it would appear that the second category is less related to to the trait than the first, and therefore the second category should be understood as the 'lowest score'.
NOTE: The nominal model can become numerical unstable if poor choices for the high and low
values are chosen, resulting in ak
values greater than abs(10)
or more. It is
recommended to choose high and low anchors that cause the estimated parameters to fall
between 0 and \(K - 1\) either by theoretical means or by re-estimating
the model with better values following convergence.
The gpcmIRT model is the classical generalized partial credit model for unidimensional response
data. It will obtain the same fit as the gpcm
presented above, however the parameterization
allows for the Rasch/generalized rating scale model as a special case.
E.g., for a K = 4 category response model,
$$P(x = 0 | \theta, \psi) = exp(0) / G$$ $$P(x = 1 | \theta, \psi) = exp(a(\theta - b1) + c) / G$$ $$P(x = 2 | \theta, \psi) = exp(a(2\theta - b1 - b2) + 2c) / G$$ $$P(x = 3 | \theta, \psi) = exp(a(3\theta - b1 - b2 - b3) + 3c) / G$$ where $$G = exp(0) + exp(a(\theta - b1) + c) + exp(a(2\theta - b1 - b2) + 2c) + exp(a(3\theta - b1 - b2 - b3) + 3c)$$ Here \(a\) is the slope parameter, the \(b\) parameters are the threshold values for each adjacent category, and \(c\) is the so-called difficulty parameter when a rating scale model is fitted (otherwise, \(c = 0\) and it drops out of the computations).
The gpcmIRT can be constrained to the partial credit IRT model by either constraining all the slopes to be equal, or setting the slopes to 1 and freeing the latent variance parameter.
Finally, the rsm is a more constrained version of the (generalized) partial credit model where the spacing is equal across item blocks and only adjusted by a single 'difficulty' parameter (c). Note that this is analogous to the relationship between the graded model and the grsm (with an additional constraint regarding the fixed discrimination parameters).
The multidimensional sequential response model has the form
$$P(x = k | \theta, \psi) = \prod (1 - F(a_1 \theta_1 + a_2 \theta_2 + d_{sk}))
F(a_1 \theta_1 + a_2 \theta_2 + d_{jk})$$
where \(F(\cdot)\) is the cumulative logistic function.
The Tutz variant of this model (Tutz, 1990) (via itemtype = 'Tutz'
)
assumes that the slope terms are all equal to 1 and the latent
variance terms are estimated (i.e., is a Rasch variant).
The ideal point model has the form, with the upper bound constraint on \(d\) set to 0: $$P(x = 1 | \theta, \psi) = exp(-0.5 * (a_1 * \theta_1 + a_2 * \theta_2 + d)^2)$$
Partially compensatory models consist of the product of 2PL probability curves. $$P(x = 1 | \theta, \psi) = g + (1 - g) (\frac{1}{1 + exp(-(a_1 * \theta_1 + d_1))} * \frac{1}{1 + exp(-(a_2 * \theta_2 + d_2))})$$
Note that constraining the slopes to be equal across items will reduce the model to Embretson's (a.k.a. Whitely's) multicomponent model (1980).
Nested logistic curves for modeling distractor items. Requires a scoring key. The model is broken into two components for the probability of endorsement. For successful endorsement the probability trace is the 1-4PL model, while for unsuccessful endorsement: $$P(x = 0 | \theta, \psi) = (1 - P_{1-4PL}(x = 1 | \theta, \psi)) * P_{nominal}(x = k | \theta, \psi)$$ which is the product of the complement of the dichotomous trace line with the nominal response model. In the nominal model, the slope parameters defined above are constrained to be 1's, while the last value of the \(ak\) is freely estimated.
The (multidimensional) generalized graded unfolding model is a class of ideal point models useful for ordinal response data. The form is $$P(z=k|\theta,\psi)=\frac{exp\left[\left(z\sqrt{\sum_{d=1}^{D} a_{id}^{2}(\theta_{jd}-b_{id})^{2}}\right)+\sum_{k=0}^{z}\psi_{ik}\right]+ exp\left[\left((M-z)\sqrt{\sum_{d=1}^{D}a_{id}^{2}(\theta_{jd}-b_{id})^{2}}\right)+ \sum_{k=0}^{z}\psi_{ik}\right]}{\sum_{w=0}^{C}\left(exp\left[\left(w \sqrt{\sum_{d=1}^{D}a_{id}^{2}(\theta_{jd}-b_{id})^{2}}\right)+ \sum_{k=0}^{z}\psi_{ik}\right]+exp\left[\left((M-w) \sqrt{\sum_{d=1}^{D}a_{id}^{2}(\theta_{jd}-b_{id})^{2}}\right)+ \sum_{k=0}^{z}\psi_{ik}\right]\right)}$$ where \(\theta_{jd}\) is the location of the \(j\)th individual on the \(d\)th dimension, \(b_{id}\) is the difficulty location of the \(i\)th item on the \(d\)th dimension, \(a_{id}\) is the discrimination of the \(j\)th individual on the \(d\)th dimension (where the discrimination values are constrained to be positive), \(\psi_{ik}\) is the \(k\)th subjective response category threshold for the \(i\)th item, assumed to be symmetric about the item and constant across dimensions, where \(\psi_{ik} = \sum_{d=1}^D a_{id} t_{ik}\) \(z = 1,2,\ldots, C\) (where \(C\) is the number of categories minus 1), and \(M = 2C + 1\).
Spline response models attempt to model the response curves uses non-linear and potentially
non-monotonic patterns. The form is
$$P(x = 1|\theta, \eta) = \frac{1}{1 + exp(-(\eta_1 * X_1 + \eta_2 * X_2 + \cdots + \eta_n * X_n))}$$
where the \(X_n\) are from the spline design matrix \(X\) organized from the grid of \(\theta\)
values. B-splines with a natural or polynomial basis are supported, and the intercept
input is
set to TRUE
by default.
Monotone polynomial model for polytomous response data of the form $$P(x = k | \theta, \psi) = \frac{exp(\sum_1^k (m^*(\psi) + \xi_{c-1})} {\sum_1^C exp(\sum_1^K (m^*(\psi) + \xi_{c-1}))}$$ where \(m^*(\psi)\) is the monotone polynomial function without the intercept.
To access examples, vignettes, and exercise files that have been generated with knitr please visit https://github.com/philchalmers/mirt/wiki.
Andrich, D. (1978). A rating scale formulation for ordered response categories. Psychometrika, 43, 561-573.
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46(4), 443-459.
Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full-Information Item Factor Analysis. Applied Psychological Measurement, 12(3), 261-280.
Bock, R. D. & Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psychometrika, 35, 179-197.
Cai, L. (2010a). High-Dimensional exploratory item factor analysis by a Metropolis-Hastings Robbins-Monro algorithm. Psychometrika, 75, 33-57.
Cai, L. (2010b). Metropolis-Hastings Robbins-Monro algorithm for confirmatory item factor analysis. Journal of Educational and Behavioral Statistics, 35, 307-335.
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Chalmers, R. P. (2015). Extended Mixed-Effects Item Response Models with the MH-RM Algorithm. Journal of Educational Measurement, 52, 200-222. doi:10.1111/jedm.12072
Chalmers, R. P. (2018). Numerical Approximation of the Observed Information Matrix with Oakes' Identity. British Journal of Mathematical and Statistical Psychology DOI: 10.1111/bmsp.12127
Chalmers, R., P. & Flora, D. (2014). Maximum-likelihood Estimation of Noncompensatory IRT Models with the MH-RM Algorithm. Applied Psychological Measurement, 38, 339-358. doi:10.1177/0146621614520958
Chen, W. H. & Thissen, D. (1997). Local dependence indices for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22, 265-289.
Falk, C. F. & Cai, L. (2016). Maximum Marginal Likelihood Estimation of a Monotonic Polynomial Generalized Partial Credit Model with Applications to Multiple Group Analysis. Psychometrika, 81, 434-460.
Lord, F. M. & Novick, M. R. (1968). Statistical theory of mental test scores. Addison-Wesley.
Lucke, J. F. (2015). Unipolar item response models. In S. P. Reise & D. A. Revicki (Eds.), Handbook of item response theory modeling: Applications to typical performance assessment (pp. 272-284). New York, NY: Routledge/Taylor & Francis Group.
Ramsay, J. O. (1975). Solving implicit equations in psychometric data analysis. Psychometrika, 40, 337-360.
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Danish Institute for Educational Research.
Roberts, J. S., Donoghue, J. R., & Laughlin, J. E. (2000). A General Item Response Theory Model for Unfolding Unidimensional Polytomous Responses. Applied Psychological Measurement, 24, 3-32.
Shim, H., Bonifay, W., & Wiedermann, W. (2022). Parsimonious asymmetric item response theory modeling with the complementary log-log link. Behavior Research Methods, 55, 200-219.
Maydeu-Olivares, A., Hernandez, A. & McDonald, R. P. (2006). A Multidimensional Ideal Point Item Response Theory Model for Binary Data. Multivariate Behavioral Research, 41, 445-471.
Muraki, E. (1990). Fitting a polytomous item response model to Likert-type data. Applied Psychological Measurement, 14, 59-71.
Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16, 159-176.
Muraki, E. & Carlson, E. B. (1995). Full-information factor analysis for polytomous item responses. Applied Psychological Measurement, 19, 73-90.
Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monographs, 34.
Suh, Y. & Bolt, D. (2010). Nested logit models for multiple-choice item response data. Psychometrika, 75, 454-473.
Sympson, J. B. (1977). A model for testing with multidimensional items. Proceedings of the 1977 Computerized Adaptive Testing Conference.
Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model. Psychometrika, 47, 175-186.
Tutz, G. (1990). Sequential item response models with ordered response. British Journal of Mathematical and Statistical Psychology, 43, 39-55.
Varadhan, R. & Roland, C. (2008). Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM Algorithm. Scandinavian Journal of Statistics, 35, 335-353.
Whitely, S. E. (1980). Multicomponent latent trait models for ability tests. Psychometrika, 45(4), 470-494.
Wood, R., Wilson, D. T., Gibbons, R. D., Schilling, S. G., Muraki, E., & Bock, R. D. (2003). TESTFACT 4 for Windows: Test Scoring, Item Statistics, and Full-information Item Factor Analysis [Computer software]. Lincolnwood, IL: Scientific Software International.
Woods, C. M., and Lin, N. (2009). Item Response Theory With Estimation of the Latent Density Using Davidian Curves. Applied Psychological Measurement,33(2), 102-117.
# load LSAT section 7 data and compute 1 and 2 factor models
data <- expand.table(LSAT7)
itemstats(data)
#> $overall
#> N mean_total.score sd_total.score ave.r sd.r alpha
#> 1000 3.707 1.199 0.143 0.052 0.453
#>
#> $itemstats
#> N mean sd total.r total.r_if_rm alpha_if_rm
#> Item.1 1000 0.828 0.378 0.530 0.246 0.396
#> Item.2 1000 0.658 0.475 0.600 0.247 0.394
#> Item.3 1000 0.772 0.420 0.611 0.313 0.345
#> Item.4 1000 0.606 0.489 0.592 0.223 0.415
#> Item.5 1000 0.843 0.364 0.461 0.175 0.438
#>
#> $proportions
#> 0 1
#> Item.1 0.172 0.828
#> Item.2 0.342 0.658
#> Item.3 0.228 0.772
#> Item.4 0.394 0.606
#> Item.5 0.157 0.843
#>
(mod1 <- mirt(data, 1))
#>
#> Call:
#> mirt(data = data, model = 1)
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 28 EM iterations.
#> mirt version: 1.40
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -2658.805
#> Estimated parameters: 10
#> AIC = 5337.61
#> BIC = 5386.688; SABIC = 5354.927
#> G2 (21) = 31.7, p = 0.0628
#> RMSEA = 0.023, CFI = NaN, TLI = NaN
coef(mod1)
#> $Item.1
#> a1 d g u
#> par 0.988 1.856 0 1
#>
#> $Item.2
#> a1 d g u
#> par 1.081 0.808 0 1
#>
#> $Item.3
#> a1 d g u
#> par 1.706 1.804 0 1
#>
#> $Item.4
#> a1 d g u
#> par 0.765 0.486 0 1
#>
#> $Item.5
#> a1 d g u
#> par 0.736 1.855 0 1
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#>
summary(mod1)
#> F1 h2
#> Item.1 0.502 0.252
#> Item.2 0.536 0.287
#> Item.3 0.708 0.501
#> Item.4 0.410 0.168
#> Item.5 0.397 0.157
#>
#> SS loadings: 1.366
#> Proportion Var: 0.273
#>
#> Factor correlations:
#>
#> F1
#> F1 1
plot(mod1)
plot(mod1, type = 'trace')
# \donttest{
(mod2 <- mirt(data, 1, SE = TRUE)) #standard errors via the Oakes method
#>
#> Call:
#> mirt(data = data, model = 1, SE = TRUE)
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 28 EM iterations.
#> mirt version: 1.40
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Information matrix estimated with method: Oakes
#> Second-order test: model is a possible local maximum
#> Condition number of information matrix = 30.23088
#>
#> Log-likelihood = -2658.805
#> Estimated parameters: 10
#> AIC = 5337.61
#> BIC = 5386.688; SABIC = 5354.927
#> G2 (21) = 31.7, p = 0.0628
#> RMSEA = 0.023, CFI = NaN, TLI = NaN
(mod2 <- mirt(data, 1, SE = TRUE, SE.type = 'SEM')) #standard errors with SEM method
#>
#> Call:
#> mirt(data = data, model = 1, SE = TRUE, SE.type = "SEM")
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-05 tolerance after 74 EM iterations.
#> mirt version: 1.40
#> M-step optimizer: BFGS
#> EM acceleration: none
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Information matrix estimated with method: SEM
#> Second-order test: model is a possible local maximum
#> Condition number of information matrix = 30.13481
#>
#> Log-likelihood = -2658.805
#> Estimated parameters: 10
#> AIC = 5337.61
#> BIC = 5386.688; SABIC = 5354.927
#> G2 (21) = 31.7, p = 0.0628
#> RMSEA = 0.023, CFI = NaN, TLI = NaN
coef(mod2)
#> $Item.1
#> a1 d g u
#> par 0.988 1.856 0 1
#> CI_2.5 0.639 1.599 NA NA
#> CI_97.5 1.336 2.112 NA NA
#>
#> $Item.2
#> a1 d g u
#> par 1.081 0.808 0 1
#> CI_2.5 0.755 0.629 NA NA
#> CI_97.5 1.407 0.987 NA NA
#>
#> $Item.3
#> a1 d g u
#> par 1.707 1.805 0 1
#> CI_2.5 1.086 1.395 NA NA
#> CI_97.5 2.329 2.215 NA NA
#>
#> $Item.4
#> a1 d g u
#> par 0.765 0.486 0 1
#> CI_2.5 0.500 0.339 NA NA
#> CI_97.5 1.030 0.633 NA NA
#>
#> $Item.5
#> a1 d g u
#> par 0.736 1.854 0 1
#> CI_2.5 0.437 1.630 NA NA
#> CI_97.5 1.034 2.079 NA NA
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#> CI_2.5 NA NA
#> CI_97.5 NA NA
#>
(mod3 <- mirt(data, 1, SE = TRUE, SE.type = 'Richardson')) #with numerical Richardson method
#>
#> Call:
#> mirt(data = data, model = 1, SE = TRUE, SE.type = "Richardson")
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 28 EM iterations.
#> mirt version: 1.40
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Information matrix estimated with method: Richardson
#> Second-order test: model is a possible local maximum
#> Condition number of information matrix = 30.23102
#>
#> Log-likelihood = -2658.805
#> Estimated parameters: 10
#> AIC = 5337.61
#> BIC = 5386.688; SABIC = 5354.927
#> G2 (21) = 31.7, p = 0.0628
#> RMSEA = 0.023, CFI = NaN, TLI = NaN
residuals(mod1)
#> LD matrix (lower triangle) and standardized values.
#>
#> Upper triangle summary:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.037 -0.020 -0.007 0.001 0.024 0.051
#>
#> Item.1 Item.2 Item.3 Item.4 Item.5
#> Item.1 NA -0.021 -0.029 0.051 0.049
#> Item.2 0.453 NA 0.033 -0.016 -0.037
#> Item.3 0.854 1.060 NA -0.012 -0.002
#> Item.4 2.572 0.267 0.153 NA 0.000
#> Item.5 2.389 1.384 0.003 0.000 NA
plot(mod1) #test score function
plot(mod1, type = 'trace') #trace lines
plot(mod2, type = 'info') #test information
plot(mod2, MI=200) #expected total score with 95% confidence intervals
# estimated 3PL model for item 5 only
(mod1.3PL <- mirt(data, 1, itemtype = c('2PL', '2PL', '2PL', '2PL', '3PL')))
#>
#> Call:
#> mirt(data = data, model = 1, itemtype = c("2PL", "2PL", "2PL",
#> "2PL", "3PL"))
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 43 EM iterations.
#> mirt version: 1.40
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -2658.794
#> Estimated parameters: 11
#> AIC = 5339.587
#> BIC = 5393.573; SABIC = 5358.636
#> G2 (20) = 31.68, p = 0.0469
#> RMSEA = 0.024, CFI = NaN, TLI = NaN
coef(mod1.3PL)
#> $Item.1
#> a1 d g u
#> par 0.987 1.855 0 1
#>
#> $Item.2
#> a1 d g u
#> par 1.082 0.808 0 1
#>
#> $Item.3
#> a1 d g u
#> par 1.706 1.805 0 1
#>
#> $Item.4
#> a1 d g u
#> par 0.764 0.486 0 1
#>
#> $Item.5
#> a1 d g u
#> par 0.778 1.643 0.161 1
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#>
# internally g and u pars are stored as logits, so usually a good idea to include normal prior
# to help stabilize the parameters. For a value around .182 use a mean
# of -1.5 (since 1 / (1 + exp(-(-1.5))) == .182)
model <- 'F = 1-5
PRIOR = (5, g, norm, -1.5, 3)'
mod1.3PL.norm <- mirt(data, model, itemtype = c('2PL', '2PL', '2PL', '2PL', '3PL'))
coef(mod1.3PL.norm)
#> $Item.1
#> a1 d g u
#> par 0.987 1.855 0 1
#>
#> $Item.2
#> a1 d g u
#> par 1.083 0.808 0 1
#>
#> $Item.3
#> a1 d g u
#> par 1.706 1.804 0 1
#>
#> $Item.4
#> a1 d g u
#> par 0.764 0.486 0 1
#>
#> $Item.5
#> a1 d g u
#> par 0.788 1.6 0.19 1
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#>
#limited information fit statistics
M2(mod1.3PL.norm)
#> M2 df p RMSEA RMSEA_5 RMSEA_95 SRMSR TLI
#> stats 8.800082 4 0.06629543 0.03465864 0 0.06610847 0.03207363 0.9454563
#> CFI
#> stats 0.9781825
# unidimensional ideal point model
idealpt <- mirt(data, 1, itemtype = 'ideal')
plot(idealpt, type = 'trace', facet_items = TRUE)
plot(idealpt, type = 'trace', facet_items = FALSE)
# two factors (exploratory)
mod2 <- mirt(data, 2)
coef(mod2)
#> $Item.1
#> a1 a2 d g u
#> par -2.007 0.87 2.648 0 1
#>
#> $Item.2
#> a1 a2 d g u
#> par -0.849 -0.522 0.788 0 1
#>
#> $Item.3
#> a1 a2 d g u
#> par -2.153 -1.836 2.483 0 1
#>
#> $Item.4
#> a1 a2 d g u
#> par -0.756 -0.028 0.485 0 1
#>
#> $Item.5
#> a1 a2 d g u
#> par -0.757 0 1.864 0 1
#>
#> $GroupPars
#> MEAN_1 MEAN_2 COV_11 COV_21 COV_22
#> par 0 0 1 0 1
#>
summary(mod2, rotate = 'oblimin') #oblimin rotation
#>
#> Rotation: oblimin
#>
#> Rotated factor loadings:
#>
#> F1 F2 h2
#> Item.1 0.7943 -0.0111 0.623
#> Item.2 0.0804 0.4630 0.255
#> Item.3 -0.0129 0.8628 0.734
#> Item.4 0.2794 0.1925 0.165
#> Item.5 0.2930 0.1772 0.165
#>
#> Rotated SS loadings: 0.801 1.027
#>
#> Factor correlations:
#>
#> F1 F2
#> F1 1.000
#> F2 0.463 1
residuals(mod2)
#> LD matrix (lower triangle) and standardized values.
#>
#> Upper triangle summary:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.018 -0.001 0.000 0.000 0.002 0.011
#>
#> Item.1 Item.2 Item.3 Item.4 Item.5
#> Item.1 NA -0.001 0.001 0.002 0.003
#> Item.2 0.001 NA 0.000 0.011 -0.018
#> Item.3 0.001 0.000 NA -0.002 0.006
#> Item.4 0.002 0.111 0.004 NA -0.001
#> Item.5 0.008 0.325 0.041 0.001 NA
plot(mod2)
plot(mod2, rotate = 'oblimin')
anova(mod1, mod2) #compare the two models
#> AIC SABIC HQ BIC logLik X2 df p
#> mod1 5337.610 5354.927 5356.263 5386.688 -2658.805
#> mod2 5335.039 5359.283 5361.153 5403.748 -2653.520 10.571 4 0.032
scoresfull <- fscores(mod2) #factor scores for each response pattern
head(scoresfull)
#> F1 F2
#> [1,] -1.700489 -1.711744
#> [2,] -1.700489 -1.711744
#> [3,] -1.700489 -1.711744
#> [4,] -1.700489 -1.711744
#> [5,] -1.700489 -1.711744
#> [6,] -1.700489 -1.711744
scorestable <- fscores(mod2, full.scores = FALSE) #save factor score table
#>
#> Method: EAP
#> Rotate: oblimin
#>
#> Empirical Reliability:
#>
#> F1 F2
#> 0.2717 0.3565
head(scorestable)
#> Item.1 Item.2 Item.3 Item.4 Item.5 F1 F2 SE_F1
#> [1,] 0 0 0 0 0 -1.700489 -1.7117442 0.8233675
#> [2,] 0 0 0 0 1 -1.442162 -1.5314978 0.8291769
#> [3,] 0 0 0 1 0 -1.448947 -1.5246145 0.8289843
#> [4,] 0 0 0 1 1 -1.186209 -1.3432197 0.8376304
#> [5,] 0 0 1 0 0 -1.369423 -0.7081262 0.8344842
#> [6,] 0 0 1 0 1 -1.099281 -0.5103192 0.8455456
#> SE_F2
#> [1,] 0.7705973
#> [2,] 0.7691720
#> [3,] 0.7691340
#> [4,] 0.7711533
#> [5,] 0.7963088
#> [6,] 0.8101448
# confirmatory (as an example, model is not identified since you need 3 items per factor)
# Two ways to define a confirmatory model: with mirt.model, or with a string
# these model definitions are equivalent
cmodel <- mirt.model('
F1 = 1,4,5
F2 = 2,3')
cmodel2 <- 'F1 = 1,4,5
F2 = 2,3'
cmod <- mirt(data, cmodel)
# cmod <- mirt(data, cmodel2) # same as above
coef(cmod)
#> $Item.1
#> a1 a2 d g u
#> par 1.792 0 2.358 0 1
#>
#> $Item.2
#> a1 a2 d g u
#> par 0 1.427 0.9 0 1
#>
#> $Item.3
#> a1 a2 d g u
#> par 0 1.559 1.725 0 1
#>
#> $Item.4
#> a1 a2 d g u
#> par 0.743 0 0.483 0 1
#>
#> $Item.5
#> a1 a2 d g u
#> par 0.763 0 1.867 0 1
#>
#> $GroupPars
#> MEAN_1 MEAN_2 COV_11 COV_21 COV_22
#> par 0 0 1 0 1
#>
anova(cmod, mod2)
#> AIC SABIC HQ BIC logLik X2 df p
#> cmod 5392.596 5409.913 5411.249 5441.674 -2686.298
#> mod2 5335.039 5359.283 5361.153 5403.748 -2653.520 65.557 4 0
# check if identified by computing information matrix
(cmod <- mirt(data, cmodel, SE = TRUE))
#> Warning: Could not invert information matrix; model may not be empirically identified.
#>
#> Call:
#> mirt(data = data, model = cmodel, SE = TRUE)
#>
#> Full-information item factor analysis with 2 factor(s).
#> Converged within 1e-04 tolerance after 125 EM iterations.
#> mirt version: 1.40
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 31
#> Latent density type: Gaussian
#>
#> Information matrix estimated with method: Oakes
#> Second-order test: model is not a maximum or the information matrix is too inaccurate
#>
#> Log-likelihood = -2686.298
#> Estimated parameters: 10
#> AIC = 5392.596
#> BIC = 5441.674; SABIC = 5409.913
#> G2 (21) = 86.69, p = 0
#> RMSEA = 0.056, CFI = NaN, TLI = NaN
###########
# data from the 'ltm' package in numeric format
itemstats(Science)
#> $overall
#> N mean_total.score sd_total.score ave.r sd.r alpha
#> 392 11.668 2.003 0.275 0.098 0.598
#>
#> $itemstats
#> N mean sd total.r total.r_if_rm alpha_if_rm
#> Comfort 392 3.120 0.588 0.596 0.352 0.552
#> Work 392 2.722 0.807 0.666 0.332 0.567
#> Future 392 2.990 0.757 0.748 0.488 0.437
#> Benefit 392 2.837 0.802 0.684 0.363 0.541
#>
#> $proportions
#> 1 2 3 4
#> Comfort 0.013 0.082 0.679 0.227
#> Work 0.084 0.250 0.526 0.140
#> Future 0.036 0.184 0.536 0.245
#> Benefit 0.054 0.255 0.492 0.199
#>
pmod1 <- mirt(Science, 1)
plot(pmod1)
plot(pmod1, type = 'trace')
plot(pmod1, type = 'itemscore')
summary(pmod1)
#> F1 h2
#> Comfort 0.522 0.273
#> Work 0.584 0.342
#> Future 0.803 0.645
#> Benefit 0.541 0.293
#>
#> SS loadings: 1.552
#> Proportion Var: 0.388
#>
#> Factor correlations:
#>
#> F1
#> F1 1
# Constrain all slopes to be equal with the constrain = list() input or mirt.model() syntax
# first obtain parameter index
values <- mirt(Science,1, pars = 'values')
values #note that slopes are numbered 1,5,9,13, or index with values$parnum[values$name == 'a1']
#> group item class name parnum value lbound ubound est
#> 1 all Comfort graded a1 1 0.8510000 -Inf Inf TRUE
#> 2 all Comfort graded d1 2 4.3896709 -Inf Inf TRUE
#> 3 all Comfort graded d2 3 2.5828175 -Inf Inf TRUE
#> 4 all Comfort graded d3 4 -1.4712783 -Inf Inf TRUE
#> 5 all Work graded a1 5 0.8510000 -Inf Inf TRUE
#> 6 all Work graded d1 6 2.7071399 -Inf Inf TRUE
#> 7 all Work graded d2 7 0.8419146 -Inf Inf TRUE
#> 8 all Work graded d3 8 -2.1204510 -Inf Inf TRUE
#> 9 all Future graded a1 9 0.8510000 -Inf Inf TRUE
#> 10 all Future graded d1 10 3.5429316 -Inf Inf TRUE
#> 11 all Future graded d2 11 1.5216586 -Inf Inf TRUE
#> 12 all Future graded d3 12 -1.3573021 -Inf Inf TRUE
#> 13 all Benefit graded a1 13 0.8510000 -Inf Inf TRUE
#> 14 all Benefit graded d1 14 3.1664313 -Inf Inf TRUE
#> 15 all Benefit graded d2 15 0.9818914 -Inf Inf TRUE
#> 16 all Benefit graded d3 16 -1.6612126 -Inf Inf TRUE
#> 17 all GROUP GroupPars MEAN_1 17 0.0000000 -Inf Inf FALSE
#> 18 all GROUP GroupPars COV_11 18 1.0000000 1e-04 Inf FALSE
#> prior.type prior_1 prior_2
#> 1 none NaN NaN
#> 2 none NaN NaN
#> 3 none NaN NaN
#> 4 none NaN NaN
#> 5 none NaN NaN
#> 6 none NaN NaN
#> 7 none NaN NaN
#> 8 none NaN NaN
#> 9 none NaN NaN
#> 10 none NaN NaN
#> 11 none NaN NaN
#> 12 none NaN NaN
#> 13 none NaN NaN
#> 14 none NaN NaN
#> 15 none NaN NaN
#> 16 none NaN NaN
#> 17 none NaN NaN
#> 18 none NaN NaN
(pmod1_equalslopes <- mirt(Science, 1, constrain = list(c(1,5,9,13))))
#>
#> Call:
#> mirt(data = Science, model = 1, constrain = list(c(1, 5, 9, 13)))
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 15 EM iterations.
#> mirt version: 1.40
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -1613.899
#> Estimated parameters: 16
#> AIC = 3253.798
#> BIC = 3305.425; SABIC = 3264.176
#> G2 (242) = 223.62, p = 0.7959
#> RMSEA = 0, CFI = NaN, TLI = NaN
coef(pmod1_equalslopes)
#> $Comfort
#> a1 d1 d2 d3
#> par 1.321 5.165 2.844 -1.587
#>
#> $Work
#> a1 d1 d2 d3
#> par 1.321 2.992 0.934 -2.319
#>
#> $Future
#> a1 d1 d2 d3
#> par 1.321 4.067 1.662 -1.488
#>
#> $Benefit
#> a1 d1 d2 d3
#> par 1.321 3.55 1.057 -1.806
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#>
# using mirt.model syntax, constrain all item slopes to be equal
model <- 'F = 1-4
CONSTRAIN = (1-4, a1)'
(pmod1_equalslopes <- mirt(Science, model))
#>
#> Call:
#> mirt(data = Science, model = model)
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 15 EM iterations.
#> mirt version: 1.40
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -1613.899
#> Estimated parameters: 16
#> AIC = 3253.798
#> BIC = 3305.425; SABIC = 3264.176
#> G2 (242) = 223.62, p = 0.7959
#> RMSEA = 0, CFI = NaN, TLI = NaN
coef(pmod1_equalslopes)
#> $Comfort
#> a1 d1 d2 d3
#> par 1.321 5.165 2.844 -1.587
#>
#> $Work
#> a1 d1 d2 d3
#> par 1.321 2.992 0.934 -2.319
#>
#> $Future
#> a1 d1 d2 d3
#> par 1.321 4.067 1.662 -1.488
#>
#> $Benefit
#> a1 d1 d2 d3
#> par 1.321 3.55 1.057 -1.806
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#>
coef(pmod1_equalslopes)
#> $Comfort
#> a1 d1 d2 d3
#> par 1.321 5.165 2.844 -1.587
#>
#> $Work
#> a1 d1 d2 d3
#> par 1.321 2.992 0.934 -2.319
#>
#> $Future
#> a1 d1 d2 d3
#> par 1.321 4.067 1.662 -1.488
#>
#> $Benefit
#> a1 d1 d2 d3
#> par 1.321 3.55 1.057 -1.806
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#>
anova(pmod1_equalslopes, pmod1) #significantly worse fit with almost all criteria
#> AIC SABIC HQ BIC logLik X2 df p
#> pmod1_equalslopes 3253.798 3264.176 3274.259 3305.425 -1613.899
#> pmod1 3249.739 3262.512 3274.922 3313.279 -1608.870 10.059 3 0.018
pmod2 <- mirt(Science, 2)
summary(pmod2)
#>
#> Rotation: oblimin
#>
#> Rotated factor loadings:
#>
#> F1 F2 h2
#> Comfort 0.6016 0.0312 0.382
#> Work -0.0573 0.7971 0.592
#> Future 0.3302 0.5153 0.548
#> Benefit 0.7231 -0.0239 0.506
#>
#> Rotated SS loadings: 0.997 0.902
#>
#> Factor correlations:
#>
#> F1 F2
#> F1 1.000
#> F2 0.511 1
plot(pmod2, rotate = 'oblimin')
itemplot(pmod2, 1, rotate = 'oblimin')
anova(pmod1, pmod2)
#> AIC SABIC HQ BIC logLik X2 df p
#> pmod1 3249.739 3262.512 3274.922 3313.279 -1608.870
#> pmod2 3241.938 3257.106 3271.843 3317.392 -1601.969 13.801 3 0.003
# unidimensional fit with a generalized partial credit and nominal model
(gpcmod <- mirt(Science, 1, 'gpcm'))
#>
#> Call:
#> mirt(data = Science, model = 1, itemtype = "gpcm")
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 50 EM iterations.
#> mirt version: 1.40
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -1612.683
#> Estimated parameters: 16
#> AIC = 3257.366
#> BIC = 3320.906; SABIC = 3270.139
#> G2 (239) = 221.19, p = 0.7896
#> RMSEA = 0, CFI = NaN, TLI = NaN
coef(gpcmod)
#> $Comfort
#> a1 ak0 ak1 ak2 ak3 d0 d1 d2 d3
#> par 0.865 0 1 2 3 0 2.831 5.324 3.998
#>
#> $Work
#> a1 ak0 ak1 ak2 ak3 d0 d1 d2 d3
#> par 0.841 0 1 2 3 0 1.711 2.578 0.848
#>
#> $Future
#> a1 ak0 ak1 ak2 ak3 d0 d1 d2 d3
#> par 2.204 0 1 2 3 0 4.601 6.759 4.918
#>
#> $Benefit
#> a1 ak0 ak1 ak2 ak3 d0 d1 d2 d3
#> par 0.724 0 1 2 3 0 2.099 2.899 1.721
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#>
# for the nominal model the lowest and highest categories are assumed to be the
# theoretically lowest and highest categories that related to the latent trait(s)
(nomod <- mirt(Science, 1, 'nominal'))
#>
#> Call:
#> mirt(data = Science, model = 1, itemtype = "nominal")
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 71 EM iterations.
#> mirt version: 1.40
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -1608.455
#> Estimated parameters: 24
#> AIC = 3264.91
#> BIC = 3360.22; SABIC = 3284.069
#> G2 (231) = 212.73, p = 0.8002
#> RMSEA = 0, CFI = NaN, TLI = NaN
coef(nomod) #ordering of ak values suggest that the items are indeed ordinal
#> $Comfort
#> a1 ak0 ak1 ak2 ak3 d0 d1 d2 d3
#> par 1.008 0 1.541 1.999 3 0 3.639 5.905 4.533
#>
#> $Work
#> a1 ak0 ak1 ak2 ak3 d0 d1 d2 d3
#> par 0.841 0 0.689 1.5 3 0 1.464 2.326 0.325
#>
#> $Future
#> a1 ak0 ak1 ak2 ak3 d0 d1 d2 d3
#> par 2.041 0 0.762 1.861 3 0 3.668 5.867 3.949
#>
#> $Benefit
#> a1 ak0 ak1 ak2 ak3 d0 d1 d2 d3
#> par 0.779 0 1.036 1.742 3 0 2.144 2.911 1.621
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#>
anova(gpcmod, nomod)
#> AIC SABIC HQ BIC logLik X2 df p
#> gpcmod 3257.366 3270.139 3282.549 3320.906 -1612.683
#> nomod 3264.910 3284.069 3302.684 3360.220 -1608.455 8.456 8 0.39
itemplot(nomod, 3)
# generalized graded unfolding model
(ggum <- mirt(Science, 1, 'ggum'))
#> EM cycles terminated after 500 iterations.
#>
#> Call:
#> mirt(data = Science, model = 1, itemtype = "ggum")
#>
#> Full-information item factor analysis with 1 factor(s).
#> FAILED TO CONVERGE within 1e-04 tolerance after 500 EM iterations.
#> mirt version: 1.40
#> M-step optimizer: nlminb
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -1624.054
#> Estimated parameters: 20
#> AIC = 3288.107
#> BIC = 3367.533; SABIC = 3304.073
#> G2 (235) = 243.93, p = 0.3309
#> RMSEA = 0.01, CFI = NaN, TLI = NaN
coef(ggum, simplify=TRUE)
#> $items
#> a1 b1 t1 t2 t3
#> Comfort 1.489 -0.484 3.190 2.634 -0.167
#> Work 1.190 0.042 2.171 1.427 -0.720
#> Future 4.164 -0.041 2.167 1.346 0.261
#> Benefit 1.227 -0.475 2.775 1.497 -0.274
#>
#> $means
#> F1
#> 0
#>
#> $cov
#> F1
#> F1 1
#>
plot(ggum)
plot(ggum, type = 'trace')
plot(ggum, type = 'itemscore')
# monotonic polyomial models
(monopoly <- mirt(Science, 1, 'monopoly'))
#>
#> Call:
#> mirt(data = Science, model = 1, itemtype = "monopoly")
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 47 EM iterations.
#> mirt version: 1.40
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -1601.175
#> Estimated parameters: 24
#> AIC = 3250.349
#> BIC = 3345.66; SABIC = 3269.509
#> G2 (231) = 198.17, p = 0.9424
#> RMSEA = 0, CFI = NaN, TLI = NaN
coef(monopoly, simplify=TRUE)
#> $items
#> omega xi1 xi2 xi3 alpha1 tau2
#> Comfort -1.437 2.916 2.218 -1.469 -0.937 0.739
#> Work -0.411 1.378 0.698 -2.152 -0.498 -1.155
#> Future 0.832 4.975 2.256 -1.911 0.017 -8.475
#> Benefit -1.718 1.885 0.618 -1.388 -1.425 0.727
#>
#> $means
#> F1
#> 0
#>
#> $cov
#> F1
#> F1 1
#>
plot(monopoly)
plot(monopoly, type = 'trace')
plot(monopoly, type = 'itemscore')
# unipolar IRT model
unimod <- mirt(Science, itemtype = 'ULL')
coef(unimod, simplify=TRUE)
#> $items
#> eta1 log_lambda1 log_lambda2 log_lambda3
#> Comfort 1.175 4.780 2.299 -1.709
#> Work 1.618 2.534 0.554 -2.736
#> Future 2.803 4.034 1.526 -2.595
#> Benefit 1.319 3.021 0.682 -1.995
#>
#> $GroupPars
#> meanlog sdlog
#> par 0 1
#>
plot(unimod)
plot(unimod, type = 'trace')
itemplot(unimod, 1)
# following use the correct log-normal density for latent trait
itemfit(unimod)
#> item S_X2 df.S_X2 RMSEA.S_X2 p.S_X2
#> 1 Comfort 5.659 6 0.000 0.462
#> 2 Work 10.147 8 0.026 0.255
#> 3 Future 19.490 8 0.061 0.012
#> 4 Benefit 12.110 11 0.016 0.355
M2(unimod, type = 'C2')
#> EM cycles terminated after 500 iterations.
#> M2 df p RMSEA RMSEA_5 RMSEA_95 SRMSR
#> stats 18.70974 2 8.654271e-05 0.1461778 0.09032262 0.2096717 0.07859892
#> TLI CFI
#> stats 0.7380161 0.912672
fs <- fscores(unimod)
hist(fs, 20)
fscores(unimod, method = 'EAPsum', full.scores = FALSE)
#> df X2 p.X2 rxx_F1
#> stats 9 5.665525 0.7728707 0.5258804
#>
#> Sum.Scores F1 SE_F1 observed expected std.res
#> 4 4 0.017 0.065 2 0.166 4.502
#> 5 5 0.220 0.290 1 0.129 2.422
#> 6 6 0.601 0.130 2 0.510 2.085
#> 7 7 0.627 0.110 1 3.194 1.228
#> 8 8 0.645 0.163 11 12.722 0.483
#> 9 9 0.689 0.250 32 32.721 0.126
#> 10 10 0.796 0.392 58 57.465 0.071
#> 11 11 1.027 0.592 70 74.316 0.501
#> 12 12 1.454 0.853 91 77.803 1.496
#> 13 13 2.159 1.285 56 60.419 0.568
#> 14 14 3.299 2.001 36 40.122 0.651
#> 15 15 5.109 3.236 20 23.097 0.644
#> 16 16 8.224 5.305 12 9.337 0.872
## example applying survey weights.
# weight the first half of the cases to be more representative of population
survey.weights <- c(rep(2, nrow(Science)/2), rep(1, nrow(Science)/2))
survey.weights <- survey.weights/sum(survey.weights) * nrow(Science)
unweighted <- mirt(Science, 1)
weighted <- mirt(Science, 1, survey.weights=survey.weights)
###########
# empirical dimensionality testing that includes 'guessing'
data(SAT12)
data <- key2binary(SAT12,
key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
itemstats(data)
#> $overall
#> N mean_total.score sd_total.score ave.r sd.r alpha
#> 600 18.202 5.054 0.108 0.075 0.798
#>
#> $itemstats
#> N mean sd total.r total.r_if_rm alpha_if_rm
#> Item.1 600 0.283 0.451 0.380 0.300 0.793
#> Item.2 600 0.568 0.496 0.539 0.464 0.785
#> Item.3 600 0.280 0.449 0.446 0.371 0.789
#> Item.4 600 0.378 0.485 0.325 0.235 0.796
#> Item.5 600 0.620 0.486 0.424 0.340 0.791
#> Item.6 600 0.160 0.367 0.414 0.351 0.791
#> Item.7 600 0.760 0.427 0.366 0.289 0.793
#> Item.8 600 0.202 0.402 0.307 0.233 0.795
#> Item.9 600 0.885 0.319 0.189 0.127 0.798
#> Item.10 600 0.422 0.494 0.465 0.383 0.789
#> Item.11 600 0.983 0.128 0.181 0.156 0.797
#> Item.12 600 0.415 0.493 0.173 0.076 0.803
#> Item.13 600 0.662 0.474 0.438 0.358 0.790
#> Item.14 600 0.723 0.448 0.411 0.333 0.791
#> Item.15 600 0.817 0.387 0.393 0.325 0.792
#> Item.16 600 0.413 0.493 0.367 0.278 0.794
#> Item.17 600 0.963 0.188 0.238 0.202 0.796
#> Item.18 600 0.352 0.478 0.576 0.508 0.783
#> Item.19 600 0.548 0.498 0.401 0.314 0.792
#> Item.20 600 0.873 0.333 0.376 0.318 0.792
#> Item.21 600 0.915 0.279 0.190 0.136 0.798
#> Item.22 600 0.935 0.247 0.284 0.238 0.795
#> Item.23 600 0.313 0.464 0.338 0.253 0.795
#> Item.24 600 0.728 0.445 0.422 0.346 0.791
#> Item.25 600 0.375 0.485 0.383 0.297 0.793
#> Item.26 600 0.460 0.499 0.562 0.489 0.783
#> Item.27 600 0.862 0.346 0.425 0.367 0.791
#> Item.28 600 0.530 0.500 0.465 0.383 0.789
#> Item.29 600 0.340 0.474 0.407 0.324 0.791
#> Item.30 600 0.440 0.497 0.255 0.159 0.799
#> Item.31 600 0.833 0.373 0.479 0.419 0.788
#> Item.32 600 0.162 0.368 0.110 0.037 0.802
#>
#> $proportions
#> 0 1
#> Item.1 0.717 0.283
#> Item.2 0.432 0.568
#> Item.3 0.720 0.280
#> Item.4 0.622 0.378
#> Item.5 0.380 0.620
#> Item.6 0.840 0.160
#> Item.7 0.240 0.760
#> Item.8 0.798 0.202
#> Item.9 0.115 0.885
#> Item.10 0.578 0.422
#> Item.11 0.017 0.983
#> Item.12 0.585 0.415
#> Item.13 0.338 0.662
#> Item.14 0.277 0.723
#> Item.15 0.183 0.817
#> Item.16 0.587 0.413
#> Item.17 0.037 0.963
#> Item.18 0.648 0.352
#> Item.19 0.452 0.548
#> Item.20 0.127 0.873
#> Item.21 0.085 0.915
#> Item.22 0.065 0.935
#> Item.23 0.687 0.313
#> Item.24 0.272 0.728
#> Item.25 0.625 0.375
#> Item.26 0.540 0.460
#> Item.27 0.138 0.862
#> Item.28 0.470 0.530
#> Item.29 0.660 0.340
#> Item.30 0.560 0.440
#> Item.31 0.167 0.833
#> Item.32 0.838 0.162
#>
mod1 <- mirt(data, 1)
extract.mirt(mod1, 'time') #time elapsed for each estimation component
#> TOTAL: Data Estep Mstep SE Post
#> 0.345 0.049 0.079 0.205 0.000 0.001
# optionally use Newton-Raphson for (generally) faster convergence in the M-step's
mod1 <- mirt(data, 1, optimizer = 'NR')
extract.mirt(mod1, 'time')
#> TOTAL: Data Estep Mstep SE Post
#> 0.188 0.048 0.055 0.070 0.000 0.001
mod2 <- mirt(data, 2, optimizer = 'NR')
#> EM cycles terminated after 500 iterations.
# difficulty converging with reduced quadpts, reduce TOL
mod3 <- mirt(data, 3, TOL = .001, optimizer = 'NR')
anova(mod1,mod2)
#> AIC SABIC HQ BIC logLik X2 df p
#> mod1 19105.91 19184.13 19215.46 19387.31 -9488.955
#> mod2 19073.92 19190.03 19236.53 19491.63 -9441.963 93.985 31 0
anova(mod2, mod3) #negative AIC, 2 factors probably best
#> AIC SABIC HQ BIC logLik X2 df p
#> mod2 19073.92 19190.03 19236.53 19491.63 -9441.963
#> mod3 19080.18 19232.96 19294.13 19629.80 -9415.090 53.744 30 0.005
# same as above, but using the QMCEM method for generally better accuracy in mod3
mod3 <- mirt(data, 3, method = 'QMCEM', TOL = .001, optimizer = 'NR')
anova(mod2, mod3)
#> AIC SABIC HQ BIC logLik X2 df p
#> mod2 19073.92 19190.03 19236.53 19491.63 -9441.963
#> mod3 19081.58 19234.36 19295.54 19631.20 -9415.792 52.342 30 0.007
# with fixed guessing parameters
mod1g <- mirt(data, 1, guess = .1)
coef(mod1g)
#> $Item.1
#> a1 d g u
#> par 1.211 -1.737 0.1 1
#>
#> $Item.2
#> a1 d g u
#> par 1.78 0.147 0.1 1
#>
#> $Item.3
#> a1 d g u
#> par 1.91 -2.2 0.1 1
#>
#> $Item.4
#> a1 d g u
#> par 0.833 -0.944 0.1 1
#>
#> $Item.5
#> a1 d g u
#> par 1.089 0.399 0.1 1
#>
#> $Item.6
#> a1 d g u
#> par 3.265 -5.212 0.1 1
#>
#> $Item.7
#> a1 d g u
#> par 1.02 1.224 0.1 1
#>
#> $Item.8
#> a1 d g u
#> par 1.639 -2.977 0.1 1
#>
#> $Item.9
#> a1 d g u
#> par 0.49 2.007 0.1 1
#>
#> $Item.10
#> a1 d g u
#> par 1.257 -0.756 0.1 1
#>
#> $Item.11
#> a1 d g u
#> par 1.68 5.18 0.1 1
#>
#> $Item.12
#> a1 d g u
#> par 0.191 -0.625 0.1 1
#>
#> $Item.13
#> a1 d g u
#> par 1.147 0.654 0.1 1
#>
#> $Item.14
#> a1 d g u
#> par 1.099 1.008 0.1 1
#>
#> $Item.15
#> a1 d g u
#> par 1.337 1.79 0.1 1
#>
#> $Item.16
#> a1 d g u
#> par 0.923 -0.744 0.1 1
#>
#> $Item.17
#> a1 d g u
#> par 1.519 4.077 0.1 1
#>
#> $Item.18
#> a1 d g u
#> par 2.585 -1.749 0.1 1
#>
#> $Item.19
#> a1 d g u
#> par 0.91 -0.002 0.1 1
#>
#> $Item.20
#> a1 d g u
#> par 1.485 2.438 0.1 1
#>
#> $Item.21
#> a1 d g u
#> par 0.616 2.407 0.1 1
#>
#> $Item.22
#> a1 d g u
#> par 1.429 3.291 0.1 1
#>
#> $Item.23
#> a1 d g u
#> par 0.96 -1.393 0.1 1
#>
#> $Item.24
#> a1 d g u
#> par 1.282 1.099 0.1 1
#>
#> $Item.25
#> a1 d g u
#> par 1.028 -1 0.1 1
#>
#> $Item.26
#> a1 d g u
#> par 2.059 -0.658 0.1 1
#>
#> $Item.27
#> a1 d g u
#> par 1.839 2.564 0.1 1
#>
#> $Item.28
#> a1 d g u
#> par 1.222 -0.095 0.1 1
#>
#> $Item.29
#> a1 d g u
#> par 1.281 -1.357 0.1 1
#>
#> $Item.30
#> a1 d g u
#> par 0.444 -0.521 0.1 1
#>
#> $Item.31
#> a1 d g u
#> par 2.476 2.697 0.1 1
#>
#> $Item.32
#> a1 d g u
#> par 0.461 -2.742 0.1 1
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#>
###########
# graded rating scale example
# make some data
set.seed(1234)
a <- matrix(rep(1, 10))
d <- matrix(c(1,0.5,-.5,-1), 10, 4, byrow = TRUE)
c <- seq(-1, 1, length.out=10)
data <- simdata(a, d + c, 2000, itemtype = rep('graded',10))
itemstats(data)
#> $overall
#> N mean_total.score sd_total.score ave.r sd.r alpha
#> 2000 20.196 8.33 0.203 0.027 0.719
#>
#> $itemstats
#> N mean sd total.r total.r_if_rm alpha_if_rm
#> Item_1 2000 1.284 1.510 0.512 0.359 0.700
#> Item_2 2000 1.427 1.544 0.529 0.375 0.697
#> Item_3 2000 1.592 1.584 0.545 0.389 0.695
#> Item_4 2000 1.774 1.586 0.538 0.381 0.696
#> Item_5 2000 1.910 1.607 0.539 0.380 0.696
#> Item_6 2000 2.124 1.606 0.533 0.373 0.697
#> Item_7 2000 2.284 1.598 0.520 0.359 0.700
#> Item_8 2000 2.420 1.583 0.578 0.430 0.688
#> Item_9 2000 2.606 1.543 0.530 0.377 0.697
#> Item_10 2000 2.776 1.491 0.495 0.342 0.702
#>
#> $proportions
#> 0 1 2 3 4
#> Item_1 0.500 0.096 0.182 0.065 0.158
#> Item_2 0.450 0.108 0.197 0.059 0.187
#> Item_3 0.407 0.108 0.182 0.092 0.212
#> Item_4 0.346 0.111 0.212 0.085 0.246
#> Item_5 0.319 0.102 0.211 0.086 0.281
#> Item_6 0.269 0.097 0.205 0.099 0.330
#> Item_7 0.244 0.073 0.211 0.101 0.372
#> Item_8 0.216 0.074 0.195 0.106 0.410
#> Item_9 0.175 0.072 0.196 0.083 0.473
#> Item_10 0.150 0.059 0.174 0.102 0.516
#>
mod1 <- mirt(data, 1)
mod2 <- mirt(data, 1, itemtype = 'grsm')
coef(mod2)
#> $Item_1
#> a1 b1 b2 b3 b4 c
#> par 0.959 0.001 -0.507 -1.541 -2.032 0
#>
#> $Item_2
#> a1 b1 b2 b3 b4 c
#> par 0.987 0.001 -0.507 -1.541 -2.032 0.235
#>
#> $Item_3
#> a1 b1 b2 b3 b4 c
#> par 0.994 0.001 -0.507 -1.541 -2.032 0.457
#>
#> $Item_4
#> a1 b1 b2 b3 b4 c
#> par 1.027 0.001 -0.507 -1.541 -2.032 0.728
#>
#> $Item_5
#> a1 b1 b2 b3 b4 c
#> par 0.995 0.001 -0.507 -1.541 -2.032 0.895
#>
#> $Item_6
#> a1 b1 b2 b3 b4 c
#> par 0.987 0.001 -0.507 -1.541 -2.032 1.179
#>
#> $Item_7
#> a1 b1 b2 b3 b4 c
#> par 0.957 0.001 -0.507 -1.541 -2.032 1.404
#>
#> $Item_8
#> a1 b1 b2 b3 b4 c
#> par 1.04 0.001 -0.507 -1.541 -2.032 1.578
#>
#> $Item_9
#> a1 b1 b2 b3 b4 c
#> par 0.964 0.001 -0.507 -1.541 -2.032 1.878
#>
#> $Item_10
#> a1 b1 b2 b3 b4 c
#> par 0.947 0.001 -0.507 -1.541 -2.032 2.136
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#>
anova(mod2, mod1) #not sig, mod2 should be preferred
#> AIC SABIC HQ BIC logLik X2 df p
#> mod2 55239.72 55295.47 55287.03 55368.55 -27596.86
#> mod1 55252.05 55373.25 55354.88 55532.10 -27576.03 41.671 27 0.035
itemplot(mod2, 1)
itemplot(mod2, 5)
itemplot(mod2, 10)
###########
# 2PL nominal response model example (Suh and Bolt, 2010)
data(SAT12)
SAT12[SAT12 == 8] <- NA #set 8 as a missing value
head(SAT12)
#> Item.1 Item.2 Item.3 Item.4 Item.5 Item.6 Item.7 Item.8 Item.9 Item.10
#> 1 1 4 5 2 3 1 2 1 3 1
#> 2 3 4 2 NA 3 3 2 NA 3 1
#> 3 1 4 5 4 3 2 2 3 3 2
#> 4 2 4 4 2 3 3 2 4 3 2
#> 5 2 4 5 2 3 2 2 1 1 2
#> 6 1 4 3 1 3 2 2 3 3 1
#> Item.11 Item.12 Item.13 Item.14 Item.15 Item.16 Item.17 Item.18 Item.19
#> 1 2 4 2 1 5 3 4 4 1
#> 2 2 NA 2 1 5 2 4 1 1
#> 3 2 1 3 1 5 5 4 1 3
#> 4 2 4 2 1 5 2 4 1 3
#> 5 2 4 2 1 5 4 4 5 1
#> 6 2 3 2 1 5 5 4 4 1
#> Item.20 Item.21 Item.22 Item.23 Item.24 Item.25 Item.26 Item.27 Item.28
#> 1 4 3 3 4 1 3 5 1 3
#> 2 4 3 3 NA 1 NA 4 1 4
#> 3 4 3 3 1 1 3 4 1 3
#> 4 4 3 1 5 2 5 4 1 3
#> 5 4 3 3 3 1 1 5 1 3
#> 6 4 3 3 4 1 1 4 1 4
#> Item.29 Item.30 Item.31 Item.32
#> 1 1 5 4 5
#> 2 5 NA 4 NA
#> 3 4 4 4 1
#> 4 4 2 4 2
#> 5 1 2 4 1
#> 6 2 3 4 3
# correct answer key
key <- c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)
scoredSAT12 <- key2binary(SAT12, key)
mod0 <- mirt(scoredSAT12, 1)
# for first 5 items use 2PLNRM and nominal
scoredSAT12[,1:5] <- as.matrix(SAT12[,1:5])
mod1 <- mirt(scoredSAT12, 1, c(rep('nominal',5),rep('2PL', 27)))
mod2 <- mirt(scoredSAT12, 1, c(rep('2PLNRM',5),rep('2PL', 27)), key=key)
coef(mod0)$Item.1
#> a1 d g u
#> par 0.8107167 -1.042366 0 1
coef(mod1)$Item.1
#> a1 ak0 ak1 ak2 ak3 ak4 d0 d1 d2
#> par -0.8773 0 0.5285937 1.116549 1.129355 4 0 -0.1909842 0.01877757
#> d3 d4
#> par -0.1258587 -5.652548
coef(mod2)$Item.1
#> a1 d g u ak0 ak1 ak2 ak3 d0 d1
#> par 0.8102548 -1.04233 0 1 0 -0.5653287 -0.5712706 -3.025613 0 0.2117761
#> d2 d3
#> par 0.06919723 -5.309272
itemplot(mod0, 1)
itemplot(mod1, 1)
itemplot(mod2, 1)
# compare added information from distractors
Theta <- matrix(seq(-4,4,.01))
par(mfrow = c(2,3))
for(i in 1:5){
info <- iteminfo(extract.item(mod0,i), Theta)
info2 <- iteminfo(extract.item(mod2,i), Theta)
plot(Theta, info2, type = 'l', main = paste('Information for item', i), ylab = 'Information')
lines(Theta, info, col = 'red')
}
par(mfrow = c(1,1))
# test information
plot(Theta, testinfo(mod2, Theta), type = 'l', main = 'Test information', ylab = 'Information')
lines(Theta, testinfo(mod0, Theta), col = 'red')
###########
# using the MH-RM algorithm
data(LSAT7)
fulldata <- expand.table(LSAT7)
(mod1 <- mirt(fulldata, 1, method = 'MHRM'))
#>
#> Call:
#> mirt(data = fulldata, model = 1, method = "MHRM")
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 0.001 tolerance after 73 MHRM iterations.
#> mirt version: 1.40
#> M-step optimizer: NR1
#> Latent density type: Gaussian
#> Average MH acceptance ratio(s): 0.4
#>
#> Log-likelihood = -2659.472, SE = 0.018
#> Estimated parameters: 10
#> AIC = 5338.944
#> BIC = 5388.022; SABIC = 5356.261
#> G2 (21) = 32.89, p = 0.0475
#> RMSEA = 0.024, CFI = NaN, TLI = NaN
# Confirmatory models
# simulate data
a <- matrix(c(
1.5,NA,
0.5,NA,
1.0,NA,
1.0,0.5,
NA,1.5,
NA,0.5,
NA,1.0,
NA,1.0),ncol=2,byrow=TRUE)
d <- matrix(c(
-1.0,NA,NA,
-1.5,NA,NA,
1.5,NA,NA,
0.0,NA,NA,
3.0,2.0,-0.5,
2.5,1.0,-1,
2.0,0.0,NA,
1.0,NA,NA),ncol=3,byrow=TRUE)
sigma <- diag(2)
sigma[1,2] <- sigma[2,1] <- .4
items <- c(rep('2PL',4), rep('graded',3), '2PL')
dataset <- simdata(a,d,2000,items,sigma)
# analyses
# CIFA for 2 factor crossed structure
model.1 <- '
F1 = 1-4
F2 = 4-8
COV = F1*F2'
# compute model, and use parallel computation of the log-likelihood
if(interactive()) mirtCluster()
mod1 <- mirt(dataset, model.1, method = 'MHRM')
coef(mod1)
#> $Item_1
#> a1 a2 d g u
#> par 1.497 0 -1.078 0 1
#>
#> $Item_2
#> a1 a2 d g u
#> par 0.407 0 -1.398 0 1
#>
#> $Item_3
#> a1 a2 d g u
#> par 0.982 0 1.546 0 1
#>
#> $Item_4
#> a1 a2 d g u
#> par 1.046 0.497 0.074 0 1
#>
#> $Item_5
#> a1 a2 d1 d2 d3
#> par 0 1.989 3.532 2.291 -0.675
#>
#> $Item_6
#> a1 a2 d1 d2 d3
#> par 0 0.53 2.572 1.054 -1.023
#>
#> $Item_7
#> a1 a2 d1 d2
#> par 0 1.05 2.007 -0.005
#>
#> $Item_8
#> a1 a2 d g u
#> par 0 0.946 1.004 0 1
#>
#> $GroupPars
#> MEAN_1 MEAN_2 COV_11 COV_21 COV_22
#> par 0 0 1 0.427 1
#>
summary(mod1)
#> F1 F2 h2
#> Item_1 0.661 0.000 0.4363
#> Item_2 0.233 0.000 0.0541
#> Item_3 0.500 0.000 0.2497
#> Item_4 0.508 0.241 0.3162
#> Item_5 0.000 0.760 0.5773
#> Item_6 0.000 0.297 0.0883
#> Item_7 0.000 0.525 0.2755
#> Item_8 0.000 0.486 0.2361
#>
#> SS loadings: 0.998 1.235
#> Proportion Var: 0.125 0.154
#>
#> Factor correlations:
#>
#> F1 F2
#> F1 1.000
#> F2 0.427 1
residuals(mod1)
#> LD matrix (lower triangle) and standardized values.
#>
#> Upper triangle summary:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.042 -0.025 -0.005 -0.002 0.018 0.047
#>
#> Item_1 Item_2 Item_3 Item_4 Item_5 Item_6 Item_7 Item_8
#> Item_1 NA -0.009 0.002 -0.003 0.032 0.027 -0.012 0.015
#> Item_2 0.156 NA 0.017 0.012 -0.028 -0.019 0.019 -0.001
#> Item_3 0.012 0.604 NA -0.007 -0.016 0.047 -0.026 -0.025
#> Item_4 0.019 0.284 0.096 NA -0.025 0.019 -0.042 0.019
#> Item_5 2.108 1.621 0.509 1.275 NA 0.043 -0.042 -0.023
#> Item_6 1.478 0.741 4.388 0.747 10.961 NA -0.026 -0.027
#> Item_7 0.293 0.741 1.347 3.447 6.936 2.804 NA 0.015
#> Item_8 0.433 0.002 1.215 0.705 1.032 1.464 0.452 NA
#####
# bifactor
model.3 <- '
G = 1-8
F1 = 1-4
F2 = 5-8'
mod3 <- mirt(dataset,model.3, method = 'MHRM')
coef(mod3)
#> $Item_1
#> a1 a2 a3 d g u
#> par 0.88 1.003 0 -1.028 0 1
#>
#> $Item_2
#> a1 a2 a3 d g u
#> par 0.159 0.442 0 -1.415 0 1
#>
#> $Item_3
#> a1 a2 a3 d g u
#> par 0.466 1.027 0 1.615 0 1
#>
#> $Item_4
#> a1 a2 a3 d g u
#> par 1.44 0.726 0 0.083 0 1
#>
#> $Item_5
#> a1 a2 a3 d1 d2 d3
#> par 1.429 0 1.519 3.656 2.373 -0.683
#>
#> $Item_6
#> a1 a2 a3 d1 d2 d3
#> par 0.393 0 0.346 2.574 1.057 -1.018
#>
#> $Item_7
#> a1 a2 a3 d1 d2
#> par 0.68 0 0.786 2.011 0.003
#>
#> $Item_8
#> a1 a2 a3 d g u
#> par 0.737 0 0.558 1.005 0 1
#>
#> $GroupPars
#> MEAN_1 MEAN_2 MEAN_3 COV_11 COV_21 COV_31 COV_22 COV_32 COV_33
#> par 0 0 0 1 0 0 1 0 1
#>
summary(mod3)
#> G F1 F2 h2
#> Item_1 0.4070 0.464 0.000 0.3808
#> Item_2 0.0902 0.250 0.000 0.0707
#> Item_3 0.2281 0.503 0.000 0.3050
#> Item_4 0.6140 0.310 0.000 0.4730
#> Item_5 0.5309 0.000 0.564 0.6002
#> Item_6 0.2206 0.000 0.195 0.0865
#> Item_7 0.3410 0.000 0.394 0.2715
#> Item_8 0.3805 0.000 0.288 0.2276
#>
#> SS loadings: 1.194 0.627 0.594
#> Proportion Var: 0.149 0.078 0.074
#>
#> Factor correlations:
#>
#> G F1 F2
#> G 1
#> F1 0 1
#> F2 0 0 1
residuals(mod3)
#> LD matrix (lower triangle) and standardized values.
#>
#> Upper triangle summary:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.042 -0.019 -0.002 0.000 0.017 0.051
#>
#> Item_1 Item_2 Item_3 Item_4 Item_5 Item_6 Item_7 Item_8
#> Item_1 NA -0.008 0.003 -0.008 0.032 0.026 -0.007 0.005
#> Item_2 0.143 NA 0.004 0.014 -0.019 -0.017 0.024 0.007
#> Item_3 0.023 0.031 NA -0.009 0.017 0.051 0.020 -0.016
#> Item_4 0.134 0.378 0.164 NA -0.023 -0.019 -0.039 0.006
#> Item_5 2.072 0.754 0.546 1.045 NA 0.043 -0.042 -0.021
#> Item_6 1.382 0.553 5.205 0.742 10.934 NA -0.026 -0.024
#> Item_7 0.097 1.172 0.815 3.102 6.910 2.708 NA 0.021
#> Item_8 0.043 0.104 0.498 0.080 0.896 1.192 0.872 NA
anova(mod1,mod3)
#> AIC SABIC HQ BIC logLik X2 df p
#> mod1 24684.02 24739.77 24731.32 24812.84 -12319.01
#> mod3 24693.60 24763.89 24753.24 24856.03 -12317.80 2.415 6 0.878
#####
# polynomial/combinations
data(SAT12)
data <- key2binary(SAT12,
key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
model.quad <- '
F1 = 1-32
(F1*F1) = 1-32'
model.combo <- '
F1 = 1-16
F2 = 17-32
(F1*F2) = 1-8'
(mod.quad <- mirt(data, model.quad))
#> EM cycles terminated after 500 iterations.
#>
#> Call:
#> mirt(data = data, model = model.quad)
#>
#> Full-information item factor analysis with 1 factor(s).
#> FAILED TO CONVERGE within 1e-04 tolerance after 500 EM iterations.
#> mirt version: 1.40
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -9424.24
#> Estimated parameters: 96
#> AIC = 19040.48
#> BIC = 19462.59; SABIC = 19157.81
#>
summary(mod.quad)
#> F1 (F1*F1) h2
#> Item.1 0.24639 0.3210 0.1638
#> Item.2 0.31551 0.6626 0.5386
#> Item.3 0.18783 0.4634 0.2500
#> Item.4 0.22489 0.2807 0.1293
#> Item.5 0.26772 0.4771 0.2993
#> Item.6 0.22930 0.4345 0.2414
#> Item.7 -0.23637 0.6830 0.5223
#> Item.8 0.07004 0.3232 0.1093
#> Item.9 0.06983 0.2450 0.0649
#> Item.10 0.12753 0.4487 0.2176
#> Item.11 -0.00382 0.9833 0.9668
#> Item.12 0.13103 0.0672 0.0217
#> Item.13 -0.12537 0.6408 0.4264
#> Item.14 0.42062 0.5447 0.4736
#> Item.15 -0.26307 0.8066 0.7198
#> Item.16 0.15642 0.3586 0.1531
#> Item.17 -0.31132 0.8823 0.8755
#> Item.18 0.22303 0.6549 0.4786
#> Item.19 0.17093 0.4041 0.1925
#> Item.20 0.36711 0.7939 0.7650
#> Item.21 -0.36793 0.5730 0.4637
#> Item.22 -0.27857 0.9316 0.9455
#> Item.23 0.41381 0.2199 0.2196
#> Item.24 -0.13666 0.7627 0.6004
#> Item.25 0.60613 0.2569 0.4334
#> Item.26 0.35150 0.6302 0.5208
#> Item.27 -0.05752 0.9283 0.8651
#> Item.28 0.08801 0.5133 0.2712
#> Item.29 0.26467 0.3621 0.2011
#> Item.30 0.05432 0.1697 0.0318
#> Item.31 0.25271 0.9270 0.9231
#> Item.32 0.01288 0.1086 0.0120
#>
#> SS loadings: 2.108 10.989
#> Proportion Var: 0.066 0.343
#>
#> Factor correlations:
#>
#> F1
#> F1 1
(mod.combo <- mirt(data, model.combo))
#>
#> Call:
#> mirt(data = data, model = model.combo)
#>
#> Full-information item factor analysis with 2 factor(s).
#> Converged within 1e-04 tolerance after 22 EM iterations.
#> mirt version: 1.40
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 31
#> Latent density type: Gaussian
#>
#> Log-likelihood = -9619.871
#> Estimated parameters: 72
#> AIC = 19383.74
#> BIC = 19700.32; SABIC = 19471.74
#>
anova(mod.combo, mod.quad)
#> AIC SABIC HQ BIC logLik X2 df p
#> mod.combo 19383.74 19471.74 19506.98 19700.32 -9619.871
#> mod.quad 19040.48 19157.81 19204.80 19462.58 -9424.240 391.261 24 0
# non-linear item and test plots
plot(mod.quad)
plot(mod.combo, type = 'SE')
itemplot(mod.quad, 1, type = 'score')
itemplot(mod.combo, 2, type = 'score')
itemplot(mod.combo, 2, type = 'infocontour')
## empirical histogram examples (normal, skew and bimodality)
# make some data
set.seed(1234)
a <- matrix(rlnorm(50, .2, .2))
d <- matrix(rnorm(50))
ThetaNormal <- matrix(rnorm(2000))
ThetaBimodal <- scale(matrix(c(rnorm(1000, -2), rnorm(1000,2)))) #bimodal
ThetaSkew <- scale(matrix(rchisq(2000, 3))) #positive skew
datNormal <- simdata(a, d, 2000, itemtype = '2PL', Theta=ThetaNormal)
datBimodal <- simdata(a, d, 2000, itemtype = '2PL', Theta=ThetaBimodal)
datSkew <- simdata(a, d, 2000, itemtype = '2PL', Theta=ThetaSkew)
normal <- mirt(datNormal, 1, dentype = "empiricalhist")
plot(normal, type = 'empiricalhist')
histogram(ThetaNormal, breaks=30)
bimodal <- mirt(datBimodal, 1, dentype = "empiricalhist")
plot(bimodal, type = 'empiricalhist')
histogram(ThetaBimodal, breaks=30)
skew <- mirt(datSkew, 1, dentype = "empiricalhist")
plot(skew, type = 'empiricalhist')
histogram(ThetaSkew, breaks=30)
#####
# non-linear parameter constraints with Rsolnp package (nloptr supported as well):
# Find Rasch model subject to the constraint that the intercepts sum to 0
dat <- expand.table(LSAT6)
itemstats(dat)
#> $overall
#> N mean_total.score sd_total.score ave.r sd.r alpha
#> 1000 3.819 1.035 0.077 0.03 0.295
#>
#> $itemstats
#> N mean sd total.r total.r_if_rm alpha_if_rm
#> Item_1 1000 0.924 0.265 0.362 0.113 0.275
#> Item_2 1000 0.709 0.454 0.567 0.153 0.238
#> Item_3 1000 0.553 0.497 0.618 0.173 0.217
#> Item_4 1000 0.763 0.425 0.534 0.144 0.246
#> Item_5 1000 0.870 0.336 0.435 0.122 0.266
#>
#> $proportions
#> 0 1
#> Item_1 0.076 0.924
#> Item_2 0.291 0.709
#> Item_3 0.447 0.553
#> Item_4 0.237 0.763
#> Item_5 0.130 0.870
#>
# free latent mean and variance terms
model <- 'Theta = 1-5
MEAN = Theta
COV = Theta*Theta'
# view how vector of parameters is organized internally
sv <- mirt(dat, model, itemtype = 'Rasch', pars = 'values')
sv[sv$est, ]
#> group item class name parnum value lbound ubound est prior.type
#> 2 all Item_1 dich d 2 2.8152981 -Inf Inf TRUE none
#> 6 all Item_2 dich d 6 1.0818304 -Inf Inf TRUE none
#> 10 all Item_3 dich d 10 0.2618655 -Inf Inf TRUE none
#> 14 all Item_4 dich d 14 1.4071275 -Inf Inf TRUE none
#> 18 all Item_5 dich d 18 2.2136968 -Inf Inf TRUE none
#> 21 all GROUP GroupPars MEAN_1 21 0.0000000 -Inf Inf TRUE none
#> 22 all GROUP GroupPars COV_11 22 1.0000000 1e-04 Inf TRUE none
#> prior_1 prior_2
#> 2 NaN NaN
#> 6 NaN NaN
#> 10 NaN NaN
#> 14 NaN NaN
#> 18 NaN NaN
#> 21 NaN NaN
#> 22 NaN NaN
# constraint: create function for solnp to compute constraint, and declare value in eqB
eqfun <- function(p, optim_args) sum(p[1:5]) #could use browser() here, if it helps
LB <- c(rep(-15, 6), 1e-4) # more reasonable lower bound for variance term
mod <- mirt(dat, model, sv=sv, itemtype = 'Rasch', optimizer = 'solnp',
solnp_args=list(eqfun=eqfun, eqB=0, LB=LB))
print(mod)
#>
#> Call:
#> mirt(data = dat, model = model, itemtype = "Rasch", optimizer = "solnp",
#> solnp_args = list(eqfun = eqfun, eqB = 0, LB = LB), sv = sv)
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 34 EM iterations.
#> mirt version: 1.40
#> M-step optimizer: solnp
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -2466.943
#> Estimated parameters: 7
#> AIC = 4947.887
#> BIC = 4982.241; SABIC = 4960.009
#> G2 (25) = 21.81, p = 0.6467
#> RMSEA = 0, CFI = NaN, TLI = NaN
coef(mod)
#> $Item_1
#> a1 d g u
#> par 1 1.253 0 1
#>
#> $Item_2
#> a1 d g u
#> par 1 -0.475 0 1
#>
#> $Item_3
#> a1 d g u
#> par 1 -1.233 0 1
#>
#> $Item_4
#> a1 d g u
#> par 1 -0.168 0 1
#>
#> $Item_5
#> a1 d g u
#> par 1 0.623 0 1
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 1.472 0.559
#>
(ds <- sapply(coef(mod)[1:5], function(x) x[,'d']))
#> Item_1 Item_2 Item_3 Item_4 Item_5
#> 1.2529600 -0.4754484 -1.2327360 -0.1681705 0.6233949
sum(ds)
#> [1] 4.551914e-15
# same likelihood location as: mirt(dat, 1, itemtype = 'Rasch')
#######
# latent regression Rasch model
# simulate data
set.seed(1234)
N <- 1000
# covariates
X1 <- rnorm(N); X2 <- rnorm(N)
covdata <- data.frame(X1, X2)
Theta <- matrix(0.5 * X1 + -1 * X2 + rnorm(N, sd = 0.5))
# items and response data
a <- matrix(1, 20); d <- matrix(rnorm(20))
dat <- simdata(a, d, 1000, itemtype = '2PL', Theta=Theta)
# unconditional Rasch model
mod0 <- mirt(dat, 1, 'Rasch')
# conditional model using X1 and X2 as predictors of Theta
mod1 <- mirt(dat, 1, 'Rasch', covdata=covdata, formula = ~ X1 + X2)
coef(mod1, simplify=TRUE)
#> $items
#> a1 d g u
#> Item_1 1 -0.409 0 1
#> Item_2 1 0.491 0 1
#> Item_3 1 0.313 0 1
#> Item_4 1 1.965 0 1
#> Item_5 1 1.753 0 1
#> Item_6 1 -0.246 0 1
#> Item_7 1 -1.077 0 1
#> Item_8 1 0.533 0 1
#> Item_9 1 -1.232 0 1
#> Item_10 1 0.603 0 1
#> Item_11 1 -0.404 0 1
#> Item_12 1 1.238 0 1
#> Item_13 1 1.033 0 1
#> Item_14 1 1.524 0 1
#> Item_15 1 -0.548 0 1
#> Item_16 1 2.075 0 1
#> Item_17 1 -0.695 0 1
#> Item_18 1 -1.200 0 1
#> Item_19 1 0.121 0 1
#> Item_20 1 0.523 0 1
#>
#> $means
#> F1
#> 0
#>
#> $cov
#> F1
#> F1 0.215
#>
#> $lr.betas
#> F1
#> (Intercept) 0.000
#> X1 0.527
#> X2 -1.036
#>
anova(mod0, mod1)
#> AIC SABIC HQ BIC logLik X2 df p
#> mod0 22246.88 22283.25 22286.06 22349.95 -11102.44
#> mod1 21028.06 21067.89 21070.96 21140.94 -10491.03 1222.824 2 0
# bootstrapped confidence intervals
boot.mirt(mod1, R=5)
#>
#> ORDINARY NONPARAMETRIC BOOTSTRAP
#>
#>
#> Call:
#> boot.mirt(x = mod1, R = 5)
#>
#>
#> Bootstrap Statistics :
#> original bias std. error
#> t1* -0.4088935 0.0170682073 0.10757209
#> t2* 0.4909630 0.0217407330 0.02500522
#> t3* 0.3126422 0.0236496011 0.05634312
#> t4* 1.9648322 0.0193659421 0.13606204
#> t5* 1.7526211 -0.0455520674 0.11423101
#> t6* -0.2460967 -0.0219137511 0.07868434
#> t7* -1.0765218 0.0477122607 0.07798492
#> t8* 0.5334115 0.0693270024 0.06221565
#> t9* -1.2316515 0.0228112980 0.10239703
#> t10* 0.6028956 0.0264900614 0.04916922
#> t11* -0.4035988 -0.0239383377 0.07740224
#> t12* 1.2376800 0.0166537013 0.09645754
#> t13* 1.0329335 0.0157872957 0.14718882
#> t14* 1.5237334 0.0387684021 0.08281241
#> t15* -0.5478457 0.0005616874 0.03783416
#> t16* 2.0750930 0.0770826881 0.09570574
#> t17* -0.6953709 -0.0016625127 0.09420901
#> t18* -1.2000275 -0.0246110382 0.06462390
#> t19* 0.1210549 -0.0051398610 0.09276760
#> t20* 0.5227785 0.0075559929 0.12634653
#> t21* 0.2154905 -0.0178079178 0.02886265
#> t22* 0.5265560 -0.0115324844 0.01713000
#> t23* -1.0358089 0.0026048128 0.03126855
# draw plausible values for secondary analyses
pv <- fscores(mod1, plausible.draws = 10)
pvmods <- lapply(pv, function(x, covdata) lm(x ~ covdata$X1 + covdata$X2),
covdata=covdata)
# population characteristics recovered well, and can be averaged over
so <- lapply(pvmods, summary)
so
#> [[1]]
#>
#> Call:
#> lm(formula = x ~ covdata$X1 + covdata$X2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.48744 -0.32035 -0.03027 0.33092 1.64777
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.01120 0.01483 0.755 0.45
#> covdata$X1 0.51993 0.01489 34.909 <2e-16 ***
#> covdata$X2 -1.03707 0.01514 -68.503 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4687 on 997 degrees of freedom
#> Multiple R-squared: 0.8502, Adjusted R-squared: 0.8499
#> F-statistic: 2829 on 2 and 997 DF, p-value: < 2.2e-16
#>
#>
#> [[2]]
#>
#> Call:
#> lm(formula = x ~ covdata$X1 + covdata$X2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.80044 -0.29877 0.01491 0.30588 1.33775
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.006806 0.014821 -0.459 0.646
#> covdata$X1 0.551372 0.014884 37.044 <2e-16 ***
#> covdata$X2 -1.040230 0.015129 -68.757 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4684 on 997 degrees of freedom
#> Multiple R-squared: 0.854, Adjusted R-squared: 0.8537
#> F-statistic: 2915 on 2 and 997 DF, p-value: < 2.2e-16
#>
#>
#> [[3]]
#>
#> Call:
#> lm(formula = x ~ covdata$X1 + covdata$X2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.45128 -0.31163 0.00508 0.32864 1.66145
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.02275 0.01523 1.494 0.136
#> covdata$X1 0.53669 0.01529 35.095 <2e-16 ***
#> covdata$X2 -1.04572 0.01554 -67.274 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4813 on 997 degrees of freedom
#> Multiple R-squared: 0.8467, Adjusted R-squared: 0.8464
#> F-statistic: 2754 on 2 and 997 DF, p-value: < 2.2e-16
#>
#>
#> [[4]]
#>
#> Call:
#> lm(formula = x ~ covdata$X1 + covdata$X2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.35169 -0.31885 -0.00129 0.31486 1.29594
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.00794 0.01505 -0.528 0.598
#> covdata$X1 0.51788 0.01511 34.262 <2e-16 ***
#> covdata$X2 -1.04067 0.01536 -67.734 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4757 on 997 degrees of freedom
#> Multiple R-squared: 0.8469, Adjusted R-squared: 0.8466
#> F-statistic: 2758 on 2 and 997 DF, p-value: < 2.2e-16
#>
#>
#> [[5]]
#>
#> Call:
#> lm(formula = x ~ covdata$X1 + covdata$X2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.4573 -0.2927 -0.0185 0.3035 1.5889
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.02262 0.01446 1.564 0.118
#> covdata$X1 0.52683 0.01452 36.276 <2e-16 ***
#> covdata$X2 -1.04856 0.01476 -71.032 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4571 on 997 degrees of freedom
#> Multiple R-squared: 0.8593, Adjusted R-squared: 0.859
#> F-statistic: 3045 on 2 and 997 DF, p-value: < 2.2e-16
#>
#>
#> [[6]]
#>
#> Call:
#> lm(formula = x ~ covdata$X1 + covdata$X2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.46570 -0.31564 0.00872 0.31530 1.52819
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.005705 0.014957 0.381 0.703
#> covdata$X1 0.526329 0.015021 35.038 <2e-16 ***
#> covdata$X2 -1.053188 0.015269 -68.977 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4728 on 997 degrees of freedom
#> Multiple R-squared: 0.8518, Adjusted R-squared: 0.8515
#> F-statistic: 2865 on 2 and 997 DF, p-value: < 2.2e-16
#>
#>
#> [[7]]
#>
#> Call:
#> lm(formula = x ~ covdata$X1 + covdata$X2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.49859 -0.30458 -0.00807 0.30606 1.59613
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.002908 0.014254 0.204 0.838
#> covdata$X1 0.521445 0.014316 36.425 <2e-16 ***
#> covdata$X2 -1.038613 0.014551 -71.376 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4505 on 997 degrees of freedom
#> Multiple R-squared: 0.8604, Adjusted R-squared: 0.8602
#> F-statistic: 3073 on 2 and 997 DF, p-value: < 2.2e-16
#>
#>
#> [[8]]
#>
#> Call:
#> lm(formula = x ~ covdata$X1 + covdata$X2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.28938 -0.34061 -0.01502 0.31870 1.62219
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.008333 0.015150 0.55 0.582
#> covdata$X1 0.524235 0.015215 34.45 <2e-16 ***
#> covdata$X2 -1.007372 0.015465 -65.14 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4788 on 997 degrees of freedom
#> Multiple R-squared: 0.8389, Adjusted R-squared: 0.8386
#> F-statistic: 2596 on 2 and 997 DF, p-value: < 2.2e-16
#>
#>
#> [[9]]
#>
#> Call:
#> lm(formula = x ~ covdata$X1 + covdata$X2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.37357 -0.29273 -0.00195 0.30091 1.22881
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.005314 0.014005 -0.379 0.704
#> covdata$X1 0.531488 0.014065 37.789 <2e-16 ***
#> covdata$X2 -1.047893 0.014296 -73.299 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4426 on 997 degrees of freedom
#> Multiple R-squared: 0.8672, Adjusted R-squared: 0.8669
#> F-statistic: 3254 on 2 and 997 DF, p-value: < 2.2e-16
#>
#>
#> [[10]]
#>
#> Call:
#> lm(formula = x ~ covdata$X1 + covdata$X2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.42459 -0.30916 0.01038 0.31847 1.56320
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.002016 0.015051 0.134 0.893
#> covdata$X1 0.537388 0.015115 35.553 <2e-16 ***
#> covdata$X2 -1.044559 0.015364 -67.988 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4757 on 997 degrees of freedom
#> Multiple R-squared: 0.8496, Adjusted R-squared: 0.8493
#> F-statistic: 2815 on 2 and 997 DF, p-value: < 2.2e-16
#>
#>
# compute Rubin's multiple imputation average
par <- lapply(so, function(x) x$coefficients[, 'Estimate'])
SEpar <- lapply(so, function(x) x$coefficients[, 'Std. Error'])
averageMI(par, SEpar)
#> par SEpar t df p
#> (Intercept) 0.006 0.019 0.295 62.154 0.192
#> covdata$X1 0.529 0.018 28.944 77.503 0
#> covdata$X2 -1.040 0.020 -51.796 47.489 0
############
# Example using Gauss-Hermite quadrature with custom input functions
library(fastGHQuad)
#> Loading required package: Rcpp
data(SAT12)
data <- key2binary(SAT12,
key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
GH <- gaussHermiteData(50)
Theta <- matrix(GH$x)
# This prior works for uni- and multi-dimensional models
prior <- function(Theta, Etable){
P <- grid <- GH$w / sqrt(pi)
if(ncol(Theta) > 1)
for(i in 2:ncol(Theta))
P <- expand.grid(P, grid)
if(!is.vector(P)) P <- apply(P, 1, prod)
P
}
GHmod1 <- mirt(data, 1, optimizer = 'NR',
technical = list(customTheta = Theta, customPriorFun = prior))
coef(GHmod1, simplify=TRUE)
#> $items
#> a1 d g u
#> Item.1 1.147 -1.042 0 1
#> Item.2 2.114 0.442 0 1
#> Item.3 1.523 -1.120 0 1
#> Item.4 0.815 -0.517 0 1
#> Item.5 1.392 0.610 0 1
#> Item.6 1.627 -2.051 0 1
#> Item.7 1.418 1.389 0 1
#> Item.8 0.967 -1.501 0 1
#> Item.9 0.753 2.143 0 1
#> Item.10 1.410 -0.355 0 1
#> Item.11 2.494 5.283 0 1
#> Item.12 0.223 -0.331 0 1
#> Item.13 1.569 0.853 0 1
#> Item.14 1.457 1.184 0 1
#> Item.15 1.792 1.917 0 1
#> Item.16 1.016 -0.379 0 1
#> Item.17 2.211 4.176 0 1
#> Item.18 2.420 -0.849 0 1
#> Item.19 1.195 0.238 0 1
#> Item.20 2.182 2.631 0 1
#> Item.21 0.919 2.559 0 1
#> Item.22 2.183 3.481 0 1
#> Item.23 0.900 -0.843 0 1
#> Item.24 1.681 1.266 0 1
#> Item.25 1.082 -0.552 0 1
#> Item.26 2.158 -0.170 0 1
#> Item.27 2.743 2.813 0 1
#> Item.28 1.492 0.183 0 1
#> Item.29 1.176 -0.738 0 1
#> Item.30 0.535 -0.231 0 1
#> Item.31 3.307 2.792 0 1
#> Item.32 0.163 -1.638 0 1
#>
#> $means
#> F1
#> 0
#>
#> $cov
#> F1
#> F1 1
#>
Theta2 <- as.matrix(expand.grid(Theta, Theta))
GHmod2 <- mirt(data, 2, optimizer = 'NR', TOL = .0002,
technical = list(customTheta = Theta2, customPriorFun = prior))
summary(GHmod2, suppress=.2)
#>
#> Rotation: oblimin
#>
#> Rotated factor loadings:
#>
#> F1 F2 h2
#> Item.1 0.585 0.34969
#> Item.2 0.328 0.543 0.60987
#> Item.3 0.366 0.387 0.44761
#> Item.4 0.583 0.26862
#> Item.5 0.235 0.472 0.40648
#> Item.6 0.619 0.49035
#> Item.7 0.865 0.60276
#> Item.8 0.390 0.24233
#> Item.9 0.627 0.29129
#> Item.10 0.533 0.44344
#> Item.11 0.702 0.68751
#> Item.12 -0.233 0.355 0.08425
#> Item.13 0.602 0.49900
#> Item.14 0.719 0.51672
#> Item.15 0.800 0.62384
#> Item.16 0.554 0.30530
#> Item.17 0.589 0.290 0.62909
#> Item.18 0.459 0.462 0.67035
#> Item.19 0.229 0.413 0.33189
#> Item.20 0.361 0.526 0.62724
#> Item.21 0.690 0.35960
#> Item.22 0.572 0.301 0.61706
#> Item.23 -0.216 0.691 0.35086
#> Item.24 0.614 0.52605
#> Item.25 0.721 0.40698
#> Item.26 0.691 0.64288
#> Item.27 0.644 0.299 0.72800
#> Item.28 0.300 0.439 0.43595
#> Item.29 0.632 0.37855
#> Item.30 0.267 0.10193
#> Item.31 0.391 0.608 0.79738
#> Item.32 0.00983
#>
#> Rotated SS loadings: 6.085 6.436
#>
#> Factor correlations:
#>
#> F1 F2
#> F1 1.000
#> F2 0.581 1
############
# Davidian curve example
dat <- key2binary(SAT12,
key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
dav <- mirt(dat, 1, dentype = 'Davidian-4') # use four smoothing parameters
plot(dav, type = 'Davidian') # shape of latent trait distribution
coef(dav, simplify=TRUE)
#> $items
#> a1 d g u
#> Item.1 0.774 -1.048 0 1
#> Item.2 1.684 0.495 0 1
#> Item.3 1.051 -1.114 0 1
#> Item.4 0.582 -0.531 0 1
#> Item.5 1.043 0.613 0 1
#> Item.6 1.037 -2.029 0 1
#> Item.7 1.096 1.397 0 1
#> Item.8 0.638 -1.513 0 1
#> Item.9 0.543 2.128 0 1
#> Item.10 0.993 -0.352 0 1
#> Item.11 2.131 5.454 0 1
#> Item.12 0.163 -0.338 0 1
#> Item.13 1.204 0.867 0 1
#> Item.14 1.171 1.211 0 1
#> Item.15 1.388 1.926 0 1
#> Item.16 0.725 -0.389 0 1
#> Item.17 1.861 4.274 0 1
#> Item.18 1.763 -0.788 0 1
#> Item.19 0.880 0.236 0 1
#> Item.20 1.867 2.744 0 1
#> Item.21 0.695 2.552 0 1
#> Item.22 1.864 3.592 0 1
#> Item.23 0.590 -0.851 0 1
#> Item.24 1.335 1.297 0 1
#> Item.25 0.732 -0.558 0 1
#> Item.26 1.650 -0.125 0 1
#> Item.27 2.357 2.969 0 1
#> Item.28 1.060 0.184 0 1
#> Item.29 0.802 -0.742 0 1
#> Item.30 0.352 -0.241 0 1
#> Item.31 2.945 3.062 0 1
#> Item.32 0.169 -1.651 0 1
#>
#> $means
#> F1
#> 0
#>
#> $cov
#> F1
#> F1 1
#>
#> $Davidian_phis
#> [1] 1.289 0.085 -0.443 1.242
#>
fs <- fscores(dav) # assume normal prior
fs2 <- fscores(dav, use_dentype_estimate=TRUE) # use Davidian estimated prior shape
head(cbind(fs, fs2))
#> F1 F1
#> [1,] 2.66817175 3.601346705
#> [2,] 0.14641080 0.070234382
#> [3,] 0.06785452 0.003735108
#> [4,] -0.41587164 -0.426827343
#> [5,] 0.67017368 0.559205557
#> [6,] 0.45470258 0.353387119
itemfit(dav) # assume normal prior
#> Error: Only X2, G2, PV_Q1, PV_Q1*, infit, X2*, and X2*_df can be computed with missing data.
#> Pass na.rm=TRUE to remove missing data row-wise
itemfit(dav, use_dentype_estimate=TRUE) # use Davidian estimated prior shape
#> Error: Only X2, G2, PV_Q1, PV_Q1*, infit, X2*, and X2*_df can be computed with missing data.
#> Pass na.rm=TRUE to remove missing data row-wise
###########
# 5PL and restricted 5PL example
dat <- expand.table(LSAT7)
mod2PL <- mirt(dat)
mod2PL
#>
#> Call:
#> mirt(data = dat)
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 28 EM iterations.
#> mirt version: 1.40
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -2658.805
#> Estimated parameters: 10
#> AIC = 5337.61
#> BIC = 5386.688; SABIC = 5354.927
#> G2 (21) = 31.7, p = 0.0628
#> RMSEA = 0.023, CFI = NaN, TLI = NaN
# Following does not converge without including strong priors
# mod5PL <- mirt(dat, itemtype = '5PL')
# mod5PL
# restricted version of 5PL (asymmetric 2PL)
model <- 'Theta = 1-5
FIXED = (1-5, g), (1-5, u)'
mod2PL_asym <- mirt(dat, model=model, itemtype = '5PL')
mod2PL_asym
#>
#> Call:
#> mirt(data = dat, model = model, itemtype = "5PL")
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 232 EM iterations.
#> mirt version: 1.40
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -2657.872
#> Estimated parameters: 15
#> AIC = 5345.743
#> BIC = 5419.36; SABIC = 5371.719
#> G2 (16) = 29.83, p = 0.0189
#> RMSEA = 0.029, CFI = NaN, TLI = NaN
coef(mod2PL_asym, simplify=TRUE)
#> $items
#> a1 d g u logS
#> Item.1 0.923 2.975 0 1 1.052
#> Item.2 2.290 -1.769 0 1 -1.547
#> Item.3 1.596 2.022 0 1 0.224
#> Item.4 0.608 2.345 0 1 1.633
#> Item.5 0.742 2.039 0 1 0.163
#>
#> $means
#> Theta
#> 0
#>
#> $cov
#> Theta
#> Theta 1
#>
coef(mod2PL_asym, simplify=TRUE, IRTpars=TRUE)
#> $items
#> a b g u S
#> Item.1 0.923 -3.225 0 1 2.863
#> Item.2 2.290 0.772 0 1 0.213
#> Item.3 1.596 -1.267 0 1 1.251
#> Item.4 0.608 -3.855 0 1 5.120
#> Item.5 0.742 -2.747 0 1 1.177
#>
#> $means
#> Theta
#> 0
#>
#> $cov
#> Theta
#> Theta 1
#>
# no big difference statistically or visually
anova(mod2PL, mod2PL_asym)
#> AIC SABIC HQ BIC logLik X2 df p
#> mod2PL 5337.610 5354.927 5356.263 5386.688 -2658.805
#> mod2PL_asym 5345.743 5371.719 5373.723 5419.360 -2657.872 1.867 5 0.867
plot(mod2PL, type = 'trace')
plot(mod2PL_asym, type = 'trace')
# }