R/MultipleGroup-methods.R
, R/SingleGroup-methods.R
plot-method.Rd
Plot various test implied response functions from models estimated in the mirt package.
# S4 method for MultipleGroupClass,missing
plot(
x,
y,
type = "score",
npts = 200,
drop2 = TRUE,
degrees = 45,
which.items = 1:extract.mirt(x, "nitems"),
rot = list(xaxis = -70, yaxis = 30, zaxis = 10),
facet_items = TRUE,
theta_lim = c(-6, 6),
par.strip.text = list(cex = 0.7),
par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col =
"black")),
auto.key = list(space = "right", points = FALSE, lines = TRUE),
...
)
# S4 method for SingleGroupClass,missing
plot(
x,
y,
type = "score",
npts = 200,
drop2 = TRUE,
degrees = 45,
theta_lim = c(-6, 6),
which.items = 1:extract.mirt(x, "nitems"),
MI = 0,
CI = 0.95,
rot = list(xaxis = -70, yaxis = 30, zaxis = 10),
facet_items = TRUE,
main = NULL,
drape = TRUE,
colorkey = TRUE,
ehist.cut = 1e-10,
add.ylab2 = TRUE,
par.strip.text = list(cex = 0.7),
par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col =
"black")),
auto.key = list(space = "right", points = FALSE, lines = TRUE),
profile = FALSE,
...
)
an object of class SingleGroupClass
,
MultipleGroupClass
, or DiscreteClass
an arbitrary missing argument required for R CMD check
type of plot to view. Can be
'info'
test information function
'rxx'
for the reliability function
'infocontour'
for the test information contours
'SE'
for the test standard error function
'infotrace'
item information traceline plots
'infoSE'
a combined test information and standard error plot
'trace'
item probability traceline plots
'itemscore'
item scoring traceline plots
'score'
expected total score surface
'scorecontour'
expected total score contour plot
'posteriorTheta'
posterior for the latent trait distribution
'EAPsum'
compares sum-scores to the expected values based
on the EAP for sum-scores method (see fscores
)
Note that if dentype = 'empiricalhist'
was used in estimation then
the type 'empiricalhist'
also will be available to generate the empirical histogram plot, and if
dentype = 'Davidian-#'
was used then the type 'Davidian'
will also be available to generate the curve estimates at the quadrature
nodes used during estimation
number of quadrature points to be used for plotting features. Larger values make plots look smoother
logical; where appropriate, for dichotomous response items drop the lowest category and provide information pertaining only to the second response option?
numeric value ranging from 0 to 90 used in plot
to compute angle
for information-based plots with respect to the first dimension.
If a vector is used then a bubble plot is created with the summed information
across the angles specified (e.g., degrees = seq(0, 90, by=10)
)
numeric vector indicating which items to be used when plotting. Default is to use all available items
allows rotation of the 3D graphics
logical; apply grid of plots across items? If FALSE
, items will be
placed in one plot for each group
lower and upper limits of the latent trait (theta) to be evaluated, and is
used in conjunction with npts
plotting argument passed to lattice
plotting argument passed to lattice
plotting argument passed to lattice
additional arguments to be passed to lattice
a single number indicating how many imputations to draw to form bootstrapped confidence intervals for the selected test statistic. If greater than 0 a plot will be drawn with a shaded region for the interval
a number from 0 to 1 indicating the confidence interval to select when MI input is used. Default uses the 95% confidence (CI = .95)
argument passed to lattice. Default generated automatically
logical argument passed to lattice. Default generated automatically
logical argument passed to lattice. Default generated automatically
a probability value indicating a threshold for excluding cases in empirical histogram plots. Values larger than the default will include more points in the tails of the plot, potentially squishing the 'meat' of the plot to take up less area than visually desired
logical argument passed to lattice. Default generated automatically
logical; provide a profile plot of response probabilities (objects returned from
mdirt
only)
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
# \donttest{
x <- mirt(Science, 1, SE=TRUE)
plot(x)
plot(x, type = 'info')
plot(x, type = 'infotrace')
plot(x, type = 'infotrace', facet_items = FALSE)
plot(x, type = 'infoSE')
plot(x, type = 'rxx')
plot(x, type = 'posteriorTheta')
# confidence interval plots when information matrix computed
plot(x)
plot(x, MI=100)
plot(x, type='info', MI=100)
plot(x, type='SE', MI=100)
plot(x, type='rxx', MI=100)
# use the directlabels package to put labels on tracelines
library(directlabels)
plt <- plot(x, type = 'trace')
direct.label(plt, 'top.points')
# additional modifications can be made via update().
# See ?update.trellis for further documentation
plt
update(plt, ylab = expression(Prob(theta)),
main = "Item Traceline Functions") # ylab/main changed
set.seed(1234)
group <- sample(c('g1','g2'), nrow(Science), TRUE)
x2 <- multipleGroup(Science, 1, group)
plot(x2)
plot(x2, type = 'trace')
plot(x2, type = 'trace', which.items = 1:2)
plot(x2, type = 'itemscore', which.items = 1:2)
plot(x2, type = 'trace', which.items = 1, facet_items = FALSE) #facet by group
plot(x2, type = 'info')
x3 <- mirt(Science, 2)
plot(x3, type = 'info')
plot(x3, type = 'SE', theta_lim = c(-3,3))
# }