Skip to contents

Given an internal mirt item object extracted by using extract.item, compute the item information.

Usage

iteminfo(x, Theta, degrees = NULL, total.info = TRUE, multidim_matrix = FALSE)

Arguments

x

an extracted internal mirt object containing item information (see extract.item)

Theta

a vector (unidimensional) or matrix (multidimensional) of latent trait values

degrees

a vector of angles in degrees that are between 0 and 90. Only applicable when the input object is multidimensional

total.info

logical; return the total information curve for the item? If FALSE, information curves for each category are returned as a matrix

multidim_matrix

logical; compute the information matrix for each row in Theta? If Theta contains more than 1 row then a list of matrices will be returned, otherwise if Theta has exactly one row then a matrix will be returned

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

See also

Author

Phil Chalmers rphilip.chalmers@gmail.com

Examples


mod <- mirt(Science, 1)
extr.2 <- extract.item(mod, 2)
Theta <- matrix(seq(-4,4, by = .1))
info.2 <- iteminfo(extr.2, Theta)

#do something with the info?
plot(Theta, info.2, type = 'l', main = 'Item information')


# \donttest{

#category information curves
cat.info <- iteminfo(extr.2, Theta, total.info = FALSE)
plot(Theta, cat.info[,1], type = 'l', ylim = c(0, max(cat.info)),
     ylab = 'info', main = 'Category information')
for(i in 2:ncol(cat.info))
   lines(Theta, cat.info[,i], col = i)


## Customized test information plot
T1 <- T2 <- 0
dat <- expand.table(LSAT7)
mod1 <- mirt(dat, 1)
mod2 <- mirt(dat, 1, 'Rasch')
for(i in 1:5){
  T1 <- T1 + iteminfo(extract.item(mod1, i), Theta)
  T2 <- T2 + iteminfo(extract.item(mod2, i), Theta)
}
plot(Theta, T2/T1, type = 'l', ylab = 'Relative Test Information', las = 1)
lines(Theta, T1/T1, col = 'red')


# multidimensional
mod <- mirt(dat, 2, TOL=1e-2)
ii <- extract.item(mod, 1)
Theta <- as.matrix(expand.grid(-4:4, -4:4))

iteminfo(ii, Theta, degrees=c(45,45)) # equal angle
#>  [1] 9.135853e-04 3.804627e-03 1.534609e-02 5.457783e-02 1.280846e-01
#>  [6] 1.263872e-01 5.292862e-02 1.479382e-02 3.661942e-03 6.367175e-04
#> [11] 2.659764e-03 1.086462e-02 4.056306e-02 1.103087e-01 1.394001e-01
#> [16] 6.967460e-02 2.076774e-02 5.230188e-03 4.436266e-04 1.857138e-03
#> [21] 7.653659e-03 2.959372e-02 9.036811e-02 1.443711e-01 8.885547e-02
#> [26] 2.887817e-02 7.452148e-03 3.090296e-04 1.295613e-03 5.372790e-03
#> [31] 2.130057e-02 7.105538e-02 1.400859e-01 1.088343e-01 3.962912e-02
#> [36] 1.058186e-02 2.152390e-04 9.033338e-04 3.762362e-03 1.518269e-02
#> [41] 5.409208e-02 1.275949e-01 1.268897e-01 5.340700e-02 1.495328e-02
#> [46] 1.498990e-04 6.295660e-04 2.630098e-03 1.074696e-02 4.017519e-02
#> [51] 1.097011e-01 1.396891e-01 7.024317e-02 2.098631e-02 1.043871e-04
#> [56] 4.386406e-04 1.836367e-03 7.569796e-03 2.929632e-02 8.974279e-02
#> [61] 1.443776e-01 8.947966e-02 2.917186e-02 7.268993e-05 3.055547e-04
#> [66] 1.281094e-03 5.313435e-03 2.107900e-02 7.048336e-02 1.398084e-01
#> [71] 1.094447e-01 4.001273e-02 5.061591e-05 2.128179e-04 8.931970e-04
#> [76] 3.720561e-03 1.502092e-02 5.360938e-02 1.270998e-01 1.273870e-01
#> [81] 5.388842e-02
iteminfo(ii, Theta, degrees=c(90,0)) # first dimension only
#>  [1] 2.073184e-04 8.633775e-04 3.482462e-03 1.238525e-02 2.906603e-02
#>  [6] 2.868083e-02 1.201100e-02 3.357135e-03 8.309983e-04 1.444892e-04
#> [11] 6.035756e-04 2.465490e-03 9.204906e-03 2.503218e-02 3.163384e-02
#> [16] 1.581114e-02 4.712787e-03 1.186878e-03 1.006714e-04 4.214372e-04
#> [21] 1.736832e-03 6.715652e-03 2.050708e-02 3.276188e-02 2.016382e-02
#> [26] 6.553273e-03 1.691103e-03 7.012756e-05 2.940112e-04 1.219238e-03
#> [31] 4.833701e-03 1.612448e-02 3.178946e-02 2.469758e-02 8.992970e-03
#> [36] 2.401323e-03 4.884381e-05 2.049920e-04 8.537865e-04 3.445381e-03
#> [41] 1.227502e-02 2.895489e-02 2.879486e-02 1.211956e-02 3.393322e-03
#> [46] 3.401633e-05 1.428663e-04 5.968437e-04 2.438790e-03 9.116887e-03
#> [51] 2.489429e-02 3.169942e-02 1.594016e-02 4.762389e-03 2.368839e-05
#> [56] 9.953996e-05 4.167236e-04 1.717801e-03 6.648164e-03 2.036518e-02
#> [61] 3.276337e-02 2.030547e-02 6.619919e-03 1.649540e-05 6.933901e-05
#> [66] 2.907165e-04 1.205769e-03 4.783421e-03 1.599467e-02 3.172649e-02
#> [71] 2.483609e-02 9.080022e-03 1.148618e-05 4.829441e-05 2.026917e-04
#> [76] 8.443006e-04 3.408672e-03 1.216548e-02 2.884253e-02 2.890771e-02
#> [81] 1.222881e-02

# information matrices
iteminfo(ii, Theta, multidim_matrix = TRUE)
#> [[1]]
#>               [,1]          [,2]
#> [1,]  0.0032654333 -0.0008227905
#> [2,] -0.0008227905  0.0002073184
#> 
#> [[2]]
#>              [,1]          [,2]
#> [1,]  0.013598901 -0.0034265121
#> [2,] -0.003426512  0.0008633775
#> 
#> [[3]]
#>             [,1]         [,2]
#> [1,]  0.05485162 -0.013820952
#> [2,] -0.01382095  0.003482462
#> 
#> [[4]]
#>             [,1]        [,2]
#> [1,]  0.19507785 -0.04915373
#> [2,] -0.04915373  0.01238525
#> 
#> [[5]]
#>            [,1]        [,2]
#> [1,]  0.4578137 -0.11535522
#> [2,] -0.1153552  0.02906603
#> 
#> [[6]]
#>            [,1]        [,2]
#> [1,]  0.4517464 -0.11382645
#> [2,] -0.1138265  0.02868083
#> 
#> [[7]]
#>             [,1]        [,2]
#> [1,]  0.18918306 -0.04766842
#> [2,] -0.04766842  0.01201100
#> 
#> [[8]]
#>             [,1]         [,2]
#> [1,]  0.05287762 -0.013323563
#> [2,] -0.01332356  0.003357135
#> 
#> [[9]]
#>              [,1]          [,2]
#> [1,]  0.013088902 -0.0032980078
#> [2,] -0.003298008  0.0008309983
#> 
#> [[10]]
#>               [,1]          [,2]
#> [1,]  0.0022758231 -0.0005734387
#> [2,] -0.0005734387  0.0001444892
#> 
#> [[11]]
#>              [,1]          [,2]
#> [1,]  0.009506809 -0.0023954286
#> [2,] -0.002395429  0.0006035756
#> 
#> [[12]]
#>              [,1]         [,2]
#> [1,]  0.038833480 -0.009784864
#> [2,] -0.009784864  0.002465490
#> 
#> [[13]]
#>             [,1]         [,2]
#> [1,]  0.14498478 -0.036531784
#> [2,] -0.03653178  0.009204906
#> 
#> [[14]]
#>             [,1]        [,2]
#> [1,]  0.39427721 -0.09934594
#> [2,] -0.09934594  0.02503218
#> 
#> [[15]]
#>            [,1]        [,2]
#> [1,]  0.4982588 -0.12554615
#> [2,] -0.1255462  0.03163384
#> 
#> [[16]]
#>             [,1]        [,2]
#> [1,]  0.24903832 -0.06275013
#> [2,] -0.06275013  0.01581114
#> 
#> [[17]]
#>             [,1]         [,2]
#> [1,]  0.07423024 -0.018703779
#> [2,] -0.01870378  0.004712787
#> 
#> [[18]]
#>              [,1]         [,2]
#> [1,]  0.018694291 -0.004710397
#> [2,] -0.004710397  0.001186878
#> 
#> [[19]]
#>               [,1]          [,2]
#> [1,]  0.0015856573 -0.0003995377
#> [2,] -0.0003995377  0.0001006714
#> 
#> [[20]]
#>              [,1]          [,2]
#> [1,]  0.006637979 -0.0016725702
#> [2,] -0.001672570  0.0004214372
#> 
#> [[21]]
#>              [,1]         [,2]
#> [1,]  0.027356520 -0.006893016
#> [2,] -0.006893016  0.001736832
#> 
#> [[22]]
#>             [,1]         [,2]
#> [1,]  0.10577700 -0.026652608
#> [2,] -0.02665261  0.006715652
#> 
#> [[23]]
#>             [,1]        [,2]
#> [1,]  0.32300327 -0.08138706
#> [2,] -0.08138706  0.02050708
#> 
#> [[24]]
#>            [,1]        [,2]
#> [1,]  0.5160263 -0.13002305
#> [2,] -0.1300230  0.03276188
#> 
#> [[25]]
#>             [,1]        [,2]
#> [1,]  0.31759663 -0.08002475
#> [2,] -0.08002475  0.02016382
#> 
#> [[26]]
#>             [,1]         [,2]
#> [1,]  0.10321940 -0.026008170
#> [2,] -0.02600817  0.006553273
#> 
#> [[27]]
#>              [,1]         [,2]
#> [1,]  0.026636258 -0.006711532
#> [2,] -0.006711532  0.001691103
#> 
#> [[28]]
#>               [,1]          [,2]
#> [1,]  0.0011045662 -2.783173e-04
#> [2,] -0.0002783173  7.012756e-05
#> 
#> [[29]]
#>              [,1]          [,2]
#> [1,]  0.004630917 -0.0011668512
#> [2,] -0.001166851  0.0002940112
#> 
#> [[30]]
#>              [,1]         [,2]
#> [1,]  0.019203995 -0.004838826
#> [2,] -0.004838826  0.001219238
#> 
#> [[31]]
#>             [,1]         [,2]
#> [1,]  0.07613474 -0.019183655
#> [2,] -0.01918365  0.004833701
#> 
#> [[32]]
#>             [,1]        [,2]
#> [1,]  0.25397366 -0.06399369
#> [2,] -0.06399369  0.01612448
#> 
#> [[33]]
#>            [,1]        [,2]
#> [1,]  0.5007100 -0.12616378
#> [2,] -0.1261638  0.03178946
#> 
#> [[34]]
#>             [,1]        [,2]
#> [1,]  0.38900703 -0.09801802
#> [2,] -0.09801802  0.02469758
#> 
#> [[35]]
#>             [,1]        [,2]
#> [1,]  0.14164661 -0.03569067
#> [2,] -0.03569067  0.00899297
#> 
#> [[36]]
#>              [,1]         [,2]
#> [1,]  0.037822803 -0.009530204
#> [2,] -0.009530204  0.002401323
#> 
#> [[37]]
#>               [,1]          [,2]
#> [1,]  0.0007693299 -1.938479e-04
#> [2,] -0.0001938479  4.884381e-05
#> 
#> [[38]]
#>               [,1]          [,2]
#> [1,]  0.0032287914 -0.0008135579
#> [2,] -0.0008135579  0.0002049920
#> 
#> [[39]]
#>              [,1]          [,2]
#> [1,]  0.013447834 -0.0033884478
#> [2,] -0.003388448  0.0008537865
#> 
#> [[40]]
#>             [,1]         [,2]
#> [1,]  0.05426756 -0.013673786
#> [2,] -0.01367379  0.003445381
#> 
#> [[41]]
#>             [,1]        [,2]
#> [1,]  0.19334166 -0.04871626
#> [2,] -0.04871626  0.01227502
#> 
#> [[42]]
#>            [,1]        [,2]
#> [1,]  0.4560631 -0.11491412
#> [2,] -0.1149141  0.02895489
#> 
#> [[43]]
#>            [,1]        [,2]
#> [1,]  0.4535425 -0.11427901
#> [2,] -0.1142790  0.02879486
#> 
#> [[44]]
#>             [,1]        [,2]
#> [1,]  0.19089294 -0.04809925
#> [2,] -0.04809925  0.01211956
#> 
#> [[45]]
#>             [,1]         [,2]
#> [1,]  0.05344759 -0.013467177
#> [2,] -0.01346718  0.003393322
#> 
#> [[46]]
#>               [,1]          [,2]
#> [1,]  0.0005357850 -1.350016e-04
#> [2,] -0.0001350016  3.401633e-05
#> 
#> [[47]]
#>               [,1]          [,2]
#> [1,]  0.0022502615 -0.0005669979
#> [2,] -0.0005669979  0.0001428663
#> 
#> [[48]]
#>              [,1]          [,2]
#> [1,]  0.009400776 -0.0023687115
#> [2,] -0.002368711  0.0005968437
#> 
#> [[49]]
#>             [,1]        [,2]
#> [1,]  0.03841294 -0.00967890
#> [2,] -0.00967890  0.00243879
#> 
#> [[50]]
#>             [,1]         [,2]
#> [1,]  0.14359841 -0.036182461
#> [2,] -0.03618246  0.009116887
#> 
#> [[51]]
#>             [,1]        [,2]
#> [1,]  0.39210544 -0.09879872
#> [2,] -0.09879872  0.02489429
#> 
#> [[52]]
#>            [,1]        [,2]
#> [1,]  0.4992917 -0.12580642
#> [2,] -0.1258064  0.03169942
#> 
#> [[53]]
#>            [,1]        [,2]
#> [1,]  0.2510706 -0.06326220
#> [2,] -0.0632622  0.01594016
#> 
#> [[54]]
#>             [,1]         [,2]
#> [1,]  0.07501151 -0.018900633
#> [2,] -0.01890063  0.004762389
#> 
#> [[55]]
#>               [,1]          [,2]
#> [1,]  3.731115e-04 -9.401283e-05
#> [2,] -9.401283e-05  2.368839e-05
#> 
#> [[56]]
#>               [,1]          [,2]
#> [1,]  0.0015678356 -3.950472e-04
#> [2,] -0.0003950472  9.953996e-05
#> 
#> [[57]]
#>              [,1]          [,2]
#> [1,]  0.006563736 -0.0016538632
#> [2,] -0.001653863  0.0004167236
#> 
#> [[58]]
#>              [,1]         [,2]
#> [1,]  0.027056766 -0.006817487
#> [2,] -0.006817487  0.001717801
#> 
#> [[59]]
#>             [,1]         [,2]
#> [1,]  0.10471401 -0.026384768
#> [2,] -0.02638477  0.006648164
#> 
#> [[60]]
#>             [,1]        [,2]
#> [1,]  0.32076818 -0.08082389
#> [2,] -0.08082389  0.02036518
#> 
#> [[61]]
#>            [,1]        [,2]
#> [1,]  0.5160498 -0.13002897
#> [2,] -0.1300290  0.03276337
#> 
#> [[62]]
#>             [,1]        [,2]
#> [1,]  0.31982769 -0.08058691
#> [2,] -0.08058691  0.02030547
#> 
#> [[63]]
#>             [,1]         [,2]
#> [1,]  0.10426913 -0.026272671
#> [2,] -0.02627267  0.006619919
#> 
#> [[64]]
#>               [,1]          [,2]
#> [1,]  2.598160e-04 -6.546579e-05
#> [2,] -6.546579e-05  1.649540e-05
#> 
#> [[65]]
#>               [,1]          [,2]
#> [1,]  0.0010921460 -2.751878e-04
#> [2,] -0.0002751878  6.933901e-05
#> 
#> [[66]]
#>              [,1]          [,2]
#> [1,]  0.004579021 -0.0011537750
#> [2,] -0.001153775  0.0002907165
#> 
#> [[67]]
#>             [,1]         [,2]
#> [1,]  0.01899184 -0.004785370
#> [2,] -0.00478537  0.001205769
#> 
#> [[68]]
#>             [,1]         [,2]
#> [1,]  0.07534278 -0.018984105
#> [2,] -0.01898410  0.004783421
#> 
#> [[69]]
#>             [,1]        [,2]
#> [1,]  0.25192908 -0.06347852
#> [2,] -0.06347852  0.01599467
#> 
#> [[70]]
#>            [,1]        [,2]
#> [1,]  0.4997181 -0.12591387
#> [2,] -0.1259139  0.03172649
#> 
#> [[71]]
#>             [,1]        [,2]
#> [1,]  0.39118867 -0.09856773
#> [2,] -0.09856773  0.02483609
#> 
#> [[72]]
#>             [,1]         [,2]
#> [1,]  0.14301775 -0.036036152
#> [2,] -0.03603615  0.009080022
#> 
#> [[73]]
#>               [,1]          [,2]
#> [1,]  1.809167e-04 -4.558555e-05
#> [2,] -4.558555e-05  1.148618e-05
#> 
#> [[74]]
#>               [,1]          [,2]
#> [1,]  0.0007606764 -1.916675e-04
#> [2,] -0.0001916675  4.829441e-05
#> 
#> [[75]]
#>               [,1]          [,2]
#> [1,]  0.0031925594 -0.0008044285
#> [2,] -0.0008044285  0.0002026917
#> 
#> [[76]]
#>              [,1]          [,2]
#> [1,]  0.013298423 -0.0033508008
#> [2,] -0.003350801  0.0008443006
#> 
#> [[77]]
#>             [,1]         [,2]
#> [1,]  0.05368936 -0.013528096
#> [2,] -0.01352810  0.003408672
#> 
#> [[78]]
#>             [,1]        [,2]
#> [1,]  0.19161632 -0.04828152
#> [2,] -0.04828152  0.01216548
#> 
#> [[79]]
#>            [,1]        [,2]
#> [1,]  0.4542934 -0.11446821
#> [2,] -0.1144682  0.02884253
#> 
#> [[80]]
#>            [,1]        [,2]
#> [1,]  0.4553201 -0.11472690
#> [2,] -0.1147269  0.02890771
#> 
#> [[81]]
#>             [,1]        [,2]
#> [1,]  0.19261370 -0.04853283
#> [2,] -0.04853283  0.01222881
#> 
iteminfo(ii, Theta[1, , drop=FALSE], multidim_matrix = TRUE)
#>               [,1]          [,2]
#> [1,]  0.0032654333 -0.0008227905
#> [2,] -0.0008227905  0.0002073184

# }