Computes item-fit statistics for a variety of unidimensional and multidimensional models. Poorly fitting items should be inspected with the empirical plots/tables for unidimensional models, otherwise itemGAM can be used to diagnose where the functional form of the IRT model was misspecified, or models can be refit using more flexible semi-parametric response models (e.g., itemtype = 'spline'). If the latent trait density was approximated (e.g., Davidian curves, Empirical histograms, etc) then passing use_dentype_estimate = TRUE will use the internally saved quadrature and density components (where applicable). Currently, only S-X2 statistic supported for mixture IRT models. Finally, where applicable the root mean-square error of approximation (RMSEA) is reported to help gauge the magnitude of item misfit.

itemfit(
  x,
  fit_stats = "S_X2",
  which.items = 1:extract.mirt(x, "nitems"),
  na.rm = FALSE,
  p.adjust = "none",
  group.bins = 10,
  group.size = NA,
  group.fun = mean,
  mincell = 1,
  mincell.X2 = 2,
  return.tables = FALSE,
  pv_draws = 30,
  boot = 1000,
  boot_dfapprox = 200,
  S_X2.plot = NULL,
  S_X2.plot_raw.score = TRUE,
  ETrange = c(-2, 2),
  ETpoints = 11,
  empirical.plot = NULL,
  empirical.CI = 0.95,
  empirical.poly.collapse = FALSE,
  method = "EAP",
  Theta = NULL,
  par.strip.text = list(cex = 0.7),
  par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col =
    "black")),
  auto.key = list(space = "right", points = FALSE, lines = TRUE),
  ...
)

Arguments

x

a computed model object of class SingleGroupClass, MultipleGroupClass, or DiscreteClass

fit_stats

a character vector indicating which fit statistics should be computed. Supported inputs are:

  • 'S_X2' : Orlando and Thissen (2000, 2003) and Kang and Chen's (2007) signed chi-squared test (default)

  • 'Zh' : Drasgow, Levine, & Williams (1985) Zh

  • 'X2' : Bock's (1972) chi-squared method. The default inputs compute Yen's (1981) Q1 variant of the X2 statistic (i.e., uses a fixed group.bins = 10). However, Bock's group-size variable median-based method can be computed by passing group.fun = median and modifying the group.size input to the desired number of bins

  • 'G2' : McKinley & Mills (1985) G2 statistic (similar method to Q1, but with the likelihood-ratio test).

  • 'PV_Q1' : Chalmers and Ng's (2017) plausible-value variant of the Q1 statistic.

  • 'PV_Q1*' : Chalmers and Ng's (2017) plausible-value variant of the Q1 statistic that uses parametric bootstrapping to obtain a suitable empirical distribution.

  • 'X2*' : Stone's (2000) fit statistics that require parametric bootstrapping

  • 'X2*_df' : Stone's (2000) fit statistics that require parametric bootstrapping to obtain scaled versions of the X2* and degrees of freedom

  • 'infit' : Compute the infit and outfit statistics

Note that 'S_X2' and 'Zh' cannot be computed when there are missing response data (i.e., will require multiple-imputation/row-removal techniques).

which.items

an integer vector indicating which items to test for fit. Default tests all possible items

na.rm

logical; remove rows with any missing values? This is required for methods such as S-X2 because they require the "EAPsum" method from fscores

p.adjust

method to use for adjusting all p-values for each respective item fit statistic (see p.adjust for available options). Default is 'none'

group.bins

the number of bins to use for X2 and G2. For example, setting group.bins = 10 will will compute Yen's (1981) Q1 statistic when 'X2' is requested

group.size

approximate size of each group to be used in calculating the \(\chi^2\) statistic. The default NA disables this command and instead uses the group.bins input to try and construct equally sized bins

group.fun

function used when 'X2' or 'G2' are computed. Determines the central tendency measure within each partitioned group. E.g., setting group.fun = median will obtain the median of each respective ability estimate in each subgroup (this is what was used by Bock, 1972)

mincell

the minimum expected cell size to be used in the S-X2 computations. Tables will be collapsed across items first if polytomous, and then across scores if necessary

mincell.X2

the minimum expected cell size to be used in the X2 computations. Tables will be collapsed if polytomous, however if this condition can not be met then the group block will be omitted in the computations

return.tables

logical; return tables when investigating 'X2', 'S_X2', and 'X2*'?

pv_draws

number of plausible-value draws to obtain for PV_Q1 and PV_Q1*

boot

number of parametric bootstrap samples to create for PV_Q1* and X2*

boot_dfapprox

number of parametric bootstrap samples to create for the X2*_df statistic to approximate the scaling factor for X2* as well as the scaled degrees of freedom estimates

S_X2.plot

argument input is the same as empirical.plot, however the resulting image is constructed according to the S-X2 statistic's conditional sum-score information

S_X2.plot_raw.score

logical; use the raw-score information in the plot in stead of the latent trait scale score? Default is FALSE

ETrange

rangone of integration nodes for Stone's X2* statistic

ETpoints

number of integration nodes to use for Stone's X2* statistic

empirical.plot

a single numeric value or character of the item name indicating which item to plot (via itemplot) and overlay with the empirical \(\theta\) groupings (see empirical.CI). Useful for plotting the expected bins based on the 'X2' or 'G2' method

empirical.CI

a numeric value indicating the width of the empirical confidence interval ranging between 0 and 1 (default of 0 plots not interval). For example, a 95 interval would be plotted when empirical.CI = .95. Only applicable to dichotomous items

empirical.poly.collapse

logical; collapse polytomous item categories to for expected scoring functions for empirical plots? Default is FALSE

method

type of factor score estimation method. See fscores for more detail

Theta

a matrix of factor scores for each person used for statistics that require empirical estimates. If supplied, arguments typically passed to fscores() will be ignored and these values will be used instead. Also required when estimating statistics with missing data via imputation

par.strip.text

plotting argument passed to lattice

par.settings

plotting argument passed to lattice

auto.key

plotting argument passed to lattice

...

additional arguments to be passed to fscores() and lattice

References

Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37, 29-51.

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Chalmers, R. P. & Ng, V. (2017). Plausible-Value Imputation Statistics for Detecting Item Misfit. Applied Psychological Measurement, 41, 372-387. doi:10.1177/0146621617692079

Drasgow, F., Levine, M. V., & Williams, E. A. (1985). Appropriateness measurement with polychotomous item response models and standardized indices. British Journal of Mathematical and Statistical Psychology, 38, 67-86.

Kang, T. & Chen, Troy, T. (2007). An investigation of the performance of the generalized S-X2 item-fit index for polytomous IRT models. ACT

McKinley, R., & Mills, C. (1985). A comparison of several goodness-of-fit statistics. Applied Psychological Measurement, 9, 49-57.

Orlando, M. & Thissen, D. (2000). Likelihood-based item fit indices for dichotomous item response theory models. Applied Psychological Measurement, 24, 50-64.

Reise, S. P. (1990). A comparison of item- and person-fit methods of assessing model-data fit in IRT. Applied Psychological Measurement, 14, 127-137.

Stone, C. A. (2000). Monte Carlo Based Null Distribution for an Alternative Goodness-of-Fit Test Statistics in IRT Models. Journal of Educational Measurement, 37, 58-75.

Wright B. D. & Masters, G. N. (1982). Rating scale analysis. MESA Press.

Yen, W. M. (1981). Using simulation results to choose a latent trait model. Applied Psychological Measurement, 5, 245-262.

See also

Author

Phil Chalmers rphilip.chalmers@gmail.com

Examples


# \donttest{

P <- function(Theta){exp(Theta^2 * 1.2 - 1) / (1 + exp(Theta^2 * 1.2 - 1))}

#make some data
set.seed(1234)
a <- matrix(rlnorm(20, meanlog=0, sdlog = .1),ncol=1)
d <- matrix(rnorm(20),ncol=1)
Theta <- matrix(rnorm(2000))
items <- rep('2PL', 20)
ps <- P(Theta)
baditem <- numeric(2000)
for(i in 1:2000)
   baditem[i] <- sample(c(0,1), 1, prob = c(1-ps[i], ps[i]))
data <- cbind(simdata(a,d, 2000, items, Theta=Theta), baditem=baditem)

x <- mirt(data, 1)
raschfit <- mirt(data, 1, itemtype='Rasch')
fit <- itemfit(x)
fit
#>       item    S_X2 df.S_X2 RMSEA.S_X2 p.S_X2
#> 1   Item_1  16.519      15      0.007  0.348
#> 2   Item_2  11.718      15      0.000  0.700
#> 3   Item_3  22.835      15      0.016  0.088
#> 4   Item_4  11.703      16      0.000  0.764
#> 5   Item_5  15.241      15      0.003  0.434
#> 6   Item_6  11.983      16      0.000  0.745
#> 7   Item_7  23.912      16      0.016  0.091
#> 8   Item_8  12.744      15      0.000  0.622
#> 9   Item_9  16.931      15      0.008  0.323
#> 10 Item_10   9.199      16      0.000  0.905
#> 11 Item_11  17.630      15      0.009  0.283
#> 12 Item_12  12.198      15      0.000  0.664
#> 13 Item_13  17.487      15      0.009  0.291
#> 14 Item_14  19.117      15      0.012  0.208
#> 15 Item_15  11.542      16      0.000  0.775
#> 16 Item_16  12.534      16      0.000  0.706
#> 17 Item_17  29.453      15      0.022  0.014
#> 18 Item_18  15.064      16      0.000  0.520
#> 19 Item_19  17.125      15      0.008  0.311
#> 20 Item_20  10.064      15      0.000  0.816
#> 21 baditem 233.224      18      0.077  0.000

# p-value adjustment
itemfit(x, p.adjust='fdr')
#>       item    S_X2 df.S_X2 RMSEA.S_X2 p.S_X2
#> 1   Item_1  16.519      15      0.007  0.732
#> 2   Item_2  11.718      15      0.000  0.856
#> 3   Item_3  22.835      15      0.016  0.480
#> 4   Item_4  11.703      16      0.000  0.856
#> 5   Item_5  15.241      15      0.003  0.829
#> 6   Item_6  11.983      16      0.000  0.856
#> 7   Item_7  23.912      16      0.016  0.480
#> 8   Item_8  12.744      15      0.000  0.856
#> 9   Item_9  16.931      15      0.008  0.732
#> 10 Item_10   9.199      16      0.000  0.905
#> 11 Item_11  17.630      15      0.009  0.732
#> 12 Item_12  12.198      15      0.000  0.856
#> 13 Item_13  17.487      15      0.009  0.732
#> 14 Item_14  19.117      15      0.012  0.732
#> 15 Item_15  11.542      16      0.000  0.856
#> 16 Item_16  12.534      16      0.000  0.856
#> 17 Item_17  29.453      15      0.022  0.148
#> 18 Item_18  15.064      16      0.000  0.856
#> 19 Item_19  17.125      15      0.008  0.732
#> 20 Item_20  10.064      15      0.000  0.856
#> 21 baditem 233.224      18      0.077  0.000

# two different fit stats (with/without p-value adjustment)
itemfit(x, c('S_X2' ,'X2'), p.adjust='fdr')
#>       item      X2 df.X2 RMSEA.X2  p.X2    S_X2 df.S_X2 RMSEA.S_X2 p.S_X2
#> 1   Item_1  30.842     8    0.038 0.000  16.519      15      0.007  0.732
#> 2   Item_2  27.970     8    0.035 0.001  11.718      15      0.000  0.856
#> 3   Item_3  43.995     8    0.047 0.000  22.835      15      0.016  0.480
#> 4   Item_4  33.272     8    0.040 0.000  11.703      16      0.000  0.856
#> 5   Item_5  29.469     8    0.037 0.001  15.241      15      0.003  0.829
#> 6   Item_6  21.325     8    0.029 0.007  11.983      16      0.000  0.856
#> 7   Item_7  23.127     8    0.031 0.004  23.912      16      0.016  0.480
#> 8   Item_8  25.332     8    0.033 0.002  12.744      15      0.000  0.856
#> 9   Item_9  33.778     8    0.040 0.000  16.931      15      0.008  0.732
#> 10 Item_10  22.972     8    0.031 0.004   9.199      16      0.000  0.905
#> 11 Item_11  27.300     8    0.035 0.001  17.630      15      0.009  0.732
#> 12 Item_12  23.256     8    0.031 0.004  12.198      15      0.000  0.856
#> 13 Item_13  31.523     8    0.038 0.000  17.487      15      0.009  0.732
#> 14 Item_14  27.924     8    0.035 0.001  19.117      15      0.012  0.732
#> 15 Item_15  18.462     8    0.026 0.020  11.542      16      0.000  0.856
#> 16 Item_16  25.057     8    0.033 0.002  12.534      16      0.000  0.856
#> 17 Item_17  14.828     8    0.021 0.063  29.453      15      0.022  0.148
#> 18 Item_18  17.676     8    0.025 0.025  15.064      16      0.000  0.856
#> 19 Item_19  32.585     8    0.039 0.000  17.125      15      0.008  0.732
#> 20 Item_20  37.207     8    0.043 0.000  10.064      15      0.000  0.856
#> 21 baditem 228.367     8    0.117 0.000 233.224      18      0.077  0.000
itemfit(x, c('S_X2' ,'X2'))
#>       item      X2 df.X2 RMSEA.X2  p.X2    S_X2 df.S_X2 RMSEA.S_X2 p.S_X2
#> 1   Item_1  30.842     8    0.038 0.000  16.519      15      0.007  0.348
#> 2   Item_2  27.970     8    0.035 0.000  11.718      15      0.000  0.700
#> 3   Item_3  43.995     8    0.047 0.000  22.835      15      0.016  0.088
#> 4   Item_4  33.272     8    0.040 0.000  11.703      16      0.000  0.764
#> 5   Item_5  29.469     8    0.037 0.000  15.241      15      0.003  0.434
#> 6   Item_6  21.325     8    0.029 0.006  11.983      16      0.000  0.745
#> 7   Item_7  23.127     8    0.031 0.003  23.912      16      0.016  0.091
#> 8   Item_8  25.332     8    0.033 0.001  12.744      15      0.000  0.622
#> 9   Item_9  33.778     8    0.040 0.000  16.931      15      0.008  0.323
#> 10 Item_10  22.972     8    0.031 0.003   9.199      16      0.000  0.905
#> 11 Item_11  27.300     8    0.035 0.001  17.630      15      0.009  0.283
#> 12 Item_12  23.256     8    0.031 0.003  12.198      15      0.000  0.664
#> 13 Item_13  31.523     8    0.038 0.000  17.487      15      0.009  0.291
#> 14 Item_14  27.924     8    0.035 0.000  19.117      15      0.012  0.208
#> 15 Item_15  18.462     8    0.026 0.018  11.542      16      0.000  0.775
#> 16 Item_16  25.057     8    0.033 0.002  12.534      16      0.000  0.706
#> 17 Item_17  14.828     8    0.021 0.063  29.453      15      0.022  0.014
#> 18 Item_18  17.676     8    0.025 0.024  15.064      16      0.000  0.520
#> 19 Item_19  32.585     8    0.039 0.000  17.125      15      0.008  0.311
#> 20 Item_20  37.207     8    0.043 0.000  10.064      15      0.000  0.816
#> 21 baditem 228.367     8    0.117 0.000 233.224      18      0.077  0.000

# Conditional sum-score plot from S-X2 information
itemfit(x, S_X2.plot = 1) # good fit

itemfit(x, S_X2.plot = 2) # good fit

itemfit(x, S_X2.plot = 21) # bad fit


itemfit(x, 'X2') # just X2
#>       item      X2 df.X2 RMSEA.X2  p.X2
#> 1   Item_1  30.842     8    0.038 0.000
#> 2   Item_2  27.970     8    0.035 0.000
#> 3   Item_3  43.995     8    0.047 0.000
#> 4   Item_4  33.272     8    0.040 0.000
#> 5   Item_5  29.469     8    0.037 0.000
#> 6   Item_6  21.325     8    0.029 0.006
#> 7   Item_7  23.127     8    0.031 0.003
#> 8   Item_8  25.332     8    0.033 0.001
#> 9   Item_9  33.778     8    0.040 0.000
#> 10 Item_10  22.972     8    0.031 0.003
#> 11 Item_11  27.300     8    0.035 0.001
#> 12 Item_12  23.256     8    0.031 0.003
#> 13 Item_13  31.523     8    0.038 0.000
#> 14 Item_14  27.924     8    0.035 0.000
#> 15 Item_15  18.462     8    0.026 0.018
#> 16 Item_16  25.057     8    0.033 0.002
#> 17 Item_17  14.828     8    0.021 0.063
#> 18 Item_18  17.676     8    0.025 0.024
#> 19 Item_19  32.585     8    0.039 0.000
#> 20 Item_20  37.207     8    0.043 0.000
#> 21 baditem 228.367     8    0.117 0.000
itemfit(x, 'X2', method = 'ML') # X2 with maximum-likelihood estimates for traits
#> Warning: The following factor score estimates failed to converge successfully:
#>     311,315,352,518,677,748,909,927,1081,1243,1277,1305,1415,1480,1620,1893
#>       item      X2 df.X2 RMSEA.X2  p.X2
#> 1   Item_1  35.941     8    0.042 0.000
#> 2   Item_2  53.226     8    0.053 0.000
#> 3   Item_3  47.010     8    0.049 0.000
#> 4   Item_4  85.852     8    0.070 0.000
#> 5   Item_5  85.280     8    0.070 0.000
#> 6   Item_6   8.632     8    0.006 0.374
#> 7   Item_7  57.623     8    0.056 0.000
#> 8   Item_8  42.952     8    0.047 0.000
#> 9   Item_9  55.180     8    0.054 0.000
#> 10 Item_10  32.456     8    0.039 0.000
#> 11 Item_11 131.613     8    0.088 0.000
#> 12 Item_12  50.094     8    0.051 0.000
#> 13 Item_13  55.846     8    0.055 0.000
#> 14 Item_14  18.717     8    0.026 0.016
#> 15 Item_15  12.402     8    0.017 0.134
#> 16 Item_16  38.229     8    0.043 0.000
#> 17 Item_17   4.413     8    0.000 0.818
#> 18 Item_18  16.165     8    0.023 0.040
#> 19 Item_19  14.190     8    0.020 0.077
#> 20 Item_20  21.215     8    0.029 0.007
#> 21 baditem 227.191     8    0.117 0.000
itemfit(x, group.bins=15, empirical.plot = 1, method = 'ML') #empirical item plot with 15 points
#> Warning: The following factor score estimates failed to converge successfully:
#>     311,315,352,518,677,748,909,927,1081,1243,1277,1305,1415,1480,1620,1893

itemfit(x, group.bins=15, empirical.plot = 21, method = 'ML')
#> Warning: The following factor score estimates failed to converge successfully:
#>     311,315,352,518,677,748,909,927,1081,1243,1277,1305,1415,1480,1620,1893


# PV and X2* statistics (parametric bootstrap stats not run to save time)
itemfit(x, 'PV_Q1')
#>       item   PV_Q1 df.PV_Q1 RMSEA.PV_Q1 p.PV_Q1
#> 1   Item_1   8.984        8       0.008   0.344
#> 2   Item_2   9.441        8       0.009   0.306
#> 3   Item_3   7.162        8       0.000   0.519
#> 4   Item_4   8.463        8       0.005   0.390
#> 5   Item_5   8.755        8       0.007   0.363
#> 6   Item_6   9.411        8       0.009   0.309
#> 7   Item_7   8.678        8       0.007   0.370
#> 8   Item_8   8.269        8       0.004   0.408
#> 9   Item_9   9.005        8       0.008   0.342
#> 10 Item_10   6.873        8       0.000   0.550
#> 11 Item_11   9.871        8       0.011   0.274
#> 12 Item_12   9.214        8       0.009   0.325
#> 13 Item_13   8.889        8       0.007   0.352
#> 14 Item_14   9.088        8       0.008   0.335
#> 15 Item_15   8.583        8       0.006   0.379
#> 16 Item_16   8.848        8       0.007   0.355
#> 17 Item_17   8.408        8       0.005   0.395
#> 18 Item_18   8.000        8       0.000   0.433
#> 19 Item_19   8.742        8       0.007   0.365
#> 20 Item_20   7.823        8       0.000   0.451
#> 21 baditem 118.597        8       0.083   0.000

if(interactive()) mirtCluster() # improve speed of bootstrap samples by running in parallel
# itemfit(x, 'PV_Q1*')
# itemfit(x, 'X2*') # Stone's 1993 statistic
# itemfit(x, 'X2*_df') # Stone's 2000 scaled statistic with df estimate

# empirical tables for X2 statistic
tabs <- itemfit(x, 'X2', return.tables=TRUE, which.items = 1)
tabs
#> $`theta = -1.4531`
#>       Observed  Expected z.Residual
#> cat_0      183 158.63869   1.934176
#> cat_1       17  41.36131  -3.787943
#> 
#> $`theta = -0.9416`
#>       Observed  Expected z.Residual
#> cat_0      149 138.43172  0.8982277
#> cat_1       51  61.56828 -1.3468702
#> 
#> $`theta = -0.6475`
#>       Observed  Expected z.Residual
#> cat_0      132 124.64146  0.6591135
#> cat_1       68  75.35854 -0.8476670
#> 
#> $`theta = -0.3921`
#>       Observed  Expected  z.Residual
#> cat_0      112 111.77447  0.02133235
#> cat_1       88  88.22553 -0.02401114
#> 
#> $`theta = -0.1393`
#>       Observed  Expected z.Residual
#> cat_0       88  98.63125  -1.070476
#> cat_1      112 101.36875   1.055923
#> 
#> $`theta = 0.0936`
#>       Observed Expected  z.Residual
#> cat_0       86  86.5533 -0.05947283
#> cat_1      114 113.4467  0.05194748
#> 
#> $`theta = 0.346`
#>       Observed  Expected z.Residual
#> cat_0       61  73.91477  -1.502177
#> cat_1      139 126.08523   1.150150
#> 
#> $`theta = 0.6087`
#>       Observed  Expected z.Residual
#> cat_0       54  61.64828 -0.9740998
#> cat_1      146 138.35172  0.6502370
#> 
#> $`theta = 0.9646`
#>       Observed Expected z.Residual
#> cat_0       41  47.0127 -0.8769235
#> cat_1      159 152.9873  0.4861179
#> 
#> $`theta = 1.5621`
#>       Observed  Expected z.Residual
#> cat_0       24  28.27768 -0.8044264
#> cat_1      176 171.72232  0.3264336
#> 

#infit/outfit statistics. method='ML' agrees better with eRm package
itemfit(raschfit, 'infit', method = 'ML') #infit and outfit stats
#>       item outfit z.outfit infit z.infit
#> 1   Item_1  0.919   -2.945 0.951  -2.699
#> 2   Item_2  0.962   -1.281 0.960  -2.010
#> 3   Item_3  0.876   -4.455 0.918  -4.332
#> 4   Item_4  0.998   -0.049 1.009   0.495
#> 5   Item_5  0.982   -0.523 0.974  -1.227
#> 6   Item_6  0.890   -2.233 0.950  -1.692
#> 7   Item_7  1.008    0.259 1.003   0.171
#> 8   Item_8  0.933   -1.743 0.961  -1.631
#> 9   Item_9  0.958   -1.519 0.964  -1.999
#> 10 Item_10  1.011    0.303 1.013   0.534
#> 11 Item_11  0.898   -2.300 0.939  -2.531
#> 12 Item_12  0.988   -0.383 1.012   0.607
#> 13 Item_13  0.991   -0.263 1.002   0.093
#> 14 Item_14  0.973   -0.841 0.974  -1.256
#> 15 Item_15  0.947   -0.943 0.993  -0.210
#> 16 Item_16  0.988   -0.271 0.985  -0.546
#> 17 Item_17  0.878   -1.532 0.960  -0.872
#> 18 Item_18  0.961   -0.759 0.978  -0.742
#> 19 Item_19  0.943   -2.060 0.974  -1.352
#> 20 Item_20  0.868   -4.736 0.911  -4.687
#> 21 baditem  1.513   16.123 1.338  16.509

#same as above, but inputting ML estimates instead (saves time for re-use)
Theta <- fscores(raschfit, method = 'ML')
itemfit(raschfit, 'infit', Theta=Theta)
#>       item outfit z.outfit infit z.infit
#> 1   Item_1  0.919   -2.945 0.951  -2.699
#> 2   Item_2  0.962   -1.281 0.960  -2.010
#> 3   Item_3  0.876   -4.455 0.918  -4.332
#> 4   Item_4  0.998   -0.049 1.009   0.495
#> 5   Item_5  0.982   -0.523 0.974  -1.227
#> 6   Item_6  0.890   -2.233 0.950  -1.692
#> 7   Item_7  1.008    0.259 1.003   0.171
#> 8   Item_8  0.933   -1.743 0.961  -1.631
#> 9   Item_9  0.958   -1.519 0.964  -1.999
#> 10 Item_10  1.011    0.303 1.013   0.534
#> 11 Item_11  0.898   -2.300 0.939  -2.531
#> 12 Item_12  0.988   -0.383 1.012   0.607
#> 13 Item_13  0.991   -0.263 1.002   0.093
#> 14 Item_14  0.973   -0.841 0.974  -1.256
#> 15 Item_15  0.947   -0.943 0.993  -0.210
#> 16 Item_16  0.988   -0.271 0.985  -0.546
#> 17 Item_17  0.878   -1.532 0.960  -0.872
#> 18 Item_18  0.961   -0.759 0.978  -0.742
#> 19 Item_19  0.943   -2.060 0.974  -1.352
#> 20 Item_20  0.868   -4.736 0.911  -4.687
#> 21 baditem  1.513   16.123 1.338  16.509
itemfit(raschfit, empirical.plot=1, Theta=Theta)

itemfit(raschfit, 'X2', return.tables=TRUE, Theta=Theta, which.items=1)
#> $`theta = -1.7718`
#>       Observed  Expected z.Residual
#> cat_0      177 166.44926  0.8177906
#> cat_1       23  33.55074 -1.8215117
#> 
#> $`theta = -1.0782`
#>       Observed  Expected z.Residual
#> cat_0      150 142.51602  0.6269036
#> cat_1       50  57.48398 -0.9870955
#> 
#> $`theta = -0.7497`
#>       Observed  Expected z.Residual
#> cat_0      132 128.19072  0.3364454
#> cat_1       68  71.80928 -0.4495237
#> 
#> $`theta = -0.4577`
#>       Observed Expected z.Residual
#> cat_0      118 114.2782  0.3481537
#> cat_1       82  85.7218 -0.4019824
#> 
#> $`theta = -0.193`
#>       Observed  Expected z.Residual
#> cat_0       86 101.13957  -1.505404
#> cat_1      114  98.86043   1.522658
#> 
#> $`theta = 0.0765`
#>       Observed Expected z.Residual
#> cat_0       75  87.7275  -1.358862
#> cat_1      125 112.2725   1.201175
#> 
#> $`theta = 0.3374`
#>       Observed  Expected z.Residual
#> cat_0       72  75.15333 -0.3637435
#> cat_1      128 124.84667  0.2822155
#> 
#> $`theta = 0.6728`
#>       Observed  Expected z.Residual
#> cat_0       54  60.18187 -0.7968690
#> cat_1      146 139.81813  0.5228029
#> 
#> $`theta = 1.0787`
#>       Observed  Expected  z.Residual
#> cat_0       44  44.57924 -0.08675380
#> cat_1      156 155.42076  0.04646226
#> 
#> $`theta = 1.9249`
#>       Observed  Expected   z.Residual
#> cat_0       22  21.91506  0.018144153
#> cat_1      178 178.08494 -0.006364942
#> 

# fit a new more flexible model for the mis-fitting item
itemtype <- c(rep('2PL', 20), 'spline')
x2 <- mirt(data, 1, itemtype=itemtype)
#> EM cycles terminated after 500 iterations.
itemfit(x2)
#>       item   S_X2 df.S_X2 RMSEA.S_X2 p.S_X2
#> 1   Item_1 13.109      15      0.000  0.594
#> 2   Item_2 13.513      15      0.000  0.563
#> 3   Item_3 21.887      15      0.015  0.111
#> 4   Item_4  9.894      15      0.000  0.826
#> 5   Item_5 16.248      15      0.006  0.366
#> 6   Item_6 10.218      16      0.000  0.855
#> 7   Item_7 18.279      15      0.010  0.248
#> 8   Item_8 13.587      16      0.000  0.629
#> 9   Item_9 13.485      15      0.000  0.565
#> 10 Item_10 10.569      16      0.000  0.835
#> 11 Item_11 16.325      15      0.007  0.361
#> 12 Item_12  9.663      15      0.000  0.840
#> 13 Item_13 19.394      16      0.010  0.249
#> 14 Item_14 16.357      15      0.007  0.359
#> 15 Item_15  9.410      16      0.000  0.896
#> 16 Item_16 13.578      16      0.000  0.630
#> 17 Item_17 29.945      16      0.021  0.018
#> 18 Item_18 15.058      16      0.000  0.520
#> 19 Item_19 15.663      15      0.005  0.405
#> 20 Item_20  9.333      15      0.000  0.859
#> 21 baditem 11.473      13      0.000  0.571
itemplot(x2, 21)

anova(x, x2)
#>         AIC    SABIC       HQ      BIC    logLik     X2 df p
#> x  49477.85 49579.65 49564.23 49713.09 -24696.93            
#> x2 49214.97 49321.62 49305.46 49461.41 -24563.49 266.88  2 0

#------------------------------------------------------------

#similar example to Kang and Chen 2007
a <- matrix(c(.8,.4,.7, .8, .4, .7, 1, 1, 1, 1))
d <- matrix(rep(c(2.0,0.0,-1,-1.5),10), ncol=4, byrow=TRUE)
dat <- simdata(a,d,2000, itemtype = rep('graded', 10))
head(dat)
#>      Item_1 Item_2 Item_3 Item_4 Item_5 Item_6 Item_7 Item_8 Item_9 Item_10
#> [1,]      4      0      1      4      1      4      3      2      1       4
#> [2,]      2      1      1      3      2      4      2      1      4       2
#> [3,]      2      2      3      0      0      0      4      4      4       4
#> [4,]      1      2      4      1      2      2      2      2      0       4
#> [5,]      1      3      0      2      1      4      4      4      3       1
#> [6,]      1      3      3      2      3      1      1      2      0       1

mod <- mirt(dat, 1)
itemfit(mod)
#>       item    S_X2 df.S_X2 RMSEA.S_X2 p.S_X2
#> 1   Item_1 143.021     103      0.014  0.006
#> 2   Item_2  85.589     109      0.000  0.953
#> 3   Item_3 110.835     105      0.005  0.330
#> 4   Item_4 121.145     103      0.009  0.107
#> 5   Item_5 107.875     111      0.000  0.566
#> 6   Item_6  93.905     102      0.000  0.704
#> 7   Item_7 113.544      99      0.009  0.151
#> 8   Item_8 100.858      99      0.003  0.429
#> 9   Item_9  83.214      98      0.000  0.857
#> 10 Item_10 104.402      99      0.005  0.336
itemfit(mod, 'X2') # less useful given inflated Type I error rates
#>       item      X2 df.X2 RMSEA.X2  p.X2
#> 1   Item_1  93.925    35    0.029 0.000
#> 2   Item_2  43.667    35    0.011 0.149
#> 3   Item_3  81.354    35    0.026 0.000
#> 4   Item_4  90.490    35    0.028 0.000
#> 5   Item_5  36.169    35    0.004 0.414
#> 6   Item_6  97.559    35    0.030 0.000
#> 7   Item_7 129.917    35    0.037 0.000
#> 8   Item_8 130.263    35    0.037 0.000
#> 9   Item_9 141.266    35    0.039 0.000
#> 10 Item_10 117.650    35    0.034 0.000
itemfit(mod, empirical.plot = 1)

itemfit(mod, empirical.plot = 1, empirical.poly.collapse=TRUE)


# collapsed tables (see mincell.X2) for X2 and G2
itemfit(mod, 'X2', return.tables = TRUE, which.items = 1)
#> $`theta = -1.4692`
#>       Observed  Expected z.Residual
#> cat_0       98 65.020718  4.0899247
#> cat_1       76 88.468143 -1.3255872
#> cat_2       12 26.774054 -2.8552400
#> cat_3        7  6.656543  0.1331215
#> cat_4        7 13.080542 -1.6812388
#> 
#> $`theta = -0.8519`
#>       Observed  Expected z.Residual
#> cat_0       65 45.508938  2.8892636
#> cat_1       87 88.222767 -0.1301827
#> cat_2       29 35.896766 -1.1511126
#> cat_3        6  9.834511 -1.2227385
#> cat_4       13 20.537019 -1.6631481
#> 
#> $`theta = -0.5476`
#>       Observed Expected z.Residual
#> cat_0       35 37.54994 -0.4161270
#> cat_1       97 85.03642  1.2973549
#> cat_2       34 40.25662 -0.9861003
#> cat_3        5 11.70198 -1.9591763
#> cat_4       29 25.45504  0.7026267
#> 
#> $`theta = -0.3145`
#>       Observed Expected z.Residual
#> cat_0       27 32.21053 -0.9180857
#> cat_1       91 81.40120  1.0639013
#> cat_2       40 43.28252 -0.4989437
#> cat_3       15 13.23174  0.4861130
#> cat_4       27 29.87400 -0.5258232
#> 
#> $`theta = -0.0993`
#>       Observed Expected z.Residual
#> cat_0       23 27.84181 -0.9176111
#> cat_1       73 77.27754 -0.4865943
#> cat_2       60 45.69537  2.1161218
#> cat_3       12 14.68759 -0.7012737
#> cat_4       32 34.49770 -0.4252515
#> 
#> $`theta = 0.1116`
#>       Observed Expected  z.Residual
#> cat_0       23 24.05321 -0.21474860
#> cat_1       73 72.66989  0.03872444
#> cat_2       50 47.59720  0.34827910
#> cat_3       16 16.11821 -0.02944308
#> cat_4       38 39.56149 -0.24825845
#> 
#> $`theta = 0.3293`
#>       Observed Expected   z.Residual
#> cat_0       18 20.61824 -0.576612407
#> cat_1       69 67.48888  0.183942450
#> cat_2       49 48.98546  0.002077898
#> cat_3       24 17.55297  1.538809131
#> cat_4       40 45.35445 -0.795069543
#> 
#> $`theta = 0.5568`
#>       Observed Expected  z.Residual
#> cat_0        6 17.49926 -2.74890777
#> cat_1       60 61.79242 -0.22801909
#> cat_2       56 49.73600  0.88821096
#> cat_3       19 18.94936  0.01163316
#> cat_4       59 52.02296  0.96732827
#> 
#> $`theta = 0.8512`
#>       Observed Expected z.Residual
#> cat_0        7 14.09896 -1.8906068
#> cat_1       45 54.28449 -1.2601441
#> cat_2       48 49.58044 -0.2244513
#> cat_3       26 20.49440  1.2161493
#> cat_4       74 61.54171  1.5880848
#> 
#> $`theta = 1.4358`
#>       Observed  Expected z.Residual
#> cat_0        6  9.087564 -1.0242177
#> cat_1       25 40.094053 -2.3837784
#> cat_2       44 45.694100 -0.2506161
#> cat_3       21 22.208083 -0.2563547
#> cat_4      104 82.916200  2.3154168
#> 

mod2 <- mirt(dat, 1, 'Rasch')
itemfit(mod2, 'infit', method = 'ML')
#>       item outfit z.outfit infit z.infit
#> 1   Item_1  0.959   -1.405 0.946  -2.139
#> 2   Item_2  1.098    3.228 1.074   2.794
#> 3   Item_3  0.962   -1.324 0.961  -1.572
#> 4   Item_4  0.946   -1.865 0.932  -2.702
#> 5   Item_5  1.121    3.945 1.094   3.498
#> 6   Item_6  0.917   -2.900 0.917  -3.294
#> 7   Item_7  0.864   -4.827 0.881  -4.897
#> 8   Item_8  0.873   -4.654 0.880  -5.023
#> 9   Item_9  0.876   -4.465 0.887  -4.694
#> 10 Item_10  0.883   -4.253 0.892  -4.517

# massive list of tables for S-X2
tables <- itemfit(mod, return.tables = TRUE)

#observed and expected total score patterns for item 1 (post collapsing)
tables$O[[1]]
#>     0  1  2  3  4
#> 4  12  3  0  0  0
#> 5   6  1  0  0  0
#> 6   8 17  1  0  0
#> 7  12 16  5  0  0
#> 8  22  8  0  0  0
#> 9  30 20  3  3  1
#> 10 19 27  9  1  7
#> 11 16 32  9  4  0
#> 12 17 40 17  1  5
#> 13 25 51 15  4  8
#> 14 22 44 14  3  8
#> 15 22 46 22  5 14
#> 16 14 41 32  8 24
#> 17 11 42 31  8 10
#> 18 11 57 25  7 25
#> 19 17 41 37 11 15
#> 20 11 35 28 12 26
#> 21 10 32 32  8 22
#> 22  5 32 18 15 29
#> 23  2 23 17  7 33
#> 24  2 30 22  9 23
#> 25  3 15 19  7 28
#> 26  3 12 16 11 23
#> 27  4 13 12  4 19
#> 28  3  6  9  5 18
#> 29  3  6  2 17  0
#> 30  3 10  2 21  0
#> 31  1  2  1 13  0
#> 32  1  4  5  6  0
#> 33  3  4  4  5  0
#> 34  1  3  1 11  0
#> 35  2  6  0  0  0
#> 36  2  6  0  0  0
tables$E[[1]]
#>            [,1]      [,2]      [,3]      [,4]      [,5]
#>  [1,] 11.023325  3.976675        NA        NA        NA
#>  [2,]  4.102366  2.897634        NA        NA        NA
#>  [3,] 13.498246 10.610902  1.890852        NA        NA
#>  [4,] 15.184304 14.492730  3.322965        NA        NA
#>  [5,] 12.249443 13.799872  3.950685        NA        NA
#>  [6,] 20.682046 26.920288  6.923239  1.157706  1.316720
#>  [7,] 20.332439 30.097150  8.830861  1.641385  2.098165
#>  [8,] 17.517441 29.135716  9.625822  1.958940  2.762080
#>  [9,] 20.446921 37.829468 13.940499  3.072836  4.710276
#> [10,] 23.437800 47.811327 19.504466  4.622495  7.623912
#> [11,] 18.436615 41.167389 18.467918  4.679944  8.248134
#> [12,] 19.651227 47.756678 23.431406  6.318731 11.841957
#> [13,] 19.076413 50.199010 26.830125  7.670547 15.223905
#> [14,] 14.528071 41.195659 23.904020  7.227464 15.144786
#> [15,] 15.799085 48.086720 30.192468  9.636968 21.284760
#> [16,] 13.544069 44.116503 29.895563 10.055666 23.388198
#> [17,] 11.078348 38.500292 28.110440  9.952500 24.358420
#> [18,]  9.068050 33.529616 26.330542  9.809752 25.262041
#> [19,]  7.581094 29.780090 25.109651  9.840833 26.688332
#> [20,]  5.489874 22.880802 20.702905  8.532437 24.393982
#> [21,]  5.010515 22.116677 21.467501  9.311108 28.094199
#> [22,]  3.626463 16.954931 17.637672  8.059013 25.721921
#> [23,]  2.805419 13.907880 15.517623  7.472196 25.296882
#> [24,]  1.907017 10.013898 12.004816  6.104317 21.969952
#> [25,]  1.261885  7.039995  9.063539  4.881523 18.753058
#> [26,]  4.944641  5.875443  3.354204 13.825711        NA
#> [27,]  5.454637  7.095249  4.313860 19.136254        NA
#> [28,]  2.176787  3.093386  2.019117  9.710709        NA
#> [29,]  1.685470  2.659415  1.858932  9.796184        NA
#> [30,]  1.334541  2.384692  1.813140 10.467628        NA
#> [31,]  1.040082  2.042086  1.733955 11.183876        NA
#> [32,]  2.050562  5.949438        NA        NA        NA
#> [33,]  1.369048  6.630952        NA        NA        NA

# can also select specific items
# itemfit(mod, return.tables = TRUE, which.items=1)

# fit stats with missing data (run in parallel using all cores)
dat[sample(1:prod(dim(dat)), 100)] <- NA
raschfit <- mirt(dat, 1, itemtype='Rasch')

# use only valid data by removing rows with missing terms
itemfit(raschfit, c('S_X2', 'infit'), na.rm = TRUE)
#> Sample size after row-wise response data removal: 1901
#>       item outfit z.outfit infit z.infit    S_X2 df.S_X2 RMSEA.S_X2 p.S_X2
#> 1   Item_1  0.906   -3.624 0.911  -3.657 155.059     102      0.017  0.001
#> 2   Item_2  0.997   -0.104 1.004   0.148 146.677     103      0.015  0.003
#> 3   Item_3  0.917   -3.280 0.919  -3.383 114.788     103      0.008  0.201
#> 4   Item_4  0.884   -4.446 0.896  -4.289 121.469     102      0.010  0.092
#> 5   Item_5  1.006    0.238 1.009   0.351 204.476     103      0.023  0.000
#> 6   Item_6  0.880   -4.513 0.895  -4.214  93.808     103      0.000  0.730
#> 7   Item_7  0.852   -5.850 0.866  -5.665 129.870     102      0.012  0.033
#> 8   Item_8  0.862   -5.634 0.870  -5.605 120.874     102      0.010  0.098
#> 9   Item_9  0.855   -5.839 0.867  -5.720  96.806     102      0.000  0.627
#> 10 Item_10  0.852   -6.125 0.863  -6.017 111.849     101      0.008  0.216

# note that X2, G2, PV-Q1, and X2* do not require complete datasets
thetas <- fscores(raschfit, method = 'ML') # save for faster computations
itemfit(raschfit, c('X2', 'G2'), Theta=thetas)
#>       item     X2 df.X2 RMSEA.X2  p.X2     G2 df.G2 RMSEA.G2  p.G2
#> 1   Item_1 53.134    36    0.015 0.033 56.307    36    0.017 0.017
#> 2   Item_2 70.263    36    0.022 0.001 65.934    36    0.020 0.002
#> 3   Item_3 52.499    36    0.015 0.037 53.680    36    0.016 0.029
#> 4   Item_4 42.911    36    0.010 0.199 42.436    36    0.009 0.213
#> 5   Item_5 99.602    36    0.030 0.000 83.221    36    0.026 0.000
#> 6   Item_6 30.799    36    0.000 0.714 32.378    36    0.000 0.642
#> 7   Item_7 61.453    36    0.019 0.005 66.355    35    0.021 0.001
#> 8   Item_8 58.196    36    0.018 0.011 60.014    36    0.018 0.007
#> 9   Item_9 55.505    36    0.016 0.020 58.956    35    0.019 0.007
#> 10 Item_10 45.083    36    0.011 0.143 48.696    36    0.013 0.077
itemfit(raschfit, empirical.plot=1, Theta=thetas)

itemfit(raschfit, 'X2', return.tables=TRUE, which.items=1, Theta=thetas)
#> $`theta = -0.9751`
#>       Observed  Expected z.Residual
#> cat_0       99 89.201156  1.0375036
#> cat_1       81 87.321894 -0.6765278
#> cat_2       12 20.552377 -1.8864956
#> cat_3        5  2.584801  1.5022397
#> cat_4        5  2.339772  1.7391302
#> 
#> $`theta = -0.4747`
#>       Observed  Expected z.Residual
#> cat_0       50 55.807829 -0.7774389
#> cat_1       96 90.114011  0.6200451
#> cat_2       36 34.984506  0.1716879
#> cat_3        5  7.257473 -0.8379725
#> cat_4       12 10.836181  0.3535470
#> 
#> $`theta = -0.2825`
#>       Observed Expected   z.Residual
#> cat_0       44 43.95125  0.007353318
#> cat_1       96 86.00540  1.077711616
#> cat_2       32 40.46378 -1.330549586
#> cat_3        9 10.17263 -0.367659295
#> cat_4       18 18.40694 -0.094849986
#> 
#> $`theta = -0.151`
#>       Observed Expected z.Residual
#> cat_0       33 36.30130 -0.5479285
#> cat_1       75 81.02246 -0.6690693
#> cat_2       45 43.47853  0.2307410
#> cat_3       13 12.46725  0.1508827
#> cat_4       33 25.73046  1.4331223
#> 
#> $`theta = -0.0334`
#>       Observed Expected z.Residual
#> cat_0       20 29.92973 -1.8150395
#> cat_1       86 75.13704  1.2532020
#> cat_2       54 45.35149  1.2842374
#> cat_3       10 14.62700 -1.2098237
#> cat_4       29 33.95473 -0.8502955
#> 
#> $`theta = 0.0651`
#>       Observed Expected z.Residual
#> cat_0       23 25.01780 -0.4034162
#> cat_1       67 69.30612 -0.2770101
#> cat_2       58 46.16154  1.7424292
#> cat_3       17 16.42915  0.1408350
#> cat_4       34 42.08539 -1.2463366
#> 
#> $`theta = 0.1643`
#>       Observed Expected z.Residual
#> cat_0       19 20.52730 -0.3371007
#> cat_1       69 62.79441  0.7831101
#> cat_2       43 46.18450 -0.4685899
#> cat_3       26 18.15088  1.8423492
#> cat_4       42 51.34291 -1.3038926
#> 
#> $`theta = 0.2768`
#>       Observed Expected z.Residual
#> cat_0        4 16.04376 -3.0068309
#> cat_1       58 54.92441  0.4149982
#> cat_2       49 45.20754  0.5640478
#> cat_3       19 19.88303 -0.1980314
#> cat_4       69 62.94127  0.7636847
#> 
#> $`theta = 0.4165`
#>       Observed Expected    z.Residual
#> cat_0       10 11.43162 -0.4234219850
#> cat_1       45 45.00349 -0.0005202907
#> cat_2       50 42.59621  1.1344070685
#> cat_3       22 21.54378  0.0982913278
#> cat_4       72 78.42491 -0.7255041635
#> 
#> $`theta = 0.7405`
#>       Observed  Expected z.Residual
#> cat_0        4   4.63062 -0.2930545
#> cat_1       23  25.20562 -0.4393217
#> cat_2       42  32.98693  1.5692840
#> cat_3       24  23.06815  0.1940175
#> cat_4      109 116.10867 -0.6597149
#> 

# }