Skip to contents

This function uses a generalized additive model (GAM) to estimate response curves for items that do not seem to fit well in a given model. Using a stable axillary model, traceline functions for poorly fitting dichotomous or polytomous items can be inspected using point estimates (or plausible values) of the latent trait. Plots of the tracelines and their associated standard errors are available to help interpret the misfit. This function may also be useful when adding new items to an existing, well established set of items, especially when the parametric form of the items under investigation are unknown.

Usage

itemGAM(
  item,
  Theta,
  formula = resp ~ s(Theta, k = 10),
  CI = 0.95,
  theta_lim = c(-3, 3),
  return.models = FALSE,
  ...
)

# S3 method for class 'itemGAM'
plot(
  x,
  y = NULL,
  par.strip.text = list(cex = 0.7),
  par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col =
    "black")),
  auto.key = list(space = "right", points = FALSE, lines = TRUE),
  ...
)

Arguments

item

a single poorly fitting item to be investigated. Can be a vector or matrix

Theta

a list or matrix of latent trait estimates typically returned from fscores

formula

an R formula to be passed to the gam function. Default fits a spline model with 10 nodes. For multidimensional models, the traits are assigned the names 'Theta1', 'Theta2', ..., 'ThetaN'

CI

a number ranging from 0 to 1 indicating the confidence interval range. Default provides the 95 percent interval

theta_lim

range of latent trait scores to be evaluated

return.models

logical; return a list of GAM models for each category? Useful when the GAMs should be inspected directly, but also when fitting multidimensional models (this is set to TRUE automatically for multidimensional models)

...

additional arguments to be passed to gam or lattice

x

an object of class 'itemGAM'

y

a NULL value ignored by the plotting function

par.strip.text

plotting argument passed to lattice

par.settings

plotting argument passed to lattice

auto.key

plotting argument passed to lattice

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

See also

Author

Phil Chalmers rphilip.chalmers@gmail.com

Examples


# \donttest{
set.seed(10)
N <- 1000
J <- 30

a <- matrix(1, J)
d <- matrix(rnorm(J))
Theta <- matrix(rnorm(N, 0, 1.5))
dat <- simdata(a, d, N, itemtype = '2PL', Theta=Theta)

# make a bad item
ps <- exp(Theta^2 + Theta) / (1 + exp(Theta^2 + Theta))
item1 <- sapply(ps, function(x) sample(c(0,1), size = 1, prob = c(1-x, x)))

ps2 <- exp(2 * Theta^2 + Theta + .5 * Theta^3) / (1 + exp(2 * Theta^2 + Theta + .5 * Theta^3))
item2 <- sapply(ps2, function(x) sample(c(0,1), size = 1, prob = c(1-x, x)))

# how the actual item looks in the population
plot(Theta, ps, ylim = c(0,1))

plot(Theta, ps2, ylim = c(0,1))


baditems <- cbind(item1, item2)
newdat <- cbind(dat, baditems)

badmod <- mirt(newdat, 1)
itemfit(badmod) #clearly a bad fit for the last two items
#>       item    S_X2 df.S_X2 RMSEA.S_X2 p.S_X2
#> 1   Item_1  26.608      24      0.010  0.323
#> 2   Item_2  14.613      26      0.000  0.964
#> 3   Item_3  35.063      25      0.020  0.087
#> 4   Item_4  30.993      26      0.014  0.229
#> 5   Item_5  20.266      25      0.000  0.733
#> 6   Item_6  26.641      24      0.010  0.321
#> 7   Item_7  25.524      25      0.005  0.433
#> 8   Item_8  29.095      24      0.015  0.217
#> 9   Item_9  29.228      25      0.013  0.254
#> 10 Item_10  34.572      24      0.021  0.075
#> 11 Item_11  32.517      24      0.019  0.115
#> 12 Item_12  43.634      25      0.027  0.012
#> 13 Item_13  19.525      24      0.000  0.723
#> 14 Item_14  24.384      25      0.000  0.497
#> 15 Item_15  24.072      25      0.000  0.515
#> 16 Item_16  33.682      25      0.019  0.115
#> 17 Item_17  58.681      26      0.035  0.000
#> 18 Item_18  28.826      24      0.014  0.227
#> 19 Item_19  19.221      23      0.000  0.688
#> 20 Item_20  38.570      25      0.023  0.041
#> 21 Item_21  24.132      26      0.000  0.568
#> 22 Item_22  28.951      23      0.016  0.182
#> 23 Item_23  22.083      26      0.000  0.684
#> 24 Item_24  29.721      24      0.015  0.194
#> 25 Item_25  22.775      26      0.000  0.646
#> 26 Item_26  27.243      24      0.012  0.293
#> 27 Item_27  22.161      26      0.000  0.680
#> 28 Item_28  22.798      26      0.000  0.644
#> 29 Item_29  30.499      24      0.016  0.169
#> 30 Item_30  31.316      24      0.017  0.145
#> 31   item1 185.602      28      0.075  0.000
#> 32   item2 135.647      28      0.062  0.000
mod <- mirt(dat, 1) #fit a model that does not contain the bad items
itemfit(mod)
#>       item   S_X2 df.S_X2 RMSEA.S_X2 p.S_X2
#> 1   Item_1 29.980      24      0.016  0.185
#> 2   Item_2 21.004      26      0.000  0.742
#> 3   Item_3 26.195      24      0.010  0.343
#> 4   Item_4 24.582      25      0.000  0.486
#> 5   Item_5 27.717      24      0.012  0.272
#> 6   Item_6 34.249      23      0.022  0.062
#> 7   Item_7 34.346      25      0.019  0.101
#> 8   Item_8 25.295      23      0.010  0.335
#> 9   Item_9 21.434      25      0.000  0.668
#> 10 Item_10 30.231      23      0.018  0.143
#> 11 Item_11 23.284      23      0.004  0.444
#> 12 Item_12 18.241      24      0.000  0.791
#> 13 Item_13 19.337      24      0.000  0.734
#> 14 Item_14 26.281      24      0.010  0.339
#> 15 Item_15 15.675      24      0.000  0.899
#> 16 Item_16 25.369      24      0.008  0.386
#> 17 Item_17 51.496      25      0.033  0.001
#> 18 Item_18 17.211      23      0.000  0.799
#> 19 Item_19 20.136      23      0.000  0.634
#> 20 Item_20 37.402      24      0.024  0.040
#> 21 Item_21 30.726      25      0.015  0.198
#> 22 Item_22 23.889      22      0.009  0.353
#> 23 Item_23 13.622      25      0.000  0.968
#> 24 Item_24 43.777      24      0.029  0.008
#> 25 Item_25 27.211      25      0.009  0.345
#> 26 Item_26 17.295      24      0.000  0.836
#> 27 Item_27 27.196      25      0.009  0.346
#> 28 Item_28 16.918      25      0.000  0.885
#> 29 Item_29 15.302      24      0.000  0.912
#> 30 Item_30 21.808      23      0.000  0.532

#### Pure non-parametric way of investigating the items
library(KernSmoothIRT)
#> Warning: RGL: unable to open X11 display
#> Warning: 'rgl.init' failed, running with 'rgl.useNULL = TRUE'.
ks <- ksIRT(newdat, rep(1, ncol(newdat)), 1)
plot(ks, item=c(1,31,32))



par(ask=FALSE)

# Using point estimates from the model
Theta <- fscores(mod)
IG0 <- itemGAM(dat[,1], Theta) #good item
IG1 <- itemGAM(baditems[,1], Theta)
IG2 <- itemGAM(baditems[,2], Theta)
plot(IG0)

plot(IG1)

plot(IG2)


# same as above, but with plausible values to obtain the standard errors
set.seed(4321)
ThetaPV <- fscores(mod, plausible.draws=10)
IG0 <- itemGAM(dat[,1], ThetaPV) #good item
IG1 <- itemGAM(baditems[,1], ThetaPV)
IG2 <- itemGAM(baditems[,2], ThetaPV)
plot(IG0)

plot(IG1)

plot(IG2)


## for polytomous test items
SAT12[SAT12 == 8] <- NA
dat <- key2binary(SAT12,
                  key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
dat <- dat[,-32]
mod <- mirt(dat, 1)

# Kernal smoothing is very sensitive to which category is selected as 'correct'
# 5th category as correct
ks <- ksIRT(cbind(dat, SAT12[,32]), c(rep(1, 31), 5), 1)
plot(ks, items = c(1,2,32))




# 3rd category as correct
ks <- ksIRT(cbind(dat, SAT12[,32]), c(rep(1, 31), 3), 1)
plot(ks, items = c(1,2,32))




# splines approach
Theta <- fscores(mod)
IG <- itemGAM(SAT12[,32], Theta)
plot(IG)


set.seed(1423)
ThetaPV <- fscores(mod, plausible.draws=10)
IG2 <- itemGAM(SAT12[,32], ThetaPV)
plot(IG2)


# assuming a simple increasing parametric form (like in a standard IRT model)
IG3 <- itemGAM(SAT12[,32], Theta, formula = resp ~ Theta)
plot(IG3)

IG3 <- itemGAM(SAT12[,32], ThetaPV, formula = resp ~ Theta)
plot(IG3)


### multidimensional example by returning the GAM objects
mod2 <- mirt(dat, 2)
Theta <- fscores(mod2)
IG4 <- itemGAM(SAT12[,32], Theta, formula = resp ~ s(Theta1, k=10) + s(Theta2, k=10),
   return.models=TRUE)
names(IG4)
#> [1] "cat_1" "cat_2" "cat_3" "cat_4" "cat_5"
plot(IG4[[1L]], main = 'Category 1')


plot(IG4[[2L]], main = 'Category 2')


plot(IG4[[3L]], main = 'Category 3')



# }