itemplot
displays various item based IRT plots, with special options for plotting items
that contain several 0 slope parameters. Supports up to three dimensional models.
Usage
itemplot(
object,
item,
type = "trace",
degrees = 45,
CE = FALSE,
CEalpha = 0.05,
CEdraws = 1000,
drop.zeros = FALSE,
theta_lim = c(-6, 6),
shiny = FALSE,
rot = list(xaxis = -70, yaxis = 30, zaxis = 10),
par.strip.text = list(cex = 0.7),
npts = 200,
par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col =
"black")),
auto.key = list(space = "right", points = FALSE, lines = TRUE),
...
)
Arguments
- object
a computed model object of class
SingleGroupClass
orMultipleGroupClass
. Input may also be alist
for comparing similar item types (e.g., 1PL vs 2PL)- item
a single numeric value, or the item name, indicating which item to plot
- type
plot type to use, information (
'info'
), standard errors ('SE'
), item trace lines ('trace'
), cumulative probability plots to indicate thresholds ('threshold'
), information and standard errors ('infoSE'
) or information and trace lines ('infotrace'
), category and total information ('infocat'
), relative efficiency lines ('RE'
), expected score'score'
, or information and trace line contours ('infocontour'
and'tracecontour'
; not supported forMultipleGroupClass
objects)- degrees
the degrees argument to be used if there are two or three factors. See
iteminfo
for more detail. A new vector will be required for three dimensional models to override the default- CE
logical; plot confidence envelope?
- CEalpha
area remaining in the tail for confidence envelope. Default gives 95% confidence region
- CEdraws
draws number of draws to use for confidence envelope
- drop.zeros
logical; drop slope values that are numerically close to zero to reduce dimensionality? Useful in objects returned from
bfactor
or other confirmatory models that contain several zero slopes- theta_lim
lower and upper limits of the latent trait (theta) to be evaluated, and is used in conjunction with
npts
. Default usesc(-6,6)
- shiny
logical; run interactive display for item plots using the
shiny
interface. This primarily is an instructive tool for demonstrating how item response curves behave when adjusting their parameters- rot
a list of rotation coordinates to be used for 3 dimensional plots
- par.strip.text
plotting argument passed to
lattice
- npts
number of quadrature points to be used for plotting features. Larger values make plots look smoother
- par.settings
plotting argument passed to
lattice
- auto.key
plotting argument passed to
lattice
- ...
References
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
# \donttest{
data(LSAT7)
fulldata <- expand.table(LSAT7)
mod1 <- mirt(fulldata,1,SE=TRUE)
mod2 <- mirt(fulldata,1, itemtype = 'Rasch')
mod3 <- mirt(fulldata,2)
itemplot(mod1, 2)
itemplot(mod1, 2, CE = TRUE)
itemplot(mod1, 2, type = 'info')
itemplot(mod1, 2, type = 'info', CE = TRUE)
mods <- list(twoPL = mod1, onePL = mod2)
itemplot(mods, 1, type = 'RE')
# multidimensional
itemplot(mod3, 4, type = 'info')
itemplot(mod3, 4, type = 'info',
col.regions = colorRampPalette(c("white", "red"))(100))
itemplot(mod3, 4, type = 'infocontour')
itemplot(mod3, 4, type = 'tracecontour')
# polytomous items
pmod <- mirt(Science, 1, SE=TRUE)
itemplot(pmod, 3)
itemplot(pmod, 3, type = 'threshold')
itemplot(pmod, 3, CE = TRUE)
itemplot(pmod, 3, type = 'score')
itemplot(pmod, 3, type = 'score', CE = TRUE)
itemplot(pmod, 3, type = 'infotrace')
itemplot(pmod, 3, type = 'infocat')
# use the directlabels package to put labels on tracelines
library(directlabels)
plt <- itemplot(pmod, 3)
direct.label(plt, 'top.points')
# change colour theme of plots
bwtheme <- standard.theme("pdf", color=FALSE)
plot(pmod, type='trace', par.settings=bwtheme)
itemplot(pmod, 1, type = 'trace', par.settings=bwtheme)
# additional modifications can be made via update().
# See ?update.trellis for further documentation
(plt <- itemplot(pmod, 1))
update(plt, ylab = expression(Prob(theta))) # ylab changed
# infoSE plot
itemplot(pmod, 1, type = 'infoSE')
# uncomment to run interactive shiny applet
# itemplot(shiny = TRUE)
# }