Transforms coefficients into a standardized factor loading's metric. For MixedClass
objects,
the fixed and random coefficients are printed. Note that while the output to the console is rounded
to three digits, the returned list of objects is not. For simulations, use
output <- summary(mod, verbose = FALSE)
to suppress the console messages.
Usage
# S4 method for class 'SingleGroupClass'
summary(
object,
rotate = "oblimin",
Target = NULL,
suppress = 0,
suppress.cor = 0,
verbose = TRUE,
...
)
Arguments
- object
an object of class
SingleGroupClass
,MultipleGroupClass
, orMixedClass
- rotate
a string indicating which rotation to use for exploratory models, primarily from the
GPArotation
package (see documentation therein).Rotations currently supported are:
'promax'
,'oblimin'
,'varimax'
,'quartimin'
,'targetT'
,'targetQ'
,'pstT'
,'pstQ'
,'oblimax'
,'entropy'
,'quartimax'
,'simplimax'
,'bentlerT'
,'bentlerQ'
,'tandemI'
,'tandemII'
,'geominT'
,'geominQ'
,'cfT'
,'cfQ'
,'infomaxT'
,'infomaxQ'
,'mccammon'
,'bifactorT'
,'bifactorQ'
.For models that are not exploratory this input will automatically be set to
'none'
- Target
a dummy variable matrix indicting a target rotation pattern. This is required for rotations such as
'targetT'
,'targetQ'
,'pstT'
, and'pstQ'
- suppress
a numeric value indicating which (possibly rotated) factor loadings should be suppressed. Typical values are around .3 in most statistical software. Default is 0 for no suppression
- suppress.cor
same as
suppress
, but for the correlation matrix output- verbose
logical; allow information to be printed to the console?
- ...
additional arguments to be passed
References
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Examples
# \donttest{
x <- mirt(Science, 2)
summary(x)
#>
#> Rotation: oblimin
#>
#> Rotated factor loadings:
#>
#> F1 F2 h2
#> Comfort 0.6016 0.0312 0.382
#> Work -0.0573 0.7971 0.592
#> Future 0.3302 0.5153 0.548
#> Benefit 0.7231 -0.0239 0.506
#>
#> Rotated SS loadings: 0.997 0.902
#>
#> Factor correlations:
#>
#> F1 F2
#> F1 1.000
#> F2 0.511 1
summary(x, rotate = 'varimax')
#>
#> Rotation: varimax
#>
#> Rotated factor loadings:
#>
#> F1 F2 h2
#> Comfort 0.579 0.216 0.382
#> Work 0.121 0.760 0.592
#> Future 0.428 0.605 0.548
#> Benefit 0.683 0.200 0.506
#>
#> Rotated SS loadings: 0.999 1.03
#>
#> Factor correlations:
#>
#> F1 F2
#> F1 1
#> F2 0 1
# }