Create a user defined group-level object with correct generic functions
Source:R/createGroup.R
createGroup.Rd
Initializes the proper S4 class and methods necessary for mirt functions to use in estimation for defining
customized group-level functions. To use the defined objects pass to the
mirt(..., customGroup = OBJECT)
command, and ensure that the class parameters are properly labelled.
Usage
createGroup(
par,
est,
den,
nfact,
standardize = FALSE,
gr = NULL,
hss = NULL,
gen = NULL,
lbound = NULL,
ubound = NULL,
derivType = "Richardson"
)
Arguments
- par
a named vector of the starting values for the parameters
- est
a logical vector indicating which parameters should be freely estimated by default
- den
the probability density function given the Theta/ability values. First input contains a vector of all the defined parameters and the second input must be a matrix called
Theta
. Function also must return anumeric
vector object corresponding to the associated densities for each row in theTheta
input- nfact
number of factors required for the model. E.g., for unidimensional models with only one dimension of integration
nfact = 1
- standardize
logical; use standardization of the quadrature table method proposed by Woods and Thissen (2006)? If TRUE, the logical elements named
'MEAN_1'
and'COV_11'
can be included in the parameter vector, and when these values are set to FALSE in theest
input the E-table will be standardized to these fixed values (e.g.,par <- c(a1=1, d=0, MEAN_1=0, COV_11=1)
withest <- c(TRUE, TRUE, FALSE, FALSE)
will standardize the E-table to have a 0 mean and unit variance)- gr
gradient function (vector of first derivatives) of the log-likelihood used in estimation. The function must be of the form
gr(x, Theta)
, wherex
is the object defined bycreateGroup()
andTheta
is a matrix of latent trait parameters- hss
Hessian function (matrix of second derivatives) of the log-likelihood used in estimation. If not specified a numeric approximation will be used. The input is identical to the
gr
argument- gen
a function used when
GenRandomPars = TRUE
is passed to the estimation function to generate random starting values. Function must be of the formfunction(object) ...
and must return a vector with properties equivalent to thepar
object. If NULL, parameters will remain at the defined starting values by default- lbound
optional vector indicating the lower bounds of the parameters. If not specified then the bounds will be set to -Inf
- ubound
optional vector indicating the lower bounds of the parameters. If not specified then the bounds will be set to Inf
- derivType
if the
gr
orhss
terms are not specified this type will be used to obtain them numerically. Default is 'Richardson'
References
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
# normal density example, N(mu, sigma^2)
den <- function(obj, Theta) dnorm(Theta, obj@par[1], sqrt(obj@par[2]))
par <- c(mu = 0, sigma2 = .5)
est <- c(FALSE, TRUE)
lbound <- c(-Inf, 0)
grp <- createGroup(par, est, den, nfact = 1, lbound=lbound)
dat <- expand.table(LSAT6)
mod <- mirt(dat, 1, 'Rasch')
modcustom <- mirt(dat, 1, 'Rasch', customGroup=grp)
coef(mod)
#> $Item_1
#> a1 d g u
#> par 1 2.731 0 1
#>
#> $Item_2
#> a1 d g u
#> par 1 0.999 0 1
#>
#> $Item_3
#> a1 d g u
#> par 1 0.24 0 1
#>
#> $Item_4
#> a1 d g u
#> par 1 1.307 0 1
#>
#> $Item_5
#> a1 d g u
#> par 1 2.1 0 1
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 0.572
#>
coef(modcustom)
#> $Item_1
#> a1 d g u
#> par 1 2.729 0 1
#>
#> $Item_2
#> a1 d g u
#> par 1 0.998 0 1
#>
#> $Item_3
#> a1 d g u
#> par 1 0.24 0 1
#>
#> $Item_4
#> a1 d g u
#> par 1 1.306 0 1
#>
#> $Item_5
#> a1 d g u
#> par 1 2.099 0 1
#>
#> $GroupPars
#> mu sigma2
#> par 0 0.569
#>