Implements the set of fixed-item calibration methods described by Kim (2006). The initial calibrated model must be fitted via mirt, is currently limited to unidimensional models only, and should only be utilized when the new set of responses are obtained from a population with similar distributional characteristics in the latent traits. For more flexible calibration of items, including a fixed-item calibration variant involving anchor items for equating, see multipleGroup.

fixedCalib(
  data,
  model = 1,
  old_mod,
  PAU = "MWU",
  NEMC = "MEM",
  technical = list(),
  ...
)

Arguments

data

new data to be used for calibration. Note that to be consistent with the mod object, observed responses/NA placeholders must be included to link the item names used in the original mod definition (i.e., extract.mirt(mod, what = 'itemnames'))

model

type of model to fit for the complete dataset (not that for the fixed items in old_mod the factor loadings/constraints specified by the potential mirt.model specification is not relevant)

old_mod

a model of class SingleGroupClass fitted using mirt

PAU

prior ability update (PAU) approach. Supports none ("NWU"), one ("OWU"), and many ("MWU")

NEMC

number of EM cycles (NEMC) to use for the to-be-estimated parameters. Supports one ("OEM") and many ("MEM")

technical

list of technical estimation arguments (see mirt for details)

...

additional arguments to pass to mirt

References

Kim, S. (2006). A comparative study of IRT fixed parameter calibration methods. Journal of Educational Measurement, 4(43), 355-381.

See also

Examples

# \donttest{

# single factor
set.seed(12345)
J <- 50
a <- matrix(abs(rnorm(J,1,.3)), ncol=1)
d <- matrix(rnorm(J,0,.7),ncol=1)
itemtype <- rep('2PL', nrow(a))

# calibration data theta ~ N(0,1)
N <- 3000
dataset1 <- simdata(a, d, N = N, itemtype=itemtype)

# new data (again, theta ~ N(0,1))
dataset2 <- simdata(a, d, N = 1000, itemtype=itemtype)

# last 40% of experimental items not given to calibration group
#     (unobserved; hence removed)
dataset1 <- dataset1[,-c(J:(J*.6))]
head(dataset1)
#>      Item_1 Item_2 Item_3 Item_4 Item_5 Item_6 Item_7 Item_8 Item_9 Item_10
#> [1,]      0      0      0      0      0      0      1      1      1       0
#> [2,]      0      0      0      1      0      1      0      0      0       0
#> [3,]      0      1      0      1      1      1      1      1      1       1
#> [4,]      0      1      1      0      1      0      0      0      1       0
#> [5,]      1      0      1      1      1      0      1      0      1       0
#> [6,]      1      1      0      1      0      1      0      1      1       0
#>      Item_11 Item_12 Item_13 Item_14 Item_15 Item_16 Item_17 Item_18 Item_19
#> [1,]       1       1       1       1       1       0       0       0       1
#> [2,]       0       0       1       0       0       0       1       1       0
#> [3,]       1       1       0       1       0       1       0       0       0
#> [4,]       0       0       1       1       0       0       1       1       0
#> [5,]       0       0       0       1       0       0       1       1       1
#> [6,]       1       0       1       1       0       0       1       0       1
#>      Item_20 Item_21 Item_22 Item_23 Item_24 Item_25 Item_26 Item_27 Item_28
#> [1,]       0       0       0       0       1       0       0       1       0
#> [2,]       0       1       0       0       1       0       0       1       1
#> [3,]       0       1       0       1       1       1       1       0       0
#> [4,]       0       0       0       0       0       1       0       1       0
#> [5,]       0       1       1       1       1       1       1       1       1
#> [6,]       0       0       0       1       1       1       0       0       0
#>      Item_29
#> [1,]       1
#> [2,]       1
#> [3,]       1
#> [4,]       1
#> [5,]       1
#> [6,]       1

#--------------------------------------

# calibrated model from dataset1 only
mod <- mirt(dataset1, model = 1)
coef(mod, simplify=TRUE)
#> $items
#>            a1      d g u
#> Item_1  1.196 -0.366 0 1
#> Item_2  1.218  1.345 0 1
#> Item_3  1.029 -0.017 0 1
#> Item_4  0.817  0.230 0 1
#> Item_5  1.148 -0.462 0 1
#> Item_6  0.473  0.157 0 1
#> Item_7  1.172  0.491 0 1
#> Item_8  0.882  0.599 0 1
#> Item_9  0.732  1.367 0 1
#> Item_10 0.737 -1.703 0 1
#> Item_11 0.988  0.057 0 1
#> Item_12 1.621 -0.888 0 1
#> Item_13 1.211  0.362 0 1
#> Item_14 1.261  1.101 0 1
#> Item_15 0.748 -0.319 0 1
#> Item_16 1.171 -1.247 0 1
#> Item_17 0.742  0.637 0 1
#> Item_18 0.925  1.128 0 1
#> Item_19 1.477  0.395 0 1
#> Item_20 1.037 -0.993 0 1
#> Item_21 1.136  0.068 0 1
#> Item_22 1.402 -0.513 0 1
#> Item_23 0.679 -0.684 0 1
#> Item_24 0.483  1.690 0 1
#> Item_25 0.501  1.048 0 1
#> Item_26 1.604  0.636 0 1
#> Item_27 0.833  0.559 0 1
#> Item_28 1.100 -0.493 0 1
#> Item_29 1.200  0.354 0 1
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 

# No Prior Weights Updating and One EM Cycle (NWU-OEM)
NWU_OEM <- fixedCalib(dataset2, model=1, old_mod=mod, PAU='NWU', NEMC='OEM')
coef(NWU_OEM, simplify=TRUE)
#> $items
#>            a1      d g u
#> Item_1  1.196 -0.366 0 1
#> Item_2  1.218  1.345 0 1
#> Item_3  1.029 -0.017 0 1
#> Item_4  0.817  0.230 0 1
#> Item_5  1.148 -0.462 0 1
#> Item_6  0.473  0.157 0 1
#> Item_7  1.172  0.491 0 1
#> Item_8  0.882  0.599 0 1
#> Item_9  0.732  1.367 0 1
#> Item_10 0.737 -1.703 0 1
#> Item_11 0.988  0.057 0 1
#> Item_12 1.621 -0.888 0 1
#> Item_13 1.211  0.362 0 1
#> Item_14 1.261  1.101 0 1
#> Item_15 0.748 -0.319 0 1
#> Item_16 1.171 -1.247 0 1
#> Item_17 0.742  0.637 0 1
#> Item_18 0.925  1.128 0 1
#> Item_19 1.477  0.395 0 1
#> Item_20 1.037 -0.993 0 1
#> Item_21 1.136  0.068 0 1
#> Item_22 1.402 -0.513 0 1
#> Item_23 0.679 -0.684 0 1
#> Item_24 0.483  1.690 0 1
#> Item_25 0.501  1.048 0 1
#> Item_26 1.604  0.636 0 1
#> Item_27 0.833  0.559 0 1
#> Item_28 1.100 -0.493 0 1
#> Item_29 1.200  0.354 0 1
#> Item_30 0.750  1.329 0 1
#> Item_31 1.093  1.235 0 1
#> Item_32 1.380  1.740 0 1
#> Item_33 1.112  0.441 0 1
#> Item_34 1.164  2.443 0 1
#> Item_35 1.054  1.361 0 1
#> Item_36 0.863  1.818 0 1
#> Item_37 0.717  0.865 0 1
#> Item_38 0.379  0.044 0 1
#> Item_39 1.180  1.336 0 1
#> Item_40 0.713  0.967 0 1
#> Item_41 0.865  0.150 0 1
#> Item_42 0.205 -0.581 0 1
#> Item_43 0.587  1.914 0 1
#> Item_44 0.977  0.509 0 1
#> Item_45 0.944 -0.151 0 1
#> Item_46 1.239  1.288 0 1
#> Item_47 0.547  0.176 0 1
#> Item_48 0.811  2.059 0 1
#> Item_49 0.841  0.169 0 1
#> Item_50 0.631 -0.103 0 1
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 
data.frame(coef(NWU_OEM, simplify=TRUE)$items[,c('a1','d')],
           pop_a1=a, pop_d=d)
#>                a1           d    pop_a1       pop_d
#> Item_1  1.1961890 -0.36582599 1.1756586 -0.37827025
#> Item_2  1.2180200  1.34513036 1.2128398  1.36338487
#> Item_3  1.0287076 -0.01749165 0.9672090  0.03751319
#> Item_4  0.8169838  0.22955350 0.8639508  0.24616399
#> Item_5  1.1477420 -0.46213650 1.1817662 -0.46968358
#> Item_6  0.4734409  0.15748181 0.4546132  0.19456759
#> Item_7  1.1723767  0.49084966 1.1890296  0.48381989
#> Item_8  0.8823964  0.59861143 0.9171448  0.57665673
#> Item_9  0.7320060  1.36669674 0.9147521  1.50154551
#> Item_10 0.7374958 -1.70288028 0.7242034 -1.64286078
#> Item_11 0.9877230  0.05684034 0.9651257  0.10471439
#> Item_12 1.6208445 -0.88830542 1.5451936 -0.93977204
#> Item_13 1.2113938  0.36247319 1.1111884  0.38731215
#> Item_14 1.2608594  1.10068854 1.1560649  1.11297399
#> Item_15 0.7483149 -0.31912299 0.7748404 -0.41081572
#> Item_16 1.1708992 -1.24683338 1.2450700 -1.28266411
#> Item_17 0.7422645  0.63674114 0.7340927  0.62169760
#> Item_18 0.9248296  1.12848731 0.9005267  1.11544193
#> Item_19 1.4767582  0.39539515 1.3362138  0.36179827
#> Item_20 1.0368814 -0.99330414 1.0896171 -0.90697018
#> Item_21 1.1357543  0.06752098 1.2338866  0.03823090
#> Item_22 1.4021119 -0.51282038 1.4367355 -0.54925456
#> Item_23 0.6786602 -0.68438097 0.8067015 -0.73454697
#> Item_24 0.4828002  1.68992778 0.5340588  1.63135837
#> Item_25 0.5011412  1.04812815 0.5206871  0.98189377
#> Item_26 1.6039924  0.63625385 1.5415293  0.65982060
#> Item_27 0.8328685  0.55938549 0.8555058  0.57838080
#> Item_28 1.1001393 -0.49299690 1.1861139 -0.56807834
#> Item_29 1.1996287  0.35417420 1.1836370  0.33337380
#> Item_30 0.7503191  1.32941502 0.9513067  0.71488089
#> Item_31 1.0934852  1.23450251 1.2435620  0.45176815
#> Item_32 1.3797225  1.73968930 1.6590501  0.73020049
#> Item_33 1.1122063  0.44125253 1.6147571 -0.21305838
#> Item_34 1.1635528  2.44296521 1.4897337  1.73397764
#> Item_35 1.0542788  1.36075678 1.0762814  0.67985447
#> Item_36 0.8625460  1.81754474 1.1473565  1.30696943
#> Item_37 0.7169594  0.86486730 0.9027740  0.47042973
#> Item_38 0.3789943  0.04394555 0.5013849 -0.21556737
#> Item_39 1.1801729  1.33626718 1.5303202  0.37556660
#> Item_40 0.7130625  0.96707202 1.0077403  0.57740905
#> Item_41 0.8654027  0.14975466 1.3385533 -0.67473104
#> Item_42 0.2054520 -0.58087717 0.2858926 -0.59855776
#> Item_43 0.5870526  1.91384494 0.6819203  1.32086286
#> Item_44 0.9773758  0.50918361 1.2811422 -0.27427356
#> Item_45 0.9438821 -0.15062731 1.2563355 -0.68644306
#> Item_46 1.2394331  1.28838231 1.4382188  0.48113247
#> Item_47 0.5466966  0.17590264 0.5760704 -0.35353046
#> Item_48 0.8112318  2.05870733 1.1702210  1.51040387
#> Item_49 0.8414788  0.16883149 1.1749563 -0.41985829
#> Item_50 0.6307197 -0.10310709 0.6079603 -0.48618269
plot(NWU_OEM, type = 'empiricalhist')


# No Prior Weights Updating and Multiple EM Cycles (NWU-MEM)
NWU_MEM <- fixedCalib(dataset2, model = 1, old_mod = mod, PAU = 'NWU')
coef(NWU_MEM, simplify=TRUE)
#> $items
#>            a1      d g u
#> Item_1  1.196 -0.366 0 1
#> Item_2  1.218  1.345 0 1
#> Item_3  1.029 -0.017 0 1
#> Item_4  0.817  0.230 0 1
#> Item_5  1.148 -0.462 0 1
#> Item_6  0.473  0.157 0 1
#> Item_7  1.172  0.491 0 1
#> Item_8  0.882  0.599 0 1
#> Item_9  0.732  1.367 0 1
#> Item_10 0.737 -1.703 0 1
#> Item_11 0.988  0.057 0 1
#> Item_12 1.621 -0.888 0 1
#> Item_13 1.211  0.362 0 1
#> Item_14 1.261  1.101 0 1
#> Item_15 0.748 -0.319 0 1
#> Item_16 1.171 -1.247 0 1
#> Item_17 0.742  0.637 0 1
#> Item_18 0.925  1.128 0 1
#> Item_19 1.477  0.395 0 1
#> Item_20 1.037 -0.993 0 1
#> Item_21 1.136  0.068 0 1
#> Item_22 1.402 -0.513 0 1
#> Item_23 0.679 -0.684 0 1
#> Item_24 0.483  1.690 0 1
#> Item_25 0.501  1.048 0 1
#> Item_26 1.604  0.636 0 1
#> Item_27 0.833  0.559 0 1
#> Item_28 1.100 -0.493 0 1
#> Item_29 1.200  0.354 0 1
#> Item_30 0.976  0.738 0 1
#> Item_31 1.355  0.436 0 1
#> Item_32 1.896  0.751 0 1
#> Item_33 1.483 -0.136 0 1
#> Item_34 1.566  1.615 0 1
#> Item_35 1.108  0.689 0 1
#> Item_36 1.027  1.297 0 1
#> Item_37 0.950  0.485 0 1
#> Item_38 0.636 -0.358 0 1
#> Item_39 1.561  0.369 0 1
#> Item_40 1.002  0.572 0 1
#> Item_41 1.293 -0.537 0 1
#> Item_42 0.237 -0.569 0 1
#> Item_43 0.759  1.528 0 1
#> Item_44 1.267 -0.198 0 1
#> Item_45 1.179 -0.719 0 1
#> Item_46 1.484  0.418 0 1
#> Item_47 0.517 -0.350 0 1
#> Item_48 1.204  1.560 0 1
#> Item_49 1.178 -0.381 0 1
#> Item_50 0.611 -0.485 0 1
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 
data.frame(coef(NWU_MEM, simplify=TRUE)$items[,c('a1','d')],
           pop_a1=a, pop_d=d)
#>                a1           d    pop_a1       pop_d
#> Item_1  1.1961890 -0.36582599 1.1756586 -0.37827025
#> Item_2  1.2180200  1.34513036 1.2128398  1.36338487
#> Item_3  1.0287076 -0.01749165 0.9672090  0.03751319
#> Item_4  0.8169838  0.22955350 0.8639508  0.24616399
#> Item_5  1.1477420 -0.46213650 1.1817662 -0.46968358
#> Item_6  0.4734409  0.15748181 0.4546132  0.19456759
#> Item_7  1.1723767  0.49084966 1.1890296  0.48381989
#> Item_8  0.8823964  0.59861143 0.9171448  0.57665673
#> Item_9  0.7320060  1.36669674 0.9147521  1.50154551
#> Item_10 0.7374958 -1.70288028 0.7242034 -1.64286078
#> Item_11 0.9877230  0.05684034 0.9651257  0.10471439
#> Item_12 1.6208445 -0.88830542 1.5451936 -0.93977204
#> Item_13 1.2113938  0.36247319 1.1111884  0.38731215
#> Item_14 1.2608594  1.10068854 1.1560649  1.11297399
#> Item_15 0.7483149 -0.31912299 0.7748404 -0.41081572
#> Item_16 1.1708992 -1.24683338 1.2450700 -1.28266411
#> Item_17 0.7422645  0.63674114 0.7340927  0.62169760
#> Item_18 0.9248296  1.12848731 0.9005267  1.11544193
#> Item_19 1.4767582  0.39539515 1.3362138  0.36179827
#> Item_20 1.0368814 -0.99330414 1.0896171 -0.90697018
#> Item_21 1.1357543  0.06752098 1.2338866  0.03823090
#> Item_22 1.4021119 -0.51282038 1.4367355 -0.54925456
#> Item_23 0.6786602 -0.68438097 0.8067015 -0.73454697
#> Item_24 0.4828002  1.68992778 0.5340588  1.63135837
#> Item_25 0.5011412  1.04812815 0.5206871  0.98189377
#> Item_26 1.6039924  0.63625385 1.5415293  0.65982060
#> Item_27 0.8328685  0.55938549 0.8555058  0.57838080
#> Item_28 1.1001393 -0.49299690 1.1861139 -0.56807834
#> Item_29 1.1996287  0.35417420 1.1836370  0.33337380
#> Item_30 0.9762030  0.73762603 0.9513067  0.71488089
#> Item_31 1.3546278  0.43608060 1.2435620  0.45176815
#> Item_32 1.8963614  0.75072559 1.6590501  0.73020049
#> Item_33 1.4833684 -0.13615393 1.6147571 -0.21305838
#> Item_34 1.5661380  1.61503162 1.4897337  1.73397764
#> Item_35 1.1080231  0.68889209 1.0762814  0.67985447
#> Item_36 1.0265916  1.29656964 1.1473565  1.30696943
#> Item_37 0.9495227  0.48504809 0.9027740  0.47042973
#> Item_38 0.6357917 -0.35821345 0.5013849 -0.21556737
#> Item_39 1.5609002  0.36934080 1.5303202  0.37556660
#> Item_40 1.0017413  0.57214795 1.0077403  0.57740905
#> Item_41 1.2934463 -0.53663846 1.3385533 -0.67473104
#> Item_42 0.2365342 -0.56867576 0.2858926 -0.59855776
#> Item_43 0.7585749  1.52822491 0.6819203  1.32086286
#> Item_44 1.2665593 -0.19834384 1.2811422 -0.27427356
#> Item_45 1.1786531 -0.71904132 1.2563355 -0.68644306
#> Item_46 1.4839823  0.41813815 1.4382188  0.48113247
#> Item_47 0.5165255 -0.35006720 0.5760704 -0.35353046
#> Item_48 1.2040324  1.55971466 1.1702210  1.51040387
#> Item_49 1.1779999 -0.38145049 1.1749563 -0.41985829
#> Item_50 0.6105721 -0.48525352 0.6079603 -0.48618269
plot(NWU_MEM, type = 'empiricalhist')


# One Prior Weights Updating and One EM Cycle (OWU-OEM)
OWU_OEM <- fixedCalib(dataset2, model=1, old_mod=mod, PAU='OWU', NEMC="OEM")
coef(OWU_OEM, simplify=TRUE)
#> $items
#>            a1      d g u
#> Item_1  1.196 -0.366 0 1
#> Item_2  1.218  1.345 0 1
#> Item_3  1.029 -0.017 0 1
#> Item_4  0.817  0.230 0 1
#> Item_5  1.148 -0.462 0 1
#> Item_6  0.473  0.157 0 1
#> Item_7  1.172  0.491 0 1
#> Item_8  0.882  0.599 0 1
#> Item_9  0.732  1.367 0 1
#> Item_10 0.737 -1.703 0 1
#> Item_11 0.988  0.057 0 1
#> Item_12 1.621 -0.888 0 1
#> Item_13 1.211  0.362 0 1
#> Item_14 1.261  1.101 0 1
#> Item_15 0.748 -0.319 0 1
#> Item_16 1.171 -1.247 0 1
#> Item_17 0.742  0.637 0 1
#> Item_18 0.925  1.128 0 1
#> Item_19 1.477  0.395 0 1
#> Item_20 1.037 -0.993 0 1
#> Item_21 1.136  0.068 0 1
#> Item_22 1.402 -0.513 0 1
#> Item_23 0.679 -0.684 0 1
#> Item_24 0.483  1.690 0 1
#> Item_25 0.501  1.048 0 1
#> Item_26 1.604  0.636 0 1
#> Item_27 0.833  0.559 0 1
#> Item_28 1.100 -0.493 0 1
#> Item_29 1.200  0.354 0 1
#> Item_30 0.734  1.342 0 1
#> Item_31 1.081  1.235 0 1
#> Item_32 1.354  1.740 0 1
#> Item_33 1.087  0.449 0 1
#> Item_34 1.180  2.469 0 1
#> Item_35 1.080  1.352 0 1
#> Item_36 0.867  1.826 0 1
#> Item_37 0.736  0.845 0 1
#> Item_38 0.407  0.018 0 1
#> Item_39 1.192  1.330 0 1
#> Item_40 0.694  0.970 0 1
#> Item_41 0.876  0.141 0 1
#> Item_42 0.207 -0.593 0 1
#> Item_43 0.608  1.915 0 1
#> Item_44 0.948  0.525 0 1
#> Item_45 0.918 -0.150 0 1
#> Item_46 1.246  1.287 0 1
#> Item_47 0.541  0.194 0 1
#> Item_48 0.824  2.052 0 1
#> Item_49 0.881  0.150 0 1
#> Item_50 0.643 -0.109 0 1
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 
data.frame(coef(OWU_OEM, simplify=TRUE)$items[,c('a1','d')], pop_a1=a, pop_d=d)
#>                a1           d    pop_a1       pop_d
#> Item_1  1.1961890 -0.36582599 1.1756586 -0.37827025
#> Item_2  1.2180200  1.34513036 1.2128398  1.36338487
#> Item_3  1.0287076 -0.01749165 0.9672090  0.03751319
#> Item_4  0.8169838  0.22955350 0.8639508  0.24616399
#> Item_5  1.1477420 -0.46213650 1.1817662 -0.46968358
#> Item_6  0.4734409  0.15748181 0.4546132  0.19456759
#> Item_7  1.1723767  0.49084966 1.1890296  0.48381989
#> Item_8  0.8823964  0.59861143 0.9171448  0.57665673
#> Item_9  0.7320060  1.36669674 0.9147521  1.50154551
#> Item_10 0.7374958 -1.70288028 0.7242034 -1.64286078
#> Item_11 0.9877230  0.05684034 0.9651257  0.10471439
#> Item_12 1.6208445 -0.88830542 1.5451936 -0.93977204
#> Item_13 1.2113938  0.36247319 1.1111884  0.38731215
#> Item_14 1.2608594  1.10068854 1.1560649  1.11297399
#> Item_15 0.7483149 -0.31912299 0.7748404 -0.41081572
#> Item_16 1.1708992 -1.24683338 1.2450700 -1.28266411
#> Item_17 0.7422645  0.63674114 0.7340927  0.62169760
#> Item_18 0.9248296  1.12848731 0.9005267  1.11544193
#> Item_19 1.4767582  0.39539515 1.3362138  0.36179827
#> Item_20 1.0368814 -0.99330414 1.0896171 -0.90697018
#> Item_21 1.1357543  0.06752098 1.2338866  0.03823090
#> Item_22 1.4021119 -0.51282038 1.4367355 -0.54925456
#> Item_23 0.6786602 -0.68438097 0.8067015 -0.73454697
#> Item_24 0.4828002  1.68992778 0.5340588  1.63135837
#> Item_25 0.5011412  1.04812815 0.5206871  0.98189377
#> Item_26 1.6039924  0.63625385 1.5415293  0.65982060
#> Item_27 0.8328685  0.55938549 0.8555058  0.57838080
#> Item_28 1.1001393 -0.49299690 1.1861139 -0.56807834
#> Item_29 1.1996287  0.35417420 1.1836370  0.33337380
#> Item_30 0.7338596  1.34171621 0.9513067  0.71488089
#> Item_31 1.0810934  1.23518942 1.2435620  0.45176815
#> Item_32 1.3536031  1.74007904 1.6590501  0.73020049
#> Item_33 1.0871425  0.44941021 1.6147571 -0.21305838
#> Item_34 1.1800858  2.46871234 1.4897337  1.73397764
#> Item_35 1.0803263  1.35175673 1.0762814  0.67985447
#> Item_36 0.8666080  1.82586462 1.1473565  1.30696943
#> Item_37 0.7358795  0.84485396 0.9027740  0.47042973
#> Item_38 0.4070019  0.01833533 0.5013849 -0.21556737
#> Item_39 1.1921382  1.33027311 1.5303202  0.37556660
#> Item_40 0.6941284  0.97027712 1.0077403  0.57740905
#> Item_41 0.8759719  0.14117791 1.3385533 -0.67473104
#> Item_42 0.2070009 -0.59318726 0.2858926 -0.59855776
#> Item_43 0.6082669  1.91531663 0.6819203  1.32086286
#> Item_44 0.9481219  0.52535227 1.2811422 -0.27427356
#> Item_45 0.9181546 -0.15002032 1.2563355 -0.68644306
#> Item_46 1.2461867  1.28672335 1.4382188  0.48113247
#> Item_47 0.5414343  0.19387196 0.5760704 -0.35353046
#> Item_48 0.8238261  2.05156006 1.1702210  1.51040387
#> Item_49 0.8809591  0.15027203 1.1749563 -0.41985829
#> Item_50 0.6425456 -0.10887582 0.6079603 -0.48618269
plot(OWU_OEM, type = 'empiricalhist')


# One Prior Weights Updating and Multiple EM Cycles (OWU-MEM)
OWU_MEM <- fixedCalib(dataset2, model = 1, old_mod = mod, PAU = 'OWU')
coef(OWU_MEM, simplify=TRUE)
#> $items
#>            a1      d g u
#> Item_1  1.196 -0.366 0 1
#> Item_2  1.218  1.345 0 1
#> Item_3  1.029 -0.017 0 1
#> Item_4  0.817  0.230 0 1
#> Item_5  1.148 -0.462 0 1
#> Item_6  0.473  0.157 0 1
#> Item_7  1.172  0.491 0 1
#> Item_8  0.882  0.599 0 1
#> Item_9  0.732  1.367 0 1
#> Item_10 0.737 -1.703 0 1
#> Item_11 0.988  0.057 0 1
#> Item_12 1.621 -0.888 0 1
#> Item_13 1.211  0.362 0 1
#> Item_14 1.261  1.101 0 1
#> Item_15 0.748 -0.319 0 1
#> Item_16 1.171 -1.247 0 1
#> Item_17 0.742  0.637 0 1
#> Item_18 0.925  1.128 0 1
#> Item_19 1.477  0.395 0 1
#> Item_20 1.037 -0.993 0 1
#> Item_21 1.136  0.068 0 1
#> Item_22 1.402 -0.513 0 1
#> Item_23 0.679 -0.684 0 1
#> Item_24 0.483  1.690 0 1
#> Item_25 0.501  1.048 0 1
#> Item_26 1.604  0.636 0 1
#> Item_27 0.833  0.559 0 1
#> Item_28 1.100 -0.493 0 1
#> Item_29 1.200  0.354 0 1
#> Item_30 0.975  0.738 0 1
#> Item_31 1.353  0.436 0 1
#> Item_32 1.892  0.749 0 1
#> Item_33 1.482 -0.137 0 1
#> Item_34 1.563  1.614 0 1
#> Item_35 1.107  0.689 0 1
#> Item_36 1.026  1.297 0 1
#> Item_37 0.949  0.485 0 1
#> Item_38 0.637 -0.358 0 1
#> Item_39 1.559  0.369 0 1
#> Item_40 1.001  0.572 0 1
#> Item_41 1.294 -0.537 0 1
#> Item_42 0.237 -0.569 0 1
#> Item_43 0.758  1.528 0 1
#> Item_44 1.266 -0.199 0 1
#> Item_45 1.179 -0.719 0 1
#> Item_46 1.482  0.418 0 1
#> Item_47 0.517 -0.350 0 1
#> Item_48 1.203  1.560 0 1
#> Item_49 1.178 -0.382 0 1
#> Item_50 0.611 -0.485 0 1
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 
data.frame(coef(OWU_MEM, simplify=TRUE)$items[,c('a1','d')],
           pop_a1=a, pop_d=d)
#>                a1           d    pop_a1       pop_d
#> Item_1  1.1961890 -0.36582599 1.1756586 -0.37827025
#> Item_2  1.2180200  1.34513036 1.2128398  1.36338487
#> Item_3  1.0287076 -0.01749165 0.9672090  0.03751319
#> Item_4  0.8169838  0.22955350 0.8639508  0.24616399
#> Item_5  1.1477420 -0.46213650 1.1817662 -0.46968358
#> Item_6  0.4734409  0.15748181 0.4546132  0.19456759
#> Item_7  1.1723767  0.49084966 1.1890296  0.48381989
#> Item_8  0.8823964  0.59861143 0.9171448  0.57665673
#> Item_9  0.7320060  1.36669674 0.9147521  1.50154551
#> Item_10 0.7374958 -1.70288028 0.7242034 -1.64286078
#> Item_11 0.9877230  0.05684034 0.9651257  0.10471439
#> Item_12 1.6208445 -0.88830542 1.5451936 -0.93977204
#> Item_13 1.2113938  0.36247319 1.1111884  0.38731215
#> Item_14 1.2608594  1.10068854 1.1560649  1.11297399
#> Item_15 0.7483149 -0.31912299 0.7748404 -0.41081572
#> Item_16 1.1708992 -1.24683338 1.2450700 -1.28266411
#> Item_17 0.7422645  0.63674114 0.7340927  0.62169760
#> Item_18 0.9248296  1.12848731 0.9005267  1.11544193
#> Item_19 1.4767582  0.39539515 1.3362138  0.36179827
#> Item_20 1.0368814 -0.99330414 1.0896171 -0.90697018
#> Item_21 1.1357543  0.06752098 1.2338866  0.03823090
#> Item_22 1.4021119 -0.51282038 1.4367355 -0.54925456
#> Item_23 0.6786602 -0.68438097 0.8067015 -0.73454697
#> Item_24 0.4828002  1.68992778 0.5340588  1.63135837
#> Item_25 0.5011412  1.04812815 0.5206871  0.98189377
#> Item_26 1.6039924  0.63625385 1.5415293  0.65982060
#> Item_27 0.8328685  0.55938549 0.8555058  0.57838080
#> Item_28 1.1001393 -0.49299690 1.1861139 -0.56807834
#> Item_29 1.1996287  0.35417420 1.1836370  0.33337380
#> Item_30 0.9754835  0.73759996 0.9513067  0.71488089
#> Item_31 1.3529960  0.43565857 1.2435620  0.45176815
#> Item_32 1.8920655  0.74941926 1.6590501  0.73020049
#> Item_33 1.4823957 -0.13676561 1.6147571 -0.21305838
#> Item_34 1.5632963  1.61443582 1.4897337  1.73397764
#> Item_35 1.1070549  0.68876441 1.0762814  0.67985447
#> Item_36 1.0257494  1.29658002 1.1473565  1.30696943
#> Item_37 0.9487642  0.48500521 0.9027740  0.47042973
#> Item_38 0.6365371 -0.35814281 0.5013849 -0.21556737
#> Item_39 1.5587391  0.36866684 1.5303202  0.37556660
#> Item_40 1.0011701  0.57211468 1.0077403  0.57740905
#> Item_41 1.2936486 -0.53716279 1.3385533 -0.67473104
#> Item_42 0.2372635 -0.56862885 0.2858926 -0.59855776
#> Item_43 0.7581178  1.52829512 0.6819203  1.32086286
#> Item_44 1.2655570 -0.19867816 1.2811422 -0.27427356
#> Item_45 1.1789916 -0.71942555 1.2563355 -0.68644306
#> Item_46 1.4820218  0.41756426 1.4382188  0.48113247
#> Item_47 0.5174459 -0.34998852 0.5760704 -0.35353046
#> Item_48 1.2029294  1.55973508 1.1702210  1.51040387
#> Item_49 1.1780664 -0.38178278 1.1749563 -0.41985829
#> Item_50 0.6113326 -0.48518034 0.6079603 -0.48618269
plot(OWU_MEM, type = 'empiricalhist')


# Multiple Prior Weights Updating and Multiple EM Cycles (MWU-MEM)
MWU_MEM <- fixedCalib(dataset2, model = 1, old_mod = mod)
coef(MWU_MEM, simplify=TRUE)
#> $items
#>            a1      d g u
#> Item_1  1.196 -0.366 0 1
#> Item_2  1.218  1.345 0 1
#> Item_3  1.029 -0.017 0 1
#> Item_4  0.817  0.230 0 1
#> Item_5  1.148 -0.462 0 1
#> Item_6  0.473  0.157 0 1
#> Item_7  1.172  0.491 0 1
#> Item_8  0.882  0.599 0 1
#> Item_9  0.732  1.367 0 1
#> Item_10 0.737 -1.703 0 1
#> Item_11 0.988  0.057 0 1
#> Item_12 1.621 -0.888 0 1
#> Item_13 1.211  0.362 0 1
#> Item_14 1.261  1.101 0 1
#> Item_15 0.748 -0.319 0 1
#> Item_16 1.171 -1.247 0 1
#> Item_17 0.742  0.637 0 1
#> Item_18 0.925  1.128 0 1
#> Item_19 1.477  0.395 0 1
#> Item_20 1.037 -0.993 0 1
#> Item_21 1.136  0.068 0 1
#> Item_22 1.402 -0.513 0 1
#> Item_23 0.679 -0.684 0 1
#> Item_24 0.483  1.690 0 1
#> Item_25 0.501  1.048 0 1
#> Item_26 1.604  0.636 0 1
#> Item_27 0.833  0.559 0 1
#> Item_28 1.100 -0.493 0 1
#> Item_29 1.200  0.354 0 1
#> Item_30 0.980  0.736 0 1
#> Item_31 1.358  0.433 0 1
#> Item_32 1.906  0.748 0 1
#> Item_33 1.487 -0.139 0 1
#> Item_34 1.574  1.613 0 1
#> Item_35 1.112  0.687 0 1
#> Item_36 1.035  1.296 0 1
#> Item_37 0.953  0.483 0 1
#> Item_38 0.642 -0.360 0 1
#> Item_39 1.568  0.367 0 1
#> Item_40 1.007  0.570 0 1
#> Item_41 1.299 -0.539 0 1
#> Item_42 0.240 -0.569 0 1
#> Item_43 0.764  1.527 0 1
#> Item_44 1.270 -0.201 0 1
#> Item_45 1.180 -0.721 0 1
#> Item_46 1.490  0.416 0 1
#> Item_47 0.522 -0.351 0 1
#> Item_48 1.211  1.558 0 1
#> Item_49 1.183 -0.384 0 1
#> Item_50 0.615 -0.486 0 1
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 
data.frame(coef(MWU_MEM, simplify=TRUE)$items[,c('a1','d')],
           pop_a1=a, pop_d=d)
#>                a1           d    pop_a1       pop_d
#> Item_1  1.1961890 -0.36582599 1.1756586 -0.37827025
#> Item_2  1.2180200  1.34513036 1.2128398  1.36338487
#> Item_3  1.0287076 -0.01749165 0.9672090  0.03751319
#> Item_4  0.8169838  0.22955350 0.8639508  0.24616399
#> Item_5  1.1477420 -0.46213650 1.1817662 -0.46968358
#> Item_6  0.4734409  0.15748181 0.4546132  0.19456759
#> Item_7  1.1723767  0.49084966 1.1890296  0.48381989
#> Item_8  0.8823964  0.59861143 0.9171448  0.57665673
#> Item_9  0.7320060  1.36669674 0.9147521  1.50154551
#> Item_10 0.7374958 -1.70288028 0.7242034 -1.64286078
#> Item_11 0.9877230  0.05684034 0.9651257  0.10471439
#> Item_12 1.6208445 -0.88830542 1.5451936 -0.93977204
#> Item_13 1.2113938  0.36247319 1.1111884  0.38731215
#> Item_14 1.2608594  1.10068854 1.1560649  1.11297399
#> Item_15 0.7483149 -0.31912299 0.7748404 -0.41081572
#> Item_16 1.1708992 -1.24683338 1.2450700 -1.28266411
#> Item_17 0.7422645  0.63674114 0.7340927  0.62169760
#> Item_18 0.9248296  1.12848731 0.9005267  1.11544193
#> Item_19 1.4767582  0.39539515 1.3362138  0.36179827
#> Item_20 1.0368814 -0.99330414 1.0896171 -0.90697018
#> Item_21 1.1357543  0.06752098 1.2338866  0.03823090
#> Item_22 1.4021119 -0.51282038 1.4367355 -0.54925456
#> Item_23 0.6786602 -0.68438097 0.8067015 -0.73454697
#> Item_24 0.4828002  1.68992778 0.5340588  1.63135837
#> Item_25 0.5011412  1.04812815 0.5206871  0.98189377
#> Item_26 1.6039924  0.63625385 1.5415293  0.65982060
#> Item_27 0.8328685  0.55938549 0.8555058  0.57838080
#> Item_28 1.1001393 -0.49299690 1.1861139 -0.56807834
#> Item_29 1.1996287  0.35417420 1.1836370  0.33337380
#> Item_30 0.9799188  0.73574557 0.9513067  0.71488089
#> Item_31 1.3578293  0.43339629 1.2435620  0.45176815
#> Item_32 1.9059056  0.74796781 1.6590501  0.73020049
#> Item_33 1.4871958 -0.13873748 1.6147571 -0.21305838
#> Item_34 1.5741957  1.61315138 1.4897337  1.73397764
#> Item_35 1.1115597  0.68668459 1.0762814  0.67985447
#> Item_36 1.0346509  1.29592913 1.1473565  1.30696943
#> Item_37 0.9527569  0.48319191 0.9027740  0.47042973
#> Item_38 0.6415651 -0.35957581 0.5013849 -0.21556737
#> Item_39 1.5678452  0.36674297 1.5303202  0.37556660
#> Item_40 1.0068017  0.57042111 1.0077403  0.57740905
#> Item_41 1.2990962 -0.53939359 1.3385533 -0.67473104
#> Item_42 0.2396837 -0.56916091 0.2858926 -0.59855776
#> Item_43 0.7643385  1.52742055 0.6819203  1.32086286
#> Item_44 1.2701110 -0.20068022 1.2811422 -0.27427356
#> Item_45 1.1801122 -0.72077719 1.2563355 -0.68644306
#> Item_46 1.4901493  0.41558227 1.4382188  0.48113247
#> Item_47 0.5222886 -0.35120291 0.5760704 -0.35353046
#> Item_48 1.2109577  1.55840487 1.1702210  1.51040387
#> Item_49 1.1826291 -0.38379663 1.1749563 -0.41985829
#> Item_50 0.6153935 -0.48648805 0.6079603 -0.48618269
plot(MWU_MEM, type = 'empiricalhist')


# factor scores distribution check
fs <- fscores(MWU_MEM)
hist(fs)

c(mean_calib=mean(fs[1:N, ]), sd_calib=sd(fs[1:N, ]))
#>    mean_calib      sd_calib 
#> -0.0001434687  0.9215504597 
c(mean_exper=mean(fs[-c(1:N), ]), sd_exper=sd(fs[-c(1:N), ]))
#> mean_exper   sd_exper 
#> 0.03381096 0.93303246 


############################
## Item length constraint example for each participant in the experimental
## items group. In this example, all participants were forced to have a test
## length of J=30, though the item pool had J=50 total items.

# new experimental data (relatively extreme, theta ~ N(.5,1.5))
dataset2 <- simdata(a, d, N = 1000, itemtype=itemtype,
    mu=.5, sigma=matrix(1.5))

# Add missing values to each participant in new dataset where individuals
# were randomly administered 10 experimental items, subject to the constraint
# that each participant received a test with J=30 items.
dataset2 <- t(apply(dataset2, 1, function(x){
   NA_precalib <- sample(1:30, 10)
   NA_experimental <- sample(31:50, 10)
   x[c(NA_precalib, NA_experimental)] <- NA
   x
}))
head(dataset2)
#>      Item_1 Item_2 Item_3 Item_4 Item_5 Item_6 Item_7 Item_8 Item_9 Item_10
#> [1,]     NA      1      0      0     NA     NA      0     NA      1       0
#> [2,]     NA     NA     NA      1      1      1     NA      0      1      NA
#> [3,]     NA     NA      0      1      1      1      1     NA      1       0
#> [4,]     NA      1      1     NA      0     NA      1      1      1       1
#> [5,]      1      1      1      1     NA     NA      0      1     NA      NA
#> [6,]      1      0      0      1      1      1     NA     NA     NA       0
#>      Item_11 Item_12 Item_13 Item_14 Item_15 Item_16 Item_17 Item_18 Item_19
#> [1,]       1       0      NA       0      NA       0       0       1       0
#> [2,]       1       1       1      NA       0       0       1      NA       1
#> [3,]       1       1       0       1       1       1      NA      NA      NA
#> [4,]      NA      NA       1      NA       0       0       1       0       0
#> [5,]       1      NA       0       1       1       0       1       1      NA
#> [6,]       0       1       1       1       0       0      NA       1      NA
#>      Item_20 Item_21 Item_22 Item_23 Item_24 Item_25 Item_26 Item_27 Item_28
#> [1,]       0       0      NA       0       1      NA       0       1       0
#> [2,]      NA       0       1      NA       1       1       1       1       0
#> [3,]       1       1      NA       0      NA      NA       1      NA       1
#> [4,]       1       1       1      NA      NA       1       1       1       1
#> [5,]       1      NA       1      NA       1      NA      NA       0       1
#> [6,]       1       1       0       0       0      NA      NA      NA       0
#>      Item_29 Item_30 Item_31 Item_32 Item_33 Item_34 Item_35 Item_36 Item_37
#> [1,]      NA      NA       0       1       1      NA       0      NA       0
#> [2,]      NA       1       1      NA      NA       1      NA       1       1
#> [3,]       1       1       1      NA      NA      NA      NA       1      NA
#> [4,]      NA      NA      NA      NA      NA      NA       0      NA       1
#> [5,]       1       1      NA       1      NA       1       1      NA      NA
#> [6,]      NA      NA      NA       1      NA      NA       1       1       0
#>      Item_38 Item_39 Item_40 Item_41 Item_42 Item_43 Item_44 Item_45 Item_46
#> [1,]       0      NA      NA      NA      NA       1       0      NA       0
#> [2,]      NA      NA      NA       1      NA       1       1       1       1
#> [3,]       1      NA      NA      NA       1       0       1      NA      NA
#> [4,]       0       1      NA      NA      NA      NA       1       1       0
#> [5,]      NA       1       1      NA      NA       1      NA      NA       1
#> [6,]       1      NA      NA      NA      NA       1      NA      NA       1
#>      Item_47 Item_48 Item_49 Item_50
#> [1,]      NA      NA       0      NA
#> [2,]      NA       1      NA      NA
#> [3,]       0       0       1       1
#> [4,]      NA       1       0       1
#> [5,]      NA       1       1       1
#> [6,]       0       1      NA       1

# check that all individuals had 30 items
all(rowSums(!is.na(dataset2)) == 30)
#> [1] TRUE

# Multiple Prior Weights Updating and Multiple EM Cycles (MWU-MEM)
MWU_MEM <- fixedCalib(dataset2, model = 1, old_mod = mod)
coef(MWU_MEM, simplify=TRUE)
#> $items
#>            a1      d g u
#> Item_1  1.196 -0.366 0 1
#> Item_2  1.218  1.345 0 1
#> Item_3  1.029 -0.017 0 1
#> Item_4  0.817  0.230 0 1
#> Item_5  1.148 -0.462 0 1
#> Item_6  0.473  0.157 0 1
#> Item_7  1.172  0.491 0 1
#> Item_8  0.882  0.599 0 1
#> Item_9  0.732  1.367 0 1
#> Item_10 0.737 -1.703 0 1
#> Item_11 0.988  0.057 0 1
#> Item_12 1.621 -0.888 0 1
#> Item_13 1.211  0.362 0 1
#> Item_14 1.261  1.101 0 1
#> Item_15 0.748 -0.319 0 1
#> Item_16 1.171 -1.247 0 1
#> Item_17 0.742  0.637 0 1
#> Item_18 0.925  1.128 0 1
#> Item_19 1.477  0.395 0 1
#> Item_20 1.037 -0.993 0 1
#> Item_21 1.136  0.068 0 1
#> Item_22 1.402 -0.513 0 1
#> Item_23 0.679 -0.684 0 1
#> Item_24 0.483  1.690 0 1
#> Item_25 0.501  1.048 0 1
#> Item_26 1.604  0.636 0 1
#> Item_27 0.833  0.559 0 1
#> Item_28 1.100 -0.493 0 1
#> Item_29 1.200  0.354 0 1
#> Item_30 1.073  1.010 0 1
#> Item_31 1.415  0.728 0 1
#> Item_32 2.096  0.852 0 1
#> Item_33 1.620  0.024 0 1
#> Item_34 1.241  1.730 0 1
#> Item_35 1.126  0.867 0 1
#> Item_36 1.211  1.154 0 1
#> Item_37 1.021  0.621 0 1
#> Item_38 0.654 -0.203 0 1
#> Item_39 1.332  0.684 0 1
#> Item_40 0.938  0.677 0 1
#> Item_41 1.831 -0.565 0 1
#> Item_42 0.386 -0.631 0 1
#> Item_43 0.691  1.108 0 1
#> Item_44 1.231 -0.054 0 1
#> Item_45 1.103 -0.460 0 1
#> Item_46 1.400  0.693 0 1
#> Item_47 0.532 -0.290 0 1
#> Item_48 1.121  1.508 0 1
#> Item_49 1.157 -0.318 0 1
#> Item_50 0.691 -0.432 0 1
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 
data.frame(coef(MWU_MEM, simplify=TRUE)$items[,c('a1','d')],
           pop_a1=a, pop_d=d)
#>                a1           d    pop_a1       pop_d
#> Item_1  1.1961890 -0.36582599 1.1756586 -0.37827025
#> Item_2  1.2180200  1.34513036 1.2128398  1.36338487
#> Item_3  1.0287076 -0.01749165 0.9672090  0.03751319
#> Item_4  0.8169838  0.22955350 0.8639508  0.24616399
#> Item_5  1.1477420 -0.46213650 1.1817662 -0.46968358
#> Item_6  0.4734409  0.15748181 0.4546132  0.19456759
#> Item_7  1.1723767  0.49084966 1.1890296  0.48381989
#> Item_8  0.8823964  0.59861143 0.9171448  0.57665673
#> Item_9  0.7320060  1.36669674 0.9147521  1.50154551
#> Item_10 0.7374958 -1.70288028 0.7242034 -1.64286078
#> Item_11 0.9877230  0.05684034 0.9651257  0.10471439
#> Item_12 1.6208445 -0.88830542 1.5451936 -0.93977204
#> Item_13 1.2113938  0.36247319 1.1111884  0.38731215
#> Item_14 1.2608594  1.10068854 1.1560649  1.11297399
#> Item_15 0.7483149 -0.31912299 0.7748404 -0.41081572
#> Item_16 1.1708992 -1.24683338 1.2450700 -1.28266411
#> Item_17 0.7422645  0.63674114 0.7340927  0.62169760
#> Item_18 0.9248296  1.12848731 0.9005267  1.11544193
#> Item_19 1.4767582  0.39539515 1.3362138  0.36179827
#> Item_20 1.0368814 -0.99330414 1.0896171 -0.90697018
#> Item_21 1.1357543  0.06752098 1.2338866  0.03823090
#> Item_22 1.4021119 -0.51282038 1.4367355 -0.54925456
#> Item_23 0.6786602 -0.68438097 0.8067015 -0.73454697
#> Item_24 0.4828002  1.68992778 0.5340588  1.63135837
#> Item_25 0.5011412  1.04812815 0.5206871  0.98189377
#> Item_26 1.6039924  0.63625385 1.5415293  0.65982060
#> Item_27 0.8328685  0.55938549 0.8555058  0.57838080
#> Item_28 1.1001393 -0.49299690 1.1861139 -0.56807834
#> Item_29 1.1996287  0.35417420 1.1836370  0.33337380
#> Item_30 1.0728327  1.00970460 0.9513067  0.71488089
#> Item_31 1.4152227  0.72783419 1.2435620  0.45176815
#> Item_32 2.0962138  0.85156001 1.6590501  0.73020049
#> Item_33 1.6204379  0.02406782 1.6147571 -0.21305838
#> Item_34 1.2411306  1.73012149 1.4897337  1.73397764
#> Item_35 1.1259698  0.86699898 1.0762814  0.67985447
#> Item_36 1.2110533  1.15414948 1.1473565  1.30696943
#> Item_37 1.0209382  0.62085332 0.9027740  0.47042973
#> Item_38 0.6536874 -0.20338064 0.5013849 -0.21556737
#> Item_39 1.3317226  0.68396203 1.5303202  0.37556660
#> Item_40 0.9379259  0.67723720 1.0077403  0.57740905
#> Item_41 1.8312041 -0.56543279 1.3385533 -0.67473104
#> Item_42 0.3860292 -0.63097116 0.2858926 -0.59855776
#> Item_43 0.6905627  1.10809614 0.6819203  1.32086286
#> Item_44 1.2311295 -0.05444516 1.2811422 -0.27427356
#> Item_45 1.1033591 -0.46005338 1.2563355 -0.68644306
#> Item_46 1.4001941  0.69281395 1.4382188  0.48113247
#> Item_47 0.5317801 -0.29008785 0.5760704 -0.35353046
#> Item_48 1.1206327  1.50830171 1.1702210  1.51040387
#> Item_49 1.1573237 -0.31832472 1.1749563 -0.41985829
#> Item_50 0.6909833 -0.43221941 0.6079603 -0.48618269
plot(MWU_MEM, type = 'empiricalhist')


## factor scores check
fs <- fscores(MWU_MEM)
hist(fs)

c(mean_calib=mean(fs[1:N, ]), sd_calib=sd(fs[1:N, ]))
#>    mean_calib      sd_calib 
#> -0.0001434687  0.9215504597 

## shrinkage, but generally different from calibrated sample
c(mean_exper=mean(fs[-c(1:N), ]), sd_exper=sd(fs[-c(1:N), ]))
#> mean_exper   sd_exper 
#>  0.3533213  1.0351346 


# }