Skip to contents

The mirt package's estimation setup requires that all item responses have spaces equal to 1 (e.g., a Likert scale scored from 1 through 5). In the event that categories are missing the categories must be re-coded. This function is automatically called by the package estimation functions (e.g., mirt), however for convince this function has been extracted for users to better understand the remapping consequences.

Usage

remap.distance(data, message = TRUE)

Arguments

data

the response data to remap as a data.frame or matrix

message

logical; print message information pertaining to which items were remapped?

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Author

Phil Chalmers rphilip.chalmers@gmail.com

Examples


# category 2 for item 1 missing
dat <- Science
dat[,1] <- ifelse(Science[,1] == 2, 1, Science[,1])
apply(dat, 2, table)
#> $Comfort
#> 
#>   1   3   4 
#>  37 266  89 
#> 
#> $Work
#> 
#>   1   2   3   4 
#>  33  98 206  55 
#> 
#> $Future
#> 
#>   1   2   3   4 
#>  14  72 210  96 
#> 
#> $Benefit
#> 
#>   1   2   3   4 
#>  21 100 193  78 
#> 

# mirt() automatically remaps categories
mod <- mirt(dat, 1)
#> "Comfort" re-mapped to ensure all categories have a distance of 1
coef(mod, simplify=TRUE)
#> $items
#>            a1    d1     d2     d3
#> Comfort 0.995 2.626 -1.447     NA
#> Work    1.231 2.928  0.903 -2.271
#> Future  2.338 5.293  2.245 -1.989
#> Benefit 1.079 3.333  0.988 -1.681
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 

# this is the transformed data used by mirt()
remap_dat <- remap.distance(dat)
#> "Comfort" re-mapped to ensure all categories have a distance of 1
apply(remap_dat, 2, table)
#> $Comfort
#> 
#>   1   2   3 
#>  37 266  89 
#> 
#> $Work
#> 
#>   1   2   3   4 
#>  33  98 206  55 
#> 
#> $Future
#> 
#>   1   2   3   4 
#>  14  72 210  96 
#> 
#> $Benefit
#> 
#>   1   2   3   4 
#>  21 100 193  78 
#>