Function to calculate the empirical (marginal) reliability
Source:R/empirical_rxx.R
empirical_rxx.Rd
Given secondary latent trait estimates and their associated standard errors
returned from fscores
, compute the empirical reliability.
Arguments
- Theta_SE
a matrix of latent trait estimates returned from
fscores
with the optionsfull.scores = TRUE
andfull.scores.SE = TRUE
- T_as_X
logical; should the observed variance be equal to
var(X) = var(T) + E(E^2)
orvar(X) = var(T)
when computing empirical reliability estimates? Default (FALSE
) uses the former
References
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
# \donttest{
dat <- expand.table(deAyala)
itemstats(dat)
#> $overall
#> N mean_total.score sd_total.score ave.r sd.r alpha SEM.alpha
#> 19601 2.912 1.434 0.233 0.074 0.608 0.898
#>
#> $itemstats
#> N mean sd total.r total.r_if_rm alpha_if_rm
#> Item.1 19601 0.887 0.316 0.447 0.246 0.605
#> Item.2 19601 0.644 0.479 0.688 0.439 0.510
#> Item.3 19601 0.566 0.496 0.680 0.416 0.523
#> Item.4 19601 0.427 0.495 0.673 0.405 0.529
#> Item.5 19601 0.387 0.487 0.602 0.312 0.581
#>
#> $proportions
#> 0 1
#> Item.1 0.113 0.887
#> Item.2 0.356 0.644
#> Item.3 0.434 0.566
#> Item.4 0.573 0.427
#> Item.5 0.613 0.387
#>
mod <- mirt(dat)
theta_se <- fscores(mod, full.scores.SE = TRUE)
empirical_rxx(theta_se)
#> F1
#> 0.6200703
theta_se <- fscores(mod, full.scores.SE = TRUE, method = 'ML')
empirical_rxx(theta_se)
#> F1
#> 0.5636644
empirical_rxx(theta_se, T_as_X = TRUE)
#> F1
#> 0.2258948
# }