Skip to contents

This function exports item parameters from the mirt package to the plink package.

Usage

read.mirt(x, as.irt.pars = TRUE, ...)

Arguments

x

a single object (or list of objects) returned from mirt, bfactor, or a single object returned by multipleGroup

as.irt.pars

if TRUE, the parameters will be output as an irt.pars object

...

additional arguments to be passed to coef()

Author

Phil Chalmers rphilip.chalmers@gmail.com

Examples


# \donttest{

## unidimensional
library(plink)

data <- expand.table(LSAT7)
(mod1 <- mirt(data, 1))
#> 
#> Call:
#> mirt(data = data, model = 1)
#> 
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 28 EM iterations.
#> mirt version: 1.43 
#> M-step optimizer: BFGS 
#> EM acceleration: Ramsay 
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian 
#> 
#> Log-likelihood = -2658.805
#> Estimated parameters: 10 
#> AIC = 5337.61
#> BIC = 5386.688; SABIC = 5354.927
#> G2 (21) = 31.7, p = 0.0628
#> RMSEA = 0.023, CFI = NaN, TLI = NaN
plinkpars <- read.mirt(mod1)
plot(plinkpars)

plot(mod1, type = 'trace')


# graded
mod2 <- mirt(Science, 1)
plinkpars <- read.mirt(mod2)
plot(plinkpars)

plot(mod2, type = 'trace')


# gpcm
mod3 <- mirt(Science, 1, itemtype = 'gpcm')
plinkpars <- read.mirt(mod3)
plot(plinkpars)

plot(mod3, type = 'trace')


# nominal
mod4 <- mirt(Science, 1, itemtype = 'nominal')
plinkpars <- read.mirt(mod4)
plot(plinkpars)

plot(mod4, type = 'trace')


## multidimensional

data <- expand.table(LSAT7)
(mod1 <- mirt(data, 2))
#> 
#> Call:
#> mirt(data = data, model = 2)
#> 
#> Full-information item factor analysis with 2 factor(s).
#> Converged within 1e-04 tolerance after 436 EM iterations.
#> mirt version: 1.43 
#> M-step optimizer: BFGS 
#> EM acceleration: Ramsay 
#> Number of rectangular quadrature: 31
#> Latent density type: Gaussian 
#> 
#> Log-likelihood = -2653.52
#> Estimated parameters: 14 
#> AIC = 5335.039
#> BIC = 5403.748; SABIC = 5359.283
#> G2 (17) = 21.13, p = 0.2205
#> RMSEA = 0.016, CFI = NaN, TLI = NaN
plinkpars <- read.mirt(mod1)
plinkpars
#> An object of class "irt.pars"
#> Slot "pars":
#>              a1          a2            
#> [1,] -2.0072336  0.87037703 2.6479635 0
#> [2,] -0.8488425 -0.52210644 0.7876378 0
#> [3,] -2.1530084 -1.83652628 2.4829929 0
#> [4,] -0.7558975 -0.02803433 0.4847282 0
#> [5,] -0.7572717  0.00000000 1.8640953 0
#> 
#> Slot "cat":
#> [1] 2 2 2 2 2
#> 
#> Slot "poly.mod":
#> An object of class "poly.mod"
#> Slot "model":
#> [1] "drm"
#> 
#> Slot "items":
#> $drm
#> [1] 1 2 3 4 5
#> 
#> 
#> 
#> Slot "common":
#> NULL
#> 
#> Slot "location":
#> [1] FALSE
#> 
#> Slot "groups":
#> [1] 1
#> 
#> Slot "dimensions":
#> [1] 2
#> 
plot(plinkpars)

plot(mod1, type = 'trace')


cmod <- mirt.model('
   F1 = 1,4,5
   F2 = 2-4')
model <- mirt(data, cmod)
plot(read.mirt(model))

itemplot(model, 1)


# graded
mod2 <- mirt(Science, 2)
plinkpars <- read.mirt(mod2)
plinkpars
#> An object of class "irt.pars"
#> Slot "pars":
#>              a1         a2       b1       b2        b3
#> [1,] -1.3350281 0.09676376 5.210669 2.865549 -1.602826
#> [2,] -0.8789508 1.85253465 3.703802 1.153176 -2.904255
#> [3,] -1.4696076 1.16485648 4.663467 1.956626 -1.735796
#> [4,] -1.7220434 0.00000000 3.988789 1.195247 -2.043998
#> 
#> Slot "cat":
#> [1] 4 4 4 4
#> 
#> Slot "poly.mod":
#> An object of class "poly.mod"
#> Slot "model":
#> [1] "grm"
#> 
#> Slot "items":
#> $grm
#> [1] 1 2 3 4
#> 
#> 
#> 
#> Slot "common":
#> NULL
#> 
#> Slot "location":
#> [1] FALSE
#> 
#> Slot "groups":
#> [1] 1
#> 
#> Slot "dimensions":
#> [1] 2
#> 
plot(plinkpars)

plot(mod2, type = 'trace')


### multiple group equating example
set.seed(1234)
dat <- expand.table(LSAT7)
group <- sample(c('g1', 'g2'), nrow(dat), TRUE)
dat1 <- dat[group == 'g1', ]
dat2 <- dat[group == 'g2', ]
mod1 <- mirt(dat1, 1)
mod2 <- mirt(dat2, 1)

# convert and combine pars
plinkMG <- read.mirt(list(g1=mod1, g2=mod2))

# equivalently:
# mod <- multipleGroup(dat, 1, group)
# plinkMG <- read.mirt(mod)

combine <- matrix(1:5, 5, 2)
comb <- combine.pars(plinkMG, combine, grp.names=unique(group))
out <- plink(comb, rescale="SL")
equate(out)
#> Maximum iterations reached for true score: 0 
#> $tse
#>         theta g2       g1
#> 1 -160.732949  0 0.000000
#> 2   -3.233741  1 0.973481
#> 3   -1.910192  2 2.023409
#> 4   -0.999050  3 3.021848
#> 5    0.048359  4 3.973672
#> 6   57.337797  5 5.000000
#> 
#> $ose
#> $ose$scores
#>   eap.theta.g2 eap.sd.g2 g2        g1
#> 1    -1.896444  0.698843  0 0.0000000
#> 2    -1.474472  0.697610  1 0.9893317
#> 3    -1.002953  0.716007  2 1.9956600
#> 4    -0.455590  0.747730  3 2.9912425
#> 5     0.123384  0.782773  4 3.9901784
#> 6     0.678747  0.812793  5 4.9949444
#> 
#> $ose$dist
#> $ose$dist$g2
#>      score       pop1       pop2        syn
#> [1,]     0 0.03273187 0.03273187 0.03273187
#> [2,]     1 0.17343742 0.17343742 0.17343742
#> [3,]     2 0.48733074 0.48733074 0.48733074
#> [4,]     3 0.99873451 0.99873451 0.99873451
#> [5,]     4 1.61799716 1.61799716 1.61799716
#> [6,]     5 1.56457520 1.56457520 1.56457520
#> 
#> $ose$dist$g1
#>      score      pop1      pop2       syn
#> [1,]     0 0.0338755 0.0338755 0.0338755
#> [2,]     1 0.1748815 0.1748815 0.1748815
#> [3,]     2 0.4863770 0.4863770 0.4863770
#> [4,]     3 1.0132130 1.0132130 1.0132130
#> [5,]     4 1.6175460 1.6175460 1.6175460
#> [6,]     5 1.5489139 1.5489139 1.5489139
#> 
#> 
#> 
equate(out, method = 'OSE')
#> $scores
#>   eap.theta.g2 eap.sd.g2 g2        g1
#> 1    -1.896444  0.698843  0 0.0000000
#> 2    -1.474472  0.697610  1 0.9893317
#> 3    -1.002953  0.716007  2 1.9956600
#> 4    -0.455590  0.747730  3 2.9912425
#> 5     0.123384  0.782773  4 3.9901784
#> 6     0.678747  0.812793  5 4.9949444
#> 
#> $dist
#> $dist$g2
#>      score       pop1       pop2        syn
#> [1,]     0 0.03273187 0.03273187 0.03273187
#> [2,]     1 0.17343742 0.17343742 0.17343742
#> [3,]     2 0.48733074 0.48733074 0.48733074
#> [4,]     3 0.99873451 0.99873451 0.99873451
#> [5,]     4 1.61799716 1.61799716 1.61799716
#> [6,]     5 1.56457520 1.56457520 1.56457520
#> 
#> $dist$g1
#>      score      pop1      pop2       syn
#> [1,]     0 0.0338755 0.0338755 0.0338755
#> [2,]     1 0.1748815 0.1748815 0.1748815
#> [3,]     2 0.4863770 0.4863770 0.4863770
#> [4,]     3 1.0132130 1.0132130 1.0132130
#> [5,]     4 1.6175460 1.6175460 1.6175460
#> [6,]     5 1.5489139 1.5489139 1.5489139
#> 
#> 

# }