Given two fitted models, compute a parametric bootstrap test to determine whether
the less restrictive models fits significantly better than the more restricted model.
Note that this hypothesis test also works when prior parameter distributions are included for
either model. Function can be run in parallel after using a suitable mirtCluster
definition.
boot.LR(mod, mod2, R = 1000, verbose = TRUE)
an estimated model object, more constrained than mod2
an estimated model object
number of parametric bootstraps to use.
logical; include additional information in the console?
a p-value evaluating whether the more restrictive model fits significantly worse than the less restrictive model
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
# \donttest{
# standard
dat <- expand.table(LSAT7)
mod1 <- mirt(dat, 1)
mod2 <- mirt(dat, 1, '3PL')
# standard LR test
anova(mod1, mod2)
#> AIC SABIC HQ BIC logLik X2 df p
#> mod1 5337.61 5354.927 5356.263 5386.688 -2658.805
#> mod2 5346.11 5372.085 5374.089 5419.726 -2658.055 1.5 5 0.913
# bootstrap LR test (run in parallel to save time)
if(interactive()) mirtCluster()
boot.LR(mod1, mod2, R=200)
#> [1] 0.3383085
# }