Skip to contents

A 3-item tabulated data set extracted from Table 3 in Chapter Two.

References

Bock, R. D. (1997). The Nominal Categories Model. In van der Linden, W. J. & Hambleton, R. K. Handbook of modern item response theory. New York: Springer.

Author

Phil Chalmers rphilip.chalmers@gmail.com

Examples


# \donttest{
dat <- expand.table(Bock1997)
head(dat)
#>   Item.1 Item.2 Item.3
#> 1      1      1      1
#> 2      1      1      1
#> 3      1      1      1
#> 4      1      1      1
#> 5      1      1      1
#> 6      1      1      1
itemstats(dat, use_ts=FALSE)
#> $overall
#>      N
#> 1 2000
#> 
#> $itemstats
#>           N  mean    sd
#> Item.1 2000 2.443 1.070
#> Item.2 2000 2.666 0.957
#> Item.3 2000 2.780 1.059
#> 
#> $proportions
#>            1     2     3     4
#> Item.1 0.240 0.284 0.267 0.208
#> Item.2 0.122 0.314 0.340 0.224
#> Item.3 0.141 0.273 0.253 0.334
#> 

mod <- mirt(dat, 1, 'nominal')

# reproduce table 3 in Bock (1997)
fs <- round(fscores(mod, verbose = FALSE, full.scores = FALSE)[,c('F1','SE_F1')],2)
fttd <- residuals(mod, type = 'exp')
table <- data.frame(fttd[,-ncol(fttd)], fs)
table
#>    Item.1 Item.2 Item.3 freq        exp    F1 SE_F1
#> 1       1      1      1   50  46.444027 -1.72  0.68
#> 2       1      1      2   32  37.215496 -1.22  0.64
#> 3       1      1      3   15  18.069304 -0.95  0.62
#> 4       1      1      4   10   8.692424 -0.61  0.61
#> 5       1      2      1   54  59.965727 -1.38  0.65
#> 6       1      2      2   80  70.000273 -0.91  0.62
#> 7       1      2      3   40  41.674601 -0.65  0.61
#> 8       1      2      4   24  25.832371 -0.33  0.61
#> 9       1      3      1   27  28.065138 -1.07  0.63
#> 10      1      3      2   52  46.689631 -0.62  0.61
#> 11      1      3      3   33  33.847511 -0.37  0.61
#> 12      1      3      4   27  26.935712 -0.04  0.61
#> 13      1      4      1    4   3.940514 -0.63  0.61
#> 14      1      4      2   13  10.897962 -0.19  0.61
#> 15      1      4      3   10  10.571253  0.06  0.61
#> 16      1      4      4   10  12.283469  0.40  0.63
#> 17      2      1      1   27  20.191927 -1.29  0.64
#> 18      2      1      2   19  26.271170 -0.82  0.62
#> 19      2      1      3   11  16.603995 -0.57  0.61
#> 20      2      1      4   11  11.097212 -0.24  0.61
#> 21      2      2      1   30  36.068703 -0.98  0.63
#> 22      2      2      2   78  66.604897 -0.53  0.61
#> 23      2      2      3   69  51.217364 -0.28  0.61
#> 24      2      2      4   48  43.966108  0.05  0.61
#> 25      2      3      1   24  22.900098 -0.68  0.61
#> 26      2      3      2   48  59.345066 -0.25  0.61
#> 27      2      3      3   52  55.428529  0.01  0.61
#> 28      2      3      4   53  61.277297  0.34  0.62
#> 29      2      4      1    3   4.974192 -0.25  0.61
#> 30      2      4      2   21  21.301177  0.19  0.62
#> 31      2      4      3   20  26.765813  0.45  0.63
#> 32      2      4      4   54  43.946401  0.81  0.65
#> 33      3      1      1    9   7.040049 -0.96  0.62
#> 34      3      1      2   12  13.275569 -0.51  0.61
#> 35      3      1      3   13  10.330678 -0.26  0.61
#> 36      3      1      4    7   9.005107  0.06  0.61
#> 37      3      2      1   11  16.098345 -0.66  0.61
#> 38      3      2      2   29  42.609506 -0.23  0.61
#> 39      3      2      3   37  40.289025  0.03  0.61
#> 40      3      2      4   44  45.264883  0.36  0.62
#> 41      3      3      1   15  12.966052 -0.38  0.61
#> 42      3      3      2   62  47.984143  0.06  0.61
#> 43      3      3      3   60  55.255840  0.32  0.62
#> 44      3      3      4   88  80.660157  0.67  0.64
#> 45      3      4      1    4   3.999324  0.05  0.61
#> 46      3      4      2   27  24.639934  0.50  0.63
#> 47      3      4      3   43  38.630407  0.78  0.65
#> 48      3      4      4   73  85.862836  1.17  0.68
#> 49      4      1      1    4   2.538215 -0.75  0.62
#> 50      4      1      2    8   6.100809 -0.31  0.61
#> 51      4      1      3    7   5.455196 -0.06  0.61
#> 52      4      1      4    9   5.695962  0.27  0.62
#> 53      4      2      1    7   6.816068 -0.46  0.61
#> 54      4      2      2   21  22.926076 -0.02  0.61
#> 55      4      2      3   25  24.946447  0.23  0.62
#> 56      4      2      4   31  33.758294  0.58  0.64
#> 57      4      3      1    8   6.427237 -0.17  0.61
#> 58      4      3      2   23  30.276410  0.27  0.62
#> 59      4      3      3   35  40.293621  0.54  0.63
#> 60      4      3      4   73  71.523729  0.90  0.66
#> 61      4      4      1    4   2.513701  0.26  0.62
#> 62      4      4      2   21  19.940144  0.73  0.65
#> 63      4      4      3   36  36.579513  1.02  0.67
#> 64      4      4      4  105 101.211362  1.43  0.71

mod <- mirt(dat, 1, 'nominal')
coef(mod)
#> $Item.1
#>       a1 ak0   ak1   ak2 ak3 d0    d1    d2     d3
#> par 0.79   0 1.269 2.304   3  0 0.673 0.538 -0.013
#> 
#> $Item.2
#>        a1 ak0   ak1   ak2 ak3 d0    d1    d2    d3
#> par 0.898   0 0.859 1.717   3  0 1.452 1.636 0.647
#> 
#> $Item.3
#>        a1 ak0   ak1   ak2 ak3 d0    d1    d2    d3
#> par 0.908   0 1.289 2.038   3  0 1.495 1.508 1.457
#> 
#> $GroupPars
#>     MEAN_1 COV_11
#> par      0      1
#> 

 # }