Skip to contents

A function that returns the next item in the computerized adaptive, optimal assembly, or shadow test. For direction manipulation of the internal objects this function should be used in conjunction with the updateDesign and customNextItem. Finally, the raw input forms can be used when a customNextItem function has been defined in mirtCAT.

Usage

findNextItem(
  x,
  person = NULL,
  test = NULL,
  design = NULL,
  criteria = NULL,
  objective = NULL,
  subset = NULL,
  all_index = FALSE,
  ...
)

Arguments

x

an object of class 'mirtCAT_design' returned from the mirtCAT function when passing design_elements = TRUE

person

(required when x is missing) internal person object. To be used when customNextItem function has been defined

test

(required when x is missing) internal test object. To be used when customNextItem function has been defined

design

(required when x is missing) internal design object. To be used when customNextItem function has been defined

criteria

item selection criteria (see mirtCAT's criteria input). If not specified the value from extract.mirtCAT(design, 'criteria') will be used

objective

a vector of values used as the optimization criteria to be passed to lp(objective.in). This is typically the vector of criteria values returned from computeCriteria, however supplying other criteria are possible (e.g., to minimize the number of items administered simply pass a vector of -1's)

subset

an integer vector indicating which items should be included in the optimal search; the default NULL includes all possible items. To allow only the first 10 items to be selected from this can be modified to subset = 1:10. This is useful when administering a multi-unidimensional CAT session where unidimensional blocks should be clustered together for smoother presentation. Useful when using the customNextItem function in mirtCAT

all_index

logical; return all items instead of just the most optimal? When TRUE a vector of items is returned instead of the most optimal, where the items are sorted according to how well they fit the criteria (e.g., the first element is the most optimal, followed by the second most optimal, and so on). Note that this does not work for some selection criteria (e.g., 'seq' or 'random')

...

additional arguments to be passed to lp

Value

typically returns an integer value indicating the index of the next item to be selected or a value of NA to indicate that the test should be terminated. However, see the arguments for further returned object descriptions

Details

When a numeric objective is supplied the next item in the computerized adaptive test is found via an integer solver through searching for a maximum. The raw input forms can be used when a customNextItem function has been defined in mirtCAT, and requires the definition of a constr_fun (see the associated element in mirtCAT for details, as well as the examples below). Can be used to for 'Optimal Test Assembly', as well as 'Shadow Testing' designs (van der Linden, 2005), by using the lp function. When objective is not supplied the result follows the typical maximum criteria of more standard adaptive tests.

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Chalmers, R. P. (2016). Generating Adaptive and Non-Adaptive Test Interfaces for Multidimensional Item Response Theory Applications. Journal of Statistical Software, 71(5), 1-39. doi:10.18637/jss.v071.i05

van der Linden, W. J. (2005). Linear models for optimal test design. Springer.

Author

Phil Chalmers rphilip.chalmers@gmail.com

Examples

if (FALSE) { # \dontrun{

# test defined in mirtCAT help file, first example 
# equivalent to criteria = 'MI'
customNextItem <- function(design, person, test){
   item <- findNextItem(person=person, design=design, test=test,
                        criteria = 'MI')
   item
 }
 
set.seed(1)
nitems <- 100
itemnames <- paste0('Item.', 1:nitems)
a <- matrix(rlnorm(nitems, .2, .3))
d <- matrix(rnorm(nitems))
dat <- simdata(a, d, 500, itemtype = 'dich')
colnames(dat) <- itemnames
mod <- mirt(dat, 1, verbose = FALSE)

# simple math items
questions <- answers <- character(nitems)
choices <- matrix(NA, nitems, 5)
spacing <- floor(d - min(d)) + 1 #easier items have more variation in the options

for(i in 1:nitems){
 n1 <- sample(1:50, 1)
 n2 <- sample(51:100, 1)
 ans <- n1 + n2
 questions[i] <- paste0(n1, ' + ', n2, ' = ?')
 answers[i] <- as.character(ans)
 ch <- ans + sample(c(-5:-1, 1:5) * spacing[i,], 5)
 ch[sample(1:5, 1)] <- ans
 choices[i, ] <- as.character(ch)
}

df <- data.frame(Question=questions, Option=choices, 
              Type = 'radio', stringsAsFactors = FALSE)
   
response <- generate_pattern(mod, 1)
result <- mirtCAT(mo=mod, local_pattern = response, 
                  design = list(customNextItem=customNextItem))
                
-----------------------------------------------------------
# direct manipulation of internal objects
CATdesign <- mirtCAT(df=df, mo=mod, criteria = 'MI', design_elements = TRUE)

# returns number 1 in this case, since that's the starting item
findNextItem(CATdesign)

# determine next item if item 1 and item 10 were answered correctly
CATdesign <- updateDesign(CATdesign, new_item = 1, new_response = 1)
extract.mirtCAT(CATdesign$person, 'thetas') # updated thetas
CATdesign <- updateDesign(CATdesign, new_item = 10, new_response = 1)
extract.mirtCAT(CATdesign$person, 'thetas') # updated thetas again
findNextItem(CATdesign)
findNextItem(CATdesign, all_index = TRUE) # all items rank in terms of most optimal

#-------------------------------------------------------------
## Integer programming example (e.g., shadow testing)

# find maximum information subject to constraints
#  sum(xi) <= 5               ### 5 or fewer items
#  x1 + x2 <= 1               ### items 1 and 2 can't be together
#  x4 == 0                    ### item 4 not included
#  x5 + x6 == 1               ### item 5 or 6 must be included, but not both

# constraint function
constr_fun <- function(design, person, test){

  # left hand side constrains
  #    - 1 row per constraint, and ncol must equal number of items
  mo <- extract.mirtCAT(test, 'mo')
  nitems <- extract.mirt(mo, 'nitems')
  lhs <- matrix(0, 4, nitems)
  lhs[1,] <- 1
  lhs[2,c(1,2)] <- 1
  lhs[3, 4] <- 1
  lhs[4, c(5,6)] <- 1

  # relationship direction
  dirs <- c("<=", "<=", '==', '==')

  #right hand side
  rhs <- c(5, 1, 0, 1)

  #all together
  constraints <- data.frame(lhs, dirs, rhs)
  constraints
}

CATdesign <- mirtCAT(df=df, mo=mod, design_elements = TRUE,
                     design = list(constr_fun=constr_fun))

# MI criteria value associated with each respective item
objective <- computeCriteria(CATdesign, criteria = 'MI')

# most optimal item, given constraints
findNextItem(CATdesign, objective=objective)

# all the items which solve the problem
findNextItem(CATdesign, objective=objective, all_index = TRUE)

## within a customNextItem() definition the above code would look like
# customNextItem <- function(design, person, test){
#   objective <- computeCriteria(person=person, design=design, test=test,
#                                criteria = 'MI')
#   item <- findNextItem(person=person, design=design, test=test,
#                        objective=objective)
#   item
# }

} # }