A function that returns the next item in the computerized adaptive, optimal assembly, or shadow test.
For direction manipulation of the internal objects this function should be used in conjunction
with the updateDesign
and customNextItem
.
Finally, the raw input forms can be used when a customNextItem
function has been
defined in mirtCAT
.
Usage
findNextItem(
x,
person = NULL,
test = NULL,
design = NULL,
criteria = NULL,
objective = NULL,
subset = NULL,
all_index = FALSE,
...
)
Arguments
- x
an object of class 'mirtCAT_design' returned from the
mirtCAT
function when passingdesign_elements = TRUE
- person
(required when
x
is missing) internal person object. To be used whencustomNextItem
function has been defined- test
(required when
x
is missing) internal test object. To be used whencustomNextItem
function has been defined- design
(required when
x
is missing) internal design object. To be used whencustomNextItem
function has been defined- criteria
item selection criteria (see
mirtCAT
'scriteria
input). If not specified the value fromextract.mirtCAT(design, 'criteria')
will be used- objective
a vector of values used as the optimization criteria to be passed to
lp(objective.in)
. This is typically the vector of criteria values returned fromcomputeCriteria
, however supplying other criteria are possible (e.g., to minimize the number of items administered simply pass a vector of -1's)- subset
an integer vector indicating which items should be included in the optimal search; the default
NULL
includes all possible items. To allow only the first 10 items to be selected from this can be modified tosubset = 1:10
. This is useful when administering a multi-unidimensional CAT session where unidimensional blocks should be clustered together for smoother presentation. Useful when using thecustomNextItem
function inmirtCAT
- all_index
logical; return all items instead of just the most optimal? When
TRUE
a vector of items is returned instead of the most optimal, where the items are sorted according to how well they fit the criteria (e.g., the first element is the most optimal, followed by the second most optimal, and so on). Note that this does not work for some selection criteria (e.g., 'seq' or 'random')- ...
additional arguments to be passed to
lp
Value
typically returns an integer value indicating the index of the next item to be selected or a
value of NA
to indicate that the test should be terminated. However, see the arguments for
further returned object descriptions
Details
When a numeric objective
is supplied the next item in the computerized adaptive test is found via
an integer solver through searching for a maximum. The raw input forms can be used
when a customNextItem
function has been defined in mirtCAT
, and requires
the definition of a constr_fun
(see the associated element in mirtCAT
for details,
as well as the examples below). Can be used to for 'Optimal Test Assembly',
as well as 'Shadow Testing' designs (van der Linden, 2005),
by using the lp
function. When objective
is not supplied the result follows the
typical maximum criteria of more standard adaptive tests.
References
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Chalmers, R. P. (2016). Generating Adaptive and Non-Adaptive Test Interfaces for Multidimensional Item Response Theory Applications. Journal of Statistical Software, 71(5), 1-39. doi:10.18637/jss.v071.i05
van der Linden, W. J. (2005). Linear models for optimal test design. Springer.
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
if (FALSE) { # \dontrun{
# test defined in mirtCAT help file, first example
# equivalent to criteria = 'MI'
customNextItem <- function(design, person, test){
item <- findNextItem(person=person, design=design, test=test,
criteria = 'MI')
item
}
set.seed(1)
nitems <- 100
itemnames <- paste0('Item.', 1:nitems)
a <- matrix(rlnorm(nitems, .2, .3))
d <- matrix(rnorm(nitems))
dat <- simdata(a, d, 500, itemtype = 'dich')
colnames(dat) <- itemnames
mod <- mirt(dat, 1, verbose = FALSE)
# simple math items
questions <- answers <- character(nitems)
choices <- matrix(NA, nitems, 5)
spacing <- floor(d - min(d)) + 1 #easier items have more variation in the options
for(i in 1:nitems){
n1 <- sample(1:50, 1)
n2 <- sample(51:100, 1)
ans <- n1 + n2
questions[i] <- paste0(n1, ' + ', n2, ' = ?')
answers[i] <- as.character(ans)
ch <- ans + sample(c(-5:-1, 1:5) * spacing[i,], 5)
ch[sample(1:5, 1)] <- ans
choices[i, ] <- as.character(ch)
}
df <- data.frame(Question=questions, Option=choices,
Type = 'radio', stringsAsFactors = FALSE)
response <- generate_pattern(mod, 1)
result <- mirtCAT(mo=mod, local_pattern = response,
design = list(customNextItem=customNextItem))
-----------------------------------------------------------
# direct manipulation of internal objects
CATdesign <- mirtCAT(df=df, mo=mod, criteria = 'MI', design_elements = TRUE)
# returns number 1 in this case, since that's the starting item
findNextItem(CATdesign)
# determine next item if item 1 and item 10 were answered correctly
CATdesign <- updateDesign(CATdesign, new_item = 1, new_response = 1)
extract.mirtCAT(CATdesign$person, 'thetas') # updated thetas
CATdesign <- updateDesign(CATdesign, new_item = 10, new_response = 1)
extract.mirtCAT(CATdesign$person, 'thetas') # updated thetas again
findNextItem(CATdesign)
findNextItem(CATdesign, all_index = TRUE) # all items rank in terms of most optimal
#-------------------------------------------------------------
## Integer programming example (e.g., shadow testing)
# find maximum information subject to constraints
# sum(xi) <= 5 ### 5 or fewer items
# x1 + x2 <= 1 ### items 1 and 2 can't be together
# x4 == 0 ### item 4 not included
# x5 + x6 == 1 ### item 5 or 6 must be included, but not both
# constraint function
constr_fun <- function(design, person, test){
# left hand side constrains
# - 1 row per constraint, and ncol must equal number of items
mo <- extract.mirtCAT(test, 'mo')
nitems <- extract.mirt(mo, 'nitems')
lhs <- matrix(0, 4, nitems)
lhs[1,] <- 1
lhs[2,c(1,2)] <- 1
lhs[3, 4] <- 1
lhs[4, c(5,6)] <- 1
# relationship direction
dirs <- c("<=", "<=", '==', '==')
#right hand side
rhs <- c(5, 1, 0, 1)
#all together
constraints <- data.frame(lhs, dirs, rhs)
constraints
}
CATdesign <- mirtCAT(df=df, mo=mod, design_elements = TRUE,
design = list(constr_fun=constr_fun))
# MI criteria value associated with each respective item
objective <- computeCriteria(CATdesign, criteria = 'MI')
# most optimal item, given constraints
findNextItem(CATdesign, objective=objective)
# all the items which solve the problem
findNextItem(CATdesign, objective=objective, all_index = TRUE)
## within a customNextItem() definition the above code would look like
# customNextItem <- function(design, person, test){
# objective <- computeCriteria(person=person, design=design, test=test,
# criteria = 'MI')
# item <- findNextItem(person=person, design=design, test=test,
# objective=objective)
# item
# }
} # }