Full-Information Item Factor Analysis (Multidimensional Item Response Theory)
Source:R/mirt.R
mirt.Rd
mirt
fits a maximum likelihood (or maximum a posteriori) factor analysis model
to any mixture of dichotomous and polytomous data under the
multidimensional item response theory paradigm
using either Cai's (2010) Metropolis-Hastings Robbins-Monro (MHRM) algorithm, with
an EM algorithm approach outlined by Bock and Aitkin (1981) using rectangular or
quasi-Monte Carlo integration grids, or with the stochastic EM (i.e., the first two stages
of the MH-RM algorithm). Unidimensional and multidimensional
dominance/compensatory response models or unfolding/pairwise comparison models can
be specified independently via the itemtype
argument.
Usage
mirt(
data,
model = 1,
itemtype = NULL,
guess = 0,
upper = 1,
SE = FALSE,
covdata = NULL,
formula = NULL,
itemdesign = NULL,
item.formula = NULL,
SE.type = "Oakes",
method = "EM",
optimizer = NULL,
dentype = "Gaussian",
pars = NULL,
constrain = NULL,
calcNull = FALSE,
draws = 5000,
survey.weights = NULL,
quadpts = NULL,
TOL = NULL,
gpcm_mats = list(),
grsm.block = NULL,
rsm.block = NULL,
monopoly.k = 1L,
key = NULL,
large = FALSE,
GenRandomPars = FALSE,
accelerate = "Ramsay",
verbose = TRUE,
solnp_args = list(),
nloptr_args = list(),
spline_args = list(),
control = list(),
technical = list(),
...
)
Arguments
- data
a
matrix
ordata.frame
that consists of numerically ordered data, organized in the form of integers, with missing data coded asNA
(to convert from an ordered factordata.frame
seedata.matrix
)- model
a string to be passed (or an object returned from)
mirt.model
, declaring how the IRT model is to be estimated (loadings, constraints, priors, etc). For exploratory IRT models, a single numeric value indicating the number of factors to extract is also supported. Default is 1, indicating that a unidimensional model will be fit unless otherwise specified- itemtype
type of items to be modeled, declared as either a) a single value to be recycled for each item, b) a vector for each respective item, or c) if applicable, a matrix with columns equal to the number of items and rows equal to the number of latent classes. The
NULL
default assumes that the items follow a graded or 2PL structure, however they may be changed to the following:'Rasch'
- Rasch/partial credit model by constraining slopes to 1 and freely estimating the variance parameters (alternatively, can be specified by applying equality constraints to the slope parameters in'gpcm'
and'2PL'
; Rasch, 1960)'1PL'
,'2PL'
,'3PL'
,'3PLu'
, and'4PL'
- 1-4 parameter logistic model, where3PL
estimates the lower asymptote only while3PLu
estimates the upper asymptote only (Lord and Novick, 1968; Lord, 1980). Note that specifying'1PL'
will not automatically estimate the variance of the latent trait compared to the'Rasch'
type'5PL'
- 5 parameter logistic model to estimate asymmetric logistic response curves. Currently restricted to unidimensional models'CLL'
- complementary log-log link model. Currently restricted to unidimensional models'ULL'
- unipolar log-logistic model (Lucke, 2015). Note the use of this itemtype will automatically use a log-normal distribution for the latent traits'graded'
- graded response model (Samejima, 1969)'grsm'
- graded ratings scale model in the classical IRT parameterization (restricted to unidimensional models; Muraki, 1992)'gpcm'
and'gpcmIRT'
- generalized partial credit model in the slope-intercept and classical parameterization.'gpcmIRT'
is restricted to unidimensional models. Note that optional scoring matrices for'gpcm'
are available with thegpcm_mats
input (Muraki, 1992)'rsm'
- Rasch rating scale model using the'gpcmIRT'
structure (unidimensional only; Andrich, 1978)'nominal'
- nominal response model (Bock, 1972)'ideal'
- dichotomous ideal point model (Maydeu-Olivares, 2006)'ggum'
- generalized graded unfolding model (Roberts, Donoghue, & Laughlin, 2000) and its multidimensional extension'hcm' and 'ghcm'
- (generalized) hyperbolic cosine model (Andrich and Luo, 1993; Andrich, 1996) for dichotomous or ordered polytomous items (see Luo, 2001)'alm' and 'galm'
- (generalized) absolute logistic model (Luo and Andrich, 2005) for dichotomous or ordered polytomous items'sslm' and 'gsslm'
- (generalized) simple squared logistic model (Andrich, 1988) for dichotomous or ordered polytomous items (see Luo, 2001)'paralla' and 'gparalla'
- (generalized) parallellogram analysis model (Hoijtink, 1990) for dichotomous or ordered polytomous items (see Luo, 2001)'sequential'
- multidimensional sequential response model (Tutz, 1990) in slope-intercept form'Tutz'
- same as the'sequential'
itemtype, except the slopes are fixed to 1 and the latent variance terms are freely estimated (similar to the'Rasch'
itemtype input)'PC1PL'
,'PC2PL'
, and'PC3PL'
- 1-3 parameter partially compensatory model. Note that constraining the slopes to be equal across items will also reduce the model to Embretson's (a.k.a. Whitely's) multicomponent model (1980), while for'PC1PL'
the slopes are fixed to 1 while the latent trait variance terms are estimated'2PLNRM'
,'3PLNRM'
,'3PLuNRM'
, and'4PLNRM'
- 2-4 parameter nested logistic model, where3PLNRM
estimates the lower asymptote only while3PLuNRM
estimates the upper asymptote only (Suh and Bolt, 2010)'spline'
- spline response model with thebs
(default) or thens
function (Winsberg, Thissen, and Wainer, 1984)'monopoly'
- monotonic polynomial model for unidimensional tests for dichotomous and polytomous response data (Falk and Cai, 2016)
Additionally, user defined item classes can also be defined using the
createItem
function- guess
fixed pseudo-guessing parameters. Can be entered as a single value to assign a global guessing parameter or may be entered as a numeric vector corresponding to each item
- upper
fixed upper bound parameters for 4-PL model. Can be entered as a single value to assign a global guessing parameter or may be entered as a numeric vector corresponding to each item
- SE
logical; estimate the standard errors by computing the parameter information matrix? See
SE.type
for the type of estimates available- covdata
a data.frame of data used for latent regression models
- formula
an R formula (or list of formulas) indicating how the latent traits can be regressed using external covariates in
covdata
. If a named list of formulas is supplied (where the names correspond to the latent trait names inmodel
) then specific regression effects can be estimated for each factor. Supplying a single formula will estimate the regression parameters for all latent traits by default- itemdesign
a
data.frame
with rows equal to the number of items and columns containing any item-design effects. If items should be included in the design structure (i.e., should be left in their canonical structure) then fewer rows can be used, however therownames
must be defined and matched withcolnames
in thedata
input. The item design matrix is constructed with the use ofitem.formula
. Providing this input will fix the associated'd'
intercepts to 0, where applicable- item.formula
an R formula used to specify any intercept decomposition (e.g., the LLTM; Fischer, 1983). Note that only the right-hand side of the formula is required for compensatory models.
For non-compensatory
itemtype
s (e.g.,'PC1PL'
) the formula must include the name of the latent trait in the left hand side of the expression to indicate which of the trait specification should have their intercepts decomposed (see MLTM; Embretson, 1984)- SE.type
type of estimation method to use for calculating the parameter information matrix for computing standard errors and
wald
tests. Can be:'Richardson'
,'forward'
, or'central'
for the numerical Richardson, forward difference, and central difference evaluation of observed Hessian matrix'crossprod'
and'Louis'
for standard error computations based on the variance of the Fisher scores as well as Louis' (1982) exact computation of the observed information matrix. Note that Louis' estimates can take a long time to obtain for large sample sizes and long tests'sandwich'
for the sandwich covariance estimate based on the'crossprod'
and'Oakes'
estimates (see Chalmers, 2018, for details)'sandwich.Louis'
for the sandwich covariance estimate based on the'crossprod'
and'Louis'
estimates'Oakes'
for Oakes' (1999) method using a central difference approximation (see Chalmers, 2018, for details)'SEM'
for the supplemented EM (disables theaccelerate
option automatically; EM only)'Fisher'
for the expected information,'complete'
for information based on the complete-data Hessian used in EM algorithm'MHRM'
and'FMHRM'
for stochastic approximations of observed information matrix based on the Robbins-Monro filter or a fixed number of MHRM draws without the RM filter. These are the only options supported whenmethod = 'MHRM'
'numerical'
to obtain the numerical estimate from a call tooptim
whenmethod = 'BL'
Note that both the
'SEM'
method becomes very sensitive if the ML solution has has not been reached with sufficient precision, and may be further sensitive if the history of the EM cycles is not stable/sufficient for convergence of the respective estimates. Increasing the number of iterations (increasingNCYCLES
and decreasingTOL
, see below) will help to improve the accuracy, and can be run in parallel if amirtCluster
object has been defined (this will be used for Oakes' method as well). Additionally, inspecting the symmetry of the ACOV matrix for convergence issues by passingtechnical = list(symmetric = FALSE)
can be helpful to determine if a sufficient solution has been reached- method
a character object specifying the estimation algorithm to be used. The default is
'EM'
, for the standard EM algorithm with fixed quadrature,'QMCEM'
for quasi-Monte Carlo EM estimation, or'MCEM'
for Monte Carlo EM estimation. The option'MHRM'
may also be passed to use the MH-RM algorithm,'SEM'
for the Stochastic EM algorithm (first two stages of the MH-RM stage using an optimizer other than a single Newton-Raphson iteration), and'BL'
for the Bock and Lieberman approach (generally not recommended for longer tests).The
'EM'
is generally effective with 1-3 factors, but methods such as the'QMCEM'
,'MCEM'
,'SEM'
, or'MHRM'
should be used when the dimensions are 3 or more. Note that when the optimizer is stochastic the associatedSE.type
is automatically changed toSE.type = 'MHRM'
by default to avoid the use of quadrature- optimizer
a character indicating which numerical optimizer to use. By default, the EM algorithm will use the
'BFGS'
when there are no upper and lower bounds box-constraints and'nlminb'
when there are.Other options include the Newton-Raphson (
'NR'
), which can be more efficient than the'BFGS'
but not as stable for more complex IRT models (such as the nominal or nested logit models) and the related'NR1'
which is also the Newton-Raphson but consists of only 1 update that has been coupled with RM Hessian (only applicable when the MH-RM algorithm is used). The MH-RM algorithm uses the'NR1'
by default, though currently the'BFGS'
,'L-BFGS-B'
, and'NR'
are also supported with this method (with fewer iterations by default) to emulate stochastic EM updates. As well, the'Nelder-Mead'
and'SANN'
estimators are available, but their routine use generally is not required or recommended.Additionally, estimation subroutines from the
Rsolnp
andnloptr
packages are available by passing the arguments'solnp'
and'nloptr'
, respectively. This should be used in conjunction with thesolnp_args
andnloptr_args
specified below. If equality constraints were specified in the model definition only the parameter with the lowestparnum
in thepars = 'values'
data.frame is used in the estimation vector passed to the objective function, and group hyper-parameters are omitted. Equality an inequality functions should be of the formfunction(p, optim_args)
, whereoptim_args
is a list of internally parameters that largely can be ignored when defining constraints (though use ofbrowser()
here may be helpful)- dentype
type of density form to use for the latent trait parameters. Current options include
'Gaussian'
(default) assumes a multivariate Gaussian distribution with an associated mean vector and variance-covariance matrix'empiricalhist'
or'EH'
estimates latent distribution using an empirical histogram described by Bock and Aitkin (1981). Only applicable for unidimensional models estimated with the EM algorithm. For this option, the number of cycles, TOL, and quadpts are adjusted accommodate for less precision during estimation (namely:TOL = 3e-5
,NCYCLES = 2000
,quadpts = 121
)'empiricalhist_Woods'
or'EHW'
estimates latent distribution using an empirical histogram described by Bock and Aitkin (1981), with the same specifications as indentype = 'empiricalhist'
, but with the extrapolation-interpolation method described by Woods (2007). NOTE: to improve stability in the presence of extreme response styles (i.e., all highest or lowest in each item) thetechnical
optionzeroExtreme = TRUE
may be required to down-weight the contribution of these problematic patterns'Davidian-#'
estimates semi-parametric Davidian curves described by Woods and Lin (2009), where the#
placeholder represents the number of Davidian parameters to estimate (e.g.,'Davidian-6'
will estimate 6 smoothing parameters). By default, the number ofquadpts
is increased to 121, and this method is only applicable for unidimensional models estimated with the EM algorithm
Note that when
itemtype = 'ULL'
then a log-normal(0,1) density is used to support the unipolar scaling- pars
a data.frame with the structure of how the starting values, parameter numbers, estimation logical values, etc, are defined. The user may observe how the model defines the values by using
pars = 'values'
, and this object can in turn be modified and input back into the estimation withpars = mymodifiedpars
- constrain
a list of user declared equality constraints. To see how to define the parameters correctly use
pars = 'values'
initially to see how the parameters are labeled. To constrain parameters to be equal create a list with separate concatenated vectors signifying which parameters to constrain. For example, to set parameters 1 and 5 equal, and also set parameters 2, 6, and 10 equal useconstrain = list(c(1,5), c(2,6,10))
. Constraints can also be specified using themirt.model
syntax (recommended)- calcNull
logical; calculate the Null model for additional fit statistics (e.g., TLI)? Only applicable if the data contains no NA's and the data is not overly sparse
- draws
the number of Monte Carlo draws to estimate the log-likelihood for the MH-RM algorithm. Default is 5000
- survey.weights
a optional numeric vector of survey weights to apply for each case in the data (EM estimation only). If not specified, all cases are weighted equally (the standard IRT approach). The sum of the
survey.weights
must equal the total sample size for proper weighting to be applied- quadpts
number of quadrature points per dimension (must be larger than 2). By default the number of quadrature uses the following scheme:
switch(as.character(nfact), '1'=61, '2'=31, '3'=15, '4'=9, '5'=7, 3)
. However, if the method input is set to'QMCEM'
and this argument is left blank then the default number of quasi-Monte Carlo integration nodes will be set to 5000 in total- TOL
convergence threshold for EM or MH-RM; defaults are .0001 and .001. If
SE.type = 'SEM'
and this value is not specified, the default is set to1e-5
. To evaluate the model using only the starting values passTOL = NaN
, and to evaluate the starting values without the log-likelihood passTOL = NA
- gpcm_mats
a list of matrices specifying how the scoring coefficients in the (generalized) partial credit model should be constructed. If omitted, the standard gpcm format will be used (i.e.,
seq(0, k, by = 1)
for each trait). This input should be used if traits should be scored different for each category (e.g.,matrix(c(0:3, 1,0,0,0), 4, 2)
for a two-dimensional model where the first trait is scored like a gpcm, but the second trait is only positively indicated when the first category is selected). Can be used whenitemtype
s are'gpcm'
or'Rasch'
, but only when the respective element ingpcm_mats
is notNULL
- grsm.block
an optional numeric vector indicating where the blocking should occur when using the grsm, NA represents items that do not belong to the grsm block (other items that may be estimated in the test data). For example, to specify two blocks of 3 with a 2PL item for the last item:
grsm.block = c(rep(1,3), rep(2,3), NA)
. If NULL the all items are assumed to be within the same group and therefore have the same number of item categories- rsm.block
same as
grsm.block
, but for'rsm'
blocks- monopoly.k
a vector of values (or a single value to repeated for each item) which indicate the degree of the monotone polynomial fitted, where the monotone polynomial corresponds to
monopoly.k * 2 + 1
(e.g.,monopoly.k = 2
fits a 5th degree polynomial). Default ismonopoly.k = 1
, which fits a 3rd degree polynomial- key
a numeric vector of the response scoring key. Required when using nested logit item types, and must be the same length as the number of items used. Items that are not nested logit will ignore this vector, so use
NA
in item locations that are not applicable- large
a
logical
indicating whether unique response patterns should be obtained prior to performing the estimation so as to avoid repeating computations on identical patterns. The defaultTRUE
provides the correct degrees of freedom for the model since all unique patterns are tallied (typically only affects goodness of fit statistics such as G2, but also will influence nested model comparison methods such asanova(mod1, mod2)
), whileFALSE
will use the number of rows indata
as a placeholder for the total degrees of freedom. As such, model objects should only be compared if all flags were set toTRUE
or all were set toFALSE
Alternatively, if the collapse table of frequencies is desired for the purpose of saving computations (i.e., only computing the collapsed frequencies for the data onte-time) then a character vector can be passed with the arguement
large = 'return'
to return a list of all the desired table information used bymirt
. This list object can then be reused by passing it back into thelarge
argument to avoid re-tallying the data again (again, useful when the dataset are very large and computing the tabulated data is computationally burdensome). This strategy is shown below:- Compute organized data
e.g.,
internaldat <- mirt(Science, 1, large = 'return')
- Pass the organized data to all estimation functions
e.g.,
mod <- mirt(Science, 1, large = internaldat)
- GenRandomPars
logical; generate random starting values prior to optimization instead of using the fixed internal starting values?
- accelerate
a character vector indicating the type of acceleration to use. Default is
'Ramsay'
, but may also be'squarem'
for the SQUAREM procedure (specifically, the gSqS3 approach) described in Varadhan and Roldand (2008). To disable the acceleration, pass'none'
- verbose
logical; print observed- (EM) or complete-data (MHRM) log-likelihood after each iteration cycle? Default is TRUE
- solnp_args
a list of arguments to be passed to the
solnp::solnp()
function for equality constraints, inequality constraints, etc- nloptr_args
a list of arguments to be passed to the
nloptr::nloptr()
function for equality constraints, inequality constraints, etc- spline_args
a named list of lists containing information to be passed to the
bs
(default) andns
for each spline itemtype. Each element must refer to the name of the itemtype with the spline, while the internal list names refer to the arguments which are passed. For example, if item 2 were called 'read2', and item 5 were called 'read5', both of which were of itemtype 'spline' but item 5 should use thens
form, then a modified list for each input might be of the form:spline_args = list(read2 = list(degree = 4), read5 = list(fun = 'ns', knots = c(-2, 2)))
This code input changes the
bs()
splines function to have adegree = 4
input, while the second element changes to thens()
function with knots set ac(-2, 2)
- control
a list passed to the respective optimizers (i.e.,
optim()
,nlminb()
, etc). Additional arguments have been included for the'NR'
optimizer:'tol'
for the convergence tolerance in the M-step (default isTOL/1000
), while the default number of iterations for the Newton-Raphson optimizer is 50 (modified with the'maxit'
control input)- technical
a list containing lower level technical parameters for estimation. May be:
- NCYCLES
maximum number of EM or MH-RM cycles; defaults are 500 and 2000
- MAXQUAD
maximum number of quadratures, which you can increase if you have more than 4GB or RAM on your PC; default 20000
- theta_lim
range of integration grid for each dimension; default is
c(-6, 6)
. Note that whenitemtype = 'ULL'
a log-normal distribution is used and the range is change toc(.01, and 6^2)
, where the second term is the square of thetheta_lim
input instead- set.seed
seed number used during estimation. Default is 12345
- SEtol
standard error tolerance criteria for the S-EM and MHRM computation of the information matrix. Default is 1e-3
- symmetric
logical; force S-EM/Oakes information matrix estimates to be symmetric? Default is TRUE so that computation of standard errors are more stable. Setting this to FALSE can help to detect solutions that have not reached the ML estimate
- SEM_window
ratio of values used to define the S-EM window based on the observed likelihood differences across EM iterations. The default is
c(0, 1 - SEtol)
, which provides nearly the very full S-EM window (i.e., nearly all EM cycles used). To use the a smaller SEM window change the window to to something likec(.9, .999)
to start at a point farther into the EM history- warn
logical; include warning messages during estimation? Default is TRUE
- message
logical; include general messages during estimation? Default is TRUE
- customK
a numeric vector used to explicitly declare the number of response categories for each item. This should only be used when constructing mirt model for reasons other than parameter estimation (such as to obtain factor scores), and requires that the input data all have 0 as the lowest category. The format is the same as the
extract.mirt(mod, 'K')
slot in all converged models- customPriorFun
a custom function used to determine the normalized density for integration in the EM algorithm. Must be of the form
function(Theta, Etable){...}
, and return a numeric vector with the same length as number of rows inTheta
. TheEtable
input contains the aggregated table generated from the current E-step computations. For proper integration, the returned vector should sum to 1 (i.e., normalized). Note that if using theEtable
it will be NULL on the first call, therefore the prior will have to deal with this issue accordingly- zeroExtreme
logical; assign extreme response patterns a
survey.weight
of 0 (formally equivalent to removing these data vectors during estimation)? Whendentype = 'EHW'
, where Woods' extrapolation is utilized, this option may be required if the extrapolation causes expected densities to tend towards positive or negative infinity. The default isFALSE
- customTheta
a custom
Theta
grid, in matrix form, used for integration. If not defined, the grid is determined internally based on the number ofquadpts
- nconstrain
same specification as the
constrain
list argument, however imposes a negative equality constraint instead (e.g., \(a12 = -a21\), which is specified asnconstrain = list(c(12, 21))
). Note that each specification in the list must be of length 2, where the second element is taken to be -1 times the first element- delta
the deviation term used in numerical estimates when computing the ACOV matrix with the 'forward' or 'central' numerical approaches, as well as Oakes' method with the Richardson extrapolation. Default is 1e-5
- parallel
logical; use the parallel cluster defined by
mirtCluster
? Default is TRUE- storeEMhistory
logical; store the iteration history when using the EM algorithm? Default is FALSE. When TRUE, use
extract.mirt
to extract- internal_constraints
logical; include the internal constraints when using certain IRT models (e.g., 'grsm' itemtype). Disable this if you want to use special optimizers such as the solnp. Default is
TRUE
- gain
a vector of two values specifying the numerator and exponent values for the RM gain function \((val1 / cycle)^val2\). Default is
c(0.10, 0.75)
- BURNIN
number of burn in cycles (stage 1) in MH-RM; default is 150
- SEMCYCLES
number of SEM cycles (stage 2) in MH-RM; default is 100
- MHDRAWS
number of Metropolis-Hasting draws to use in the MH-RM at each iteration; default is 5
- MHcand
a vector of values used to tune the MH sampler. Larger values will cause the acceptance ratio to decrease. One value is required for each group in unconditional item factor analysis (
mixedmirt()
requires additional values for random effect). If null, these values are determined internally, attempting to tune the acceptance of the draws to be between .1 and .4- MHRM_SE_draws
number of fixed draws to use when
SE=TRUE
andSE.type = 'FMHRM'
and the maximum number of draws whenSE.type = 'MHRM'
. Default is 2000- MCEM_draws
a function used to determine the number of quadrature points to draw for the
'MCEM'
method. Must include one argument which indicates the iteration number of the EM cycle. Default isfunction(cycles) 500 + (cycles - 1)*2
, which starts the number of draws at 500 and increases by 2 after each full EM iteration- info_if_converged
logical; compute the information matrix when using the MH-RM algorithm only if the model converged within a suitable number of iterations? Default is
TRUE
- logLik_if_converged
logical; compute the observed log-likelihood when using the MH-RM algorithm only if the model converged within a suitable number of iterations? Default is
TRUE
- keep_vcov_PD
logical; attempt to keep the variance-covariance matrix of the latent traits positive definite during estimation in the EM algorithm? This generally improves the convergence properties when the traits are highly correlated. Default is
TRUE
- ...
additional arguments to be passed
Value
function returns an object of class SingleGroupClass
(SingleGroupClass-class)
Details
Models containing 'explanatory' person or item level predictors
can only be included by using the mixedmirt
function, though latent
regression models can be fit using the formula
input in this function.
Tests that form a two-tier or bi-factor structure should be estimated with the
bfactor
function, which uses a dimension reduction EM algorithm for
modeling item parcels. Multiple group analyses (useful for DIF and DTF testing) are
also available using the multipleGroup
function.
Confirmatory and Exploratory IRT
Specification of the confirmatory item factor analysis model follows many of
the rules in the structural equation modeling framework for confirmatory factor analysis. The
variances of the latent factors are automatically fixed to 1 to help
facilitate model identification. All parameters may be fixed to constant
values or set equal to other parameters using the appropriate declarations.
Confirmatory models may also contain 'explanatory' person or item level predictors, though
including predictors is currently limited to the mixedmirt
function.
When specifying a single number greater than 1 as the model
input to mirt
an exploratory IRT model will be estimated. Rotation and target matrix options are available
if they are passed to generic functions such as summary-method
and
fscores
. Factor means and variances are fixed to ensure proper identification.
If the model is an exploratory item factor analysis estimation will begin
by computing a matrix of quasi-polychoric correlations. A
factor analysis with nfact
is then extracted and item parameters are
estimated by \(a_{ij} = f_{ij}/u_j\), where \(f_{ij}\) is the factor
loading for the jth item on the ith factor, and \(u_j\) is
the square root of the factor uniqueness, \(\sqrt{1 - h_j^2}\). The
initial intercept parameters are determined by calculating the inverse
normal of the item facility (i.e., item easiness), \(q_j\), to obtain
\(d_j = q_j / u_j\). A similar implementation is also used for obtaining
initial values for polytomous items.
A note on upper and lower bound parameters
Internally the \(g\) and \(u\) parameters are transformed using a logit
transformation (\(log(x/(1-x))\)), and can be reversed by using \(1 / (1 + exp(-x))\)
following convergence. This also applies when computing confidence intervals for these
parameters, and is done so automatically if coef(mod, rawug = FALSE)
.
As such, when applying prior distributions to these parameters it is recommended to use a prior
that ranges from negative infinity to positive infinity, such as the normally distributed
prior via the 'norm'
input (see mirt.model
).
Convergence for quadrature methods
Unrestricted full-information factor analysis is known to have problems with convergence, and some items may need to be constrained or removed entirely to allow for an acceptable solution. As a general rule dichotomous items with means greater than .95, or items that are only .05 greater than the guessing parameter, should be considered for removal from the analysis or treated with prior parameter distributions. The same type of reasoning is applicable when including upper bound parameters as well. For polytomous items, if categories are rarely endorsed then this will cause similar issues. Also, increasing the number of quadrature points per dimension, or using the quasi-Monte Carlo integration method, may help to stabilize the estimation process in higher dimensions. Finally, solutions that are not well defined also will have difficulty converging, and can indicate that the model has been misspecified (e.g., extracting too many dimensions).
Convergence for MH-RM method
For the MH-RM algorithm, when the number of iterations grows very high (e.g., greater than 1500)
or when Max Change = .2500
values are repeatedly printed
to the console too often (indicating that the parameters were being constrained since they are
naturally moving in steps greater than 0.25) then the model may either be ill defined or have a
very flat likelihood surface, and genuine maximum-likelihood parameter estimates may be difficult
to find. Standard errors are computed following the model convergence by passing
SE = TRUE
, to perform an addition MH-RM stage but treating the maximum-likelihood
estimates as fixed points.
Additional helper functions
Additional functions are available in the package which can be useful pre- and post-estimation. These are:
mirt.model
Define the IRT model specification use special syntax. Useful for defining between and within group parameter constraints, prior parameter distributions, and specifying the slope coefficients for each factor
coef-method
Extract raw coefficients from the model, along with their standard errors and confidence intervals
summary-method
Extract standardized loadings from model. Accepts a
rotate
argument for exploratory item response modelanova-method
Compare nested models using likelihood ratio statistics as well as information criteria such as the AIC and BIC
residuals-method
Compute pairwise residuals between each item using methods such as the LD statistic (Chen & Thissen, 1997), as well as response pattern residuals
plot-method
Plot various types of test level plots including the test score and information functions and more
itemplot
Plot various types of item level plots, including the score, standard error, and information functions, and more
createItem
Create a customized
itemtype
that does not currently exist in the packageimputeMissing
Impute missing data given some computed Theta matrix
fscores
Find predicted scores for the latent traits using estimation methods such as EAP, MAP, ML, WLE, and EAPsum
wald
Compute Wald statistics follow the convergence of a model with a suitable information matrix
M2
Limited information goodness of fit test statistic based to determine how well the model fits the data
itemfit
andpersonfit
Goodness of fit statistics at the item and person levels, such as the S-X2, infit, outfit, and more
boot.mirt
Compute estimated parameter confidence intervals via the bootstrap methods
mirtCluster
Define a cluster for the package functions to use for capitalizing on multi-core architecture to utilize available CPUs when possible. Will help to decrease estimation times for tasks that can be run in parallel
IRT Models
The parameter labels use the follow convention, here using two factors and \(K\) as the total number of categories (using \(k\) for specific category instances).
- Rasch
Only one intercept estimated, and the latent variance of \(\theta\) is freely estimated. If the data have more than two categories then a partial credit model is used instead (see 'gpcm' below). $$P(x = 1|\theta, d) = \frac{1}{1 + exp(-(\theta + d))}$$
- 1-4PL
Depending on the model \(u\) may be equal to 1 (e.g., 3PL), \(g\) may be equal to 0 (e.g., 2PL), or the
a
s may be fixed to 1 (e.g., 1PL). $$P(x = 1|\theta, \psi) = g + \frac{(u - g)}{ 1 + exp(-(a_1 * \theta_1 + a_2 * \theta_2 + d))}$$- 5PL
Currently restricted to unidimensional models $$P(x = 1|\theta, \psi) = g + \frac{(u - g)}{ 1 + exp(-(a_1 * \theta_1 + d))^S}$$ where \(S\) allows for asymmetry in the response function and is transformation constrained to be greater than 0 (i.e.,
log(S)
is estimated rather thanS
)- CLL
Complementary log-log model (see Shim, Bonifay, and Wiedermann, 2022) $$P(x = 1|\theta, b) = 1 - exp(-exp(\theta - b))$$ Currently restricted to unidimensional dichotomous data.
- graded
The graded model consists of sequential 2PL models, $$P(x = k | \theta, \psi) = P(x \ge k | \theta, \phi) - P(x \ge k + 1 | \theta, \phi)$$ Note that \(P(x \ge 1 | \theta, \phi) = 1\) while \(P(x \ge K + 1 | \theta, \phi) = 0\)
- ULL
The unipolar log-logistic model (ULL; Lucke, 2015) is defined the same as the graded response model, however $$P(x \le k | \theta, \psi) = \frac{\lambda_k\theta^\eta}{1 + \lambda_k\theta^\eta}$$. Internally the \(\lambda\) parameters are exponentiated to keep them positive, and should therefore the reported estimates should be interpreted in log units
- grsm
A more constrained version of the graded model where graded spacing is equal across item blocks and only adjusted by a single 'difficulty' parameter (c) while the latent variance of \(\theta\) is freely estimated (see Muraki, 1990 for this exact form). This is restricted to unidimensional models only.
- gpcm/nominal
For the gpcm the \(d\) values are treated as fixed and ordered values from \(0:(K-1)\) (in the nominal model \(d_0\) is also set to 0). Additionally, for identification in the nominal model \(ak_0 = 0\), \(ak_{(K-1)} = (K - 1)\). $$P(x = k | \theta, \psi) = \frac{exp(ak_{k-1} * (a_1 * \theta_1 + a_2 * \theta_2) + d_{k-1})} {\sum_{k=1}^K exp(ak_{k-1} * (a_1 * \theta_1 + a_2 * \theta_2) + d_{k-1})}$$
For the partial credit model (when
itemtype = 'Rasch'
; unidimensional only) the above model is further constrained so that \(ak = (0,1,\ldots, K-1)\), \(a_1 = 1\), and the latent variance of \(\theta_1\) is freely estimated. Alternatively, the partial credit model can be obtained by containing all the slope parameters in the gpcms to be equal. More specific scoring function may be included by passing a suitable list or matrices to thegpcm_mats
input argument.In the nominal model this parametrization helps to identify the empirical ordering of the categories by inspecting the \(ak\) values. Larger values indicate that the item category is more positively related to the latent trait(s) being measured. For instance, if an item was truly ordinal (such as a Likert scale), and had 4 response categories, we would expect to see \(ak_0 < ak_1 < ak_2 < ak_3\) following estimation. If on the other hand \(ak_0 > ak_1\) then it would appear that the second category is less related to to the trait than the first, and therefore the second category should be understood as the 'lowest score'.
NOTE: The nominal model can become numerical unstable if poor choices for the high and low values are chosen, resulting in
ak
values greater thanabs(10)
or more. It is recommended to choose high and low anchors that cause the estimated parameters to fall between 0 and \(K - 1\) either by theoretical means or by re-estimating the model with better values following convergence.- gpcmIRT and rsm
The gpcmIRT model is the classical generalized partial credit model for unidimensional response data. It will obtain the same fit as the
gpcm
presented above, however the parameterization allows for the Rasch/generalized rating scale model as a special case.E.g., for a K = 4 category response model,
$$P(x = 0 | \theta, \psi) = exp(0) / G$$ $$P(x = 1 | \theta, \psi) = exp(a(\theta - b1) + c) / G$$ $$P(x = 2 | \theta, \psi) = exp(a(2\theta - b1 - b2) + 2c) / G$$ $$P(x = 3 | \theta, \psi) = exp(a(3\theta - b1 - b2 - b3) + 3c) / G$$ where $$G = exp(0) + exp(a(\theta - b1) + c) + exp(a(2\theta - b1 - b2) + 2c) + exp(a(3\theta - b1 - b2 - b3) + 3c)$$ Here \(a\) is the slope parameter, the \(b\) parameters are the threshold values for each adjacent category, and \(c\) is the so-called difficulty parameter when a rating scale model is fitted (otherwise, \(c = 0\) and it drops out of the computations).
The gpcmIRT can be constrained to the partial credit IRT model by either constraining all the slopes to be equal, or setting the slopes to 1 and freeing the latent variance parameter.
Finally, the rsm is a more constrained version of the (generalized) partial credit model where the spacing is equal across item blocks and only adjusted by a single 'difficulty' parameter (c). Note that this is analogous to the relationship between the graded model and the grsm (with an additional constraint regarding the fixed discrimination parameters).
- sequential/Tutz
The multidimensional sequential response model has the form $$P(x = k | \theta, \psi) = \prod (1 - F(a_1 \theta_1 + a_2 \theta_2 + d_{sk})) F(a_1 \theta_1 + a_2 \theta_2 + d_{jk})$$ where \(F(\cdot)\) is the cumulative logistic function. The Tutz variant of this model (Tutz, 1990) (via
itemtype = 'Tutz'
) assumes that the slope terms are all equal to 1 and the latent variance terms are estimated (i.e., is a Rasch variant).- ideal
The ideal point model has the form, with the upper bound constraint on \(d\) set to 0: $$P(x = 1 | \theta, \psi) = exp(-0.5 * (a_1 * \theta_1 + a_2 * \theta_2 + d)^2)$$
- partcomp
Partially compensatory models consist of the product of 2PL probability curves. $$P(x = 1 | \theta, \psi) = g + (1 - g) (\frac{1}{1 + exp(-(a_1 * \theta_1 + d_1))}^c_1 * \frac{1}{1 + exp(-(a_2 * \theta_2 + d_2))}^c_2)$$
where \(c_1\) and \(c_2\) are binary indicator variables reflecting whether the item should include the select compensatory component (1) or not (0). Note that constraining the slopes to be equal across items will reduce the model to Embretson's (Whitely's) multicomponent model (1980).
- 2-4PLNRM
Nested logistic curves for modeling distractor items. Requires a scoring key. The model is broken into two components for the probability of endorsement. For successful endorsement the probability trace is the 1-4PL model, while for unsuccessful endorsement: $$P(x = 0 | \theta, \psi) = (1 - P_{1-4PL}(x = 1 | \theta, \psi)) * P_{nominal}(x = k | \theta, \psi)$$ which is the product of the complement of the dichotomous trace line with the nominal response model. In the nominal model, the slope parameters defined above are constrained to be 1's, while the last value of the \(ak\) is freely estimated.
- ggum
The (multidimensional) generalized graded unfolding model is a class of ideal point models useful for ordinal response data. The form is $$P(z=k|\theta,\psi)=\frac{exp\left[\left(z\sqrt{\sum_{d=1}^{D} a_{id}^{2}(\theta_{jd}-b_{id})^{2}}\right)+\sum_{k=0}^{z}\psi_{ik}\right]+ exp\left[\left((M-z)\sqrt{\sum_{d=1}^{D}a_{id}^{2}(\theta_{jd}-b_{id})^{2}}\right)+ \sum_{k=0}^{z}\psi_{ik}\right]}{\sum_{w=0}^{C}\left(exp\left[\left(w \sqrt{\sum_{d=1}^{D}a_{id}^{2}(\theta_{jd}-b_{id})^{2}}\right)+ \sum_{k=0}^{z}\psi_{ik}\right]+exp\left[\left((M-w) \sqrt{\sum_{d=1}^{D}a_{id}^{2}(\theta_{jd}-b_{id})^{2}}\right)+ \sum_{k=0}^{z}\psi_{ik}\right]\right)}$$ where \(\theta_{jd}\) is the location of the \(j\)th individual on the \(d\)th dimension, \(b_{id}\) is the difficulty location of the \(i\)th item on the \(d\)th dimension, \(a_{id}\) is the discrimination of the \(j\)th individual on the \(d\)th dimension (where the discrimination values are constrained to be positive), \(\psi_{ik}\) is the \(k\)th subjective response category threshold for the \(i\)th item, assumed to be symmetric about the item and constant across dimensions, where \(\psi_{ik} = \sum_{d=1}^D a_{id} t_{ik}\) \(z = 1,2,\ldots, C\) (where \(C\) is the number of categories minus 1), and \(M = 2C + 1\).
- (g)hcm, (g)alm, (g)sslm, and (g)paralla
Following Luo (2001), this family of response models can be characterized under the same ordinal response functioning structure, differing only in their linking functions (\(\psi(x)\)). For example, for a two-dimensional model the equation used is $$p_k = \frac{\psi (\rho_k)}{\psi (\rho_k) + \psi (a_1 \theta_1 + a_2 \theta_2 + d)} $$ which is expressed in slope-intercept form to accommodate multidimensionality. The "generalized" versions of this family estimate the slope and
rho
parameters, which allow each item to differ in the steepness of the unfolding model functions; otherwise, slopes are fixed to the value of 1, though therho
parameters must be set to 0 manually. For ordered polytomous items the response function follows the Guttman-scaling logic $$P_1 = q_1\cdot q_2 \cdot q_3 \cdots q_k$$ $$P_2 = p_1\cdot q_2 \cdot q_3 \cdots q_k$$ $$P_3 = p_1\cdot p_2 \cdot q_3 \cdots q_k$$ $$\cdots$$ $$P_K = p_1\cdot p_2 \cdot p_3 \cdots p_k$$ Note that for estimation purposes therho
parameters are expressed in log units so that they remain positive during estimation. Hence, the parameterization used herein is $$p_k = \frac{\psi (exp(\rho^*_k))}{\psi (exp(\rho^*_k))) + \psi (a_1 \theta_1 + a_2 \theta_2 + d)} $$ where \(\rho^*_k\) is in natural log units. Currently supported models in this family are the:(generalized) hyperbolic cosine model (\(\psi (x) = cosh(x)\)),
(generalized) absolute logistic model (\(\psi (x) = exp(|x|)\)),
(generalized) simple squared logistic model (\(\psi (x) = exp(x^2)\)), and
(generalized) parallellogram analysis model (\(\psi (x) = x^2\)), respectively.
all of which are available for dichotomous and ordered polytomous response option items.
- spline
Spline response models attempt to model the response curves uses non-linear and potentially non-monotonic patterns. The form is $$P(x = 1|\theta, \eta) = \frac{1}{1 + exp(-(\eta_1 * X_1 + \eta_2 * X_2 + \cdots + \eta_n * X_n))}$$ where the \(X_n\) are from the spline design matrix \(X\) organized from the grid of \(\theta\) values. B-splines with a natural or polynomial basis are supported, and the
intercept
input is set toTRUE
by default.- monopoly
Monotone polynomial model for polytomous response data of the form $$P(x = k | \theta, \psi) = \frac{exp(\sum_1^k (m^*(\psi) + \xi_{c-1})} {\sum_1^C exp(\sum_1^K (m^*(\psi) + \xi_{c-1}))}$$ where \(m^*(\psi)\) is the monotone polynomial function without the intercept.
HTML help files, exercises, and examples
To access examples, vignettes, and exercise files that have been generated with knitr please visit https://github.com/philchalmers/mirt/wiki.
References
Andrich, D. (1978). A rating scale formulation for ordered response categories. Psychometrika, 43, 561-573.
Andrich, D. (1996). Hyperbolic cosine latent trait models for unfolding direct-responses and pairwise preferences. Applied Psychological Measurement, 20, 269-290.
Andrich, D., and Luo, G. (1993). A hyperbolic cosine latent trait model for unfolding dichotomous single- stimulus responses. Applied Psychological Measurement, 17, 253-276.
Andrich, D. (1988). The application of an unfolding model of the PIRT type to the measurement of attitude. Applied Psychological Measurement, 12, 33-51.
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46(4), 443-459.
Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full-Information Item Factor Analysis. Applied Psychological Measurement, 12(3), 261-280.
Bock, R. D. & Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psychometrika, 35, 179-197.
Cai, L. (2010a). High-Dimensional exploratory item factor analysis by a Metropolis-Hastings Robbins-Monro algorithm. Psychometrika, 75, 33-57.
Cai, L. (2010b). Metropolis-Hastings Robbins-Monro algorithm for confirmatory item factor analysis. Journal of Educational and Behavioral Statistics, 35, 307-335.
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Chalmers, R. P. (2015). Extended Mixed-Effects Item Response Models with the MH-RM Algorithm. Journal of Educational Measurement, 52, 200-222. doi:10.1111/jedm.12072
Chalmers, R. P. (2018). Numerical Approximation of the Observed Information Matrix with Oakes' Identity. British Journal of Mathematical and Statistical Psychology DOI: 10.1111/bmsp.12127
Chalmers, R., P. & Flora, D. (2014). Maximum-likelihood Estimation of Noncompensatory IRT Models with the MH-RM Algorithm. Applied Psychological Measurement, 38, 339-358. doi:10.1177/0146621614520958
Chen, W. H. & Thissen, D. (1997). Local dependence indices for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22, 265-289.
Embretson, S. E. (1984). A general latent trait model for response processes. Psychometrika, 49, 175-186.
Falk, C. F. & Cai, L. (2016). Maximum Marginal Likelihood Estimation of a Monotonic Polynomial Generalized Partial Credit Model with Applications to Multiple Group Analysis. Psychometrika, 81, 434-460.
Fischer, G. H. (1983). Logistic latent trait models with linear constraints. Psychometrika, 48, 3-26.
Hoijtink H. (1990). PARELLA: Measurement of latent traits by proximity items. The Netherlands: University of Groningen.
Lord, F. M. & Novick, M. R. (1968). Statistical theory of mental test scores. Addison-Wesley.
Lucke, J. F. (2015). Unipolar item response models. In S. P. Reise & D. A. Revicki (Eds.), Handbook of item response theory modeling: Applications to typical performance assessment (pp. 272-284). New York, NY: Routledge/Taylor & Francis Group.
Luo G. (2001). A class of probabilistic unfolding models for polytomous responses. Journal of Mathematical
Psychology. 45(2):224-248. 10.1006/jmps.2000.1310
Luo G, and Andrich D. (2005). Information functions for the general dichotomous unfolding model. In: Alagumalai S,
Curtis D.D., & Hungi N., editor. Applied Rasch Measurement: A Book of Exemplars: Dordrecht, The
Netherlands: Springer
.
Maydeu-Olivares, A., Hernandez, A. & McDonald, R. P. (2006). A Multidimensional Ideal Point Item Response Theory Model for Binary Data. Multivariate Behavioral Research, 41, 445-471.
Muraki, E. (1990). Fitting a polytomous item response model to Likert-type data. Applied Psychological Measurement, 14, 59-71.
Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16, 159-176.
Muraki, E. & Carlson, E. B. (1995). Full-information factor analysis for polytomous item responses. Applied Psychological Measurement, 19, 73-90.
Ramsay, J. O. (1975). Solving implicit equations in psychometric data analysis. Psychometrika, 40, 337-360.
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Danish Institute for Educational Research.
Roberts, J. S., Donoghue, J. R., & Laughlin, J. E. (2000). A General Item Response Theory Model for Unfolding Unidimensional Polytomous Responses. Applied Psychological Measurement, 24, 3-32.
Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monographs, 34.
Shim, H., Bonifay, W., & Wiedermann, W. (2022). Parsimonious asymmetric item response theory modeling with the complementary log-log link. Behavior Research Methods, 55, 200-219.
Suh, Y. & Bolt, D. (2010). Nested logit models for multiple-choice item response data. Psychometrika, 75, 454-473.
Sympson, J. B. (1977). A model for testing with multidimensional items. Proceedings of the 1977 Computerized Adaptive Testing Conference.
Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model. Psychometrika, 47, 175-186.
Tutz, G. (1990). Sequential item response models with ordered response. British Journal of Mathematical and Statistical Psychology, 43, 39-55.
Varadhan, R. & Roland, C. (2008). Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM Algorithm. Scandinavian Journal of Statistics, 35, 335-353.
Whitely, S. E. (1980). Multicomponent latent trait models for ability tests. Psychometrika, 45(4), 470-494.
Wood, R., Wilson, D. T., Gibbons, R. D., Schilling, S. G., Muraki, E., & Bock, R. D. (2003). TESTFACT 4 for Windows: Test Scoring, Item Statistics, and Full-information Item Factor Analysis [Computer software]. Lincolnwood, IL: Scientific Software International.
Woods, C. M., and Lin, N. (2009). Item Response Theory With Estimation of the Latent Density Using Davidian Curves. Applied Psychological Measurement,33(2), 102-117.
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
# load LSAT section 7 data and compute 1 and 2 factor models
data <- expand.table(LSAT7)
itemstats(data)
#> $overall
#> N mean_total.score sd_total.score ave.r sd.r alpha SEM.alpha
#> 1000 3.707 1.199 0.143 0.052 0.453 0.886
#>
#> $itemstats
#> N mean sd total.r total.r_if_rm alpha_if_rm
#> Item.1 1000 0.828 0.378 0.530 0.246 0.396
#> Item.2 1000 0.658 0.475 0.600 0.247 0.394
#> Item.3 1000 0.772 0.420 0.611 0.313 0.345
#> Item.4 1000 0.606 0.489 0.592 0.223 0.415
#> Item.5 1000 0.843 0.364 0.461 0.175 0.438
#>
#> $proportions
#> 0 1
#> Item.1 0.172 0.828
#> Item.2 0.342 0.658
#> Item.3 0.228 0.772
#> Item.4 0.394 0.606
#> Item.5 0.157 0.843
#>
(mod1 <- mirt(data, 1))
#>
Iteration: 1, Log-Lik: -2668.786, Max-Change: 0.18243
Iteration: 2, Log-Lik: -2663.691, Max-Change: 0.13637
Iteration: 3, Log-Lik: -2661.454, Max-Change: 0.10231
Iteration: 4, Log-Lik: -2659.430, Max-Change: 0.04181
Iteration: 5, Log-Lik: -2659.241, Max-Change: 0.03417
Iteration: 6, Log-Lik: -2659.113, Max-Change: 0.02911
Iteration: 7, Log-Lik: -2658.812, Max-Change: 0.00456
Iteration: 8, Log-Lik: -2658.809, Max-Change: 0.00363
Iteration: 9, Log-Lik: -2658.808, Max-Change: 0.00273
Iteration: 10, Log-Lik: -2658.806, Max-Change: 0.00144
Iteration: 11, Log-Lik: -2658.806, Max-Change: 0.00118
Iteration: 12, Log-Lik: -2658.806, Max-Change: 0.00101
Iteration: 13, Log-Lik: -2658.805, Max-Change: 0.00042
Iteration: 14, Log-Lik: -2658.805, Max-Change: 0.00025
Iteration: 15, Log-Lik: -2658.805, Max-Change: 0.00026
Iteration: 16, Log-Lik: -2658.805, Max-Change: 0.00023
Iteration: 17, Log-Lik: -2658.805, Max-Change: 0.00023
Iteration: 18, Log-Lik: -2658.805, Max-Change: 0.00021
Iteration: 19, Log-Lik: -2658.805, Max-Change: 0.00019
Iteration: 20, Log-Lik: -2658.805, Max-Change: 0.00017
Iteration: 21, Log-Lik: -2658.805, Max-Change: 0.00017
Iteration: 22, Log-Lik: -2658.805, Max-Change: 0.00015
Iteration: 23, Log-Lik: -2658.805, Max-Change: 0.00015
Iteration: 24, Log-Lik: -2658.805, Max-Change: 0.00013
Iteration: 25, Log-Lik: -2658.805, Max-Change: 0.00013
Iteration: 26, Log-Lik: -2658.805, Max-Change: 0.00011
Iteration: 27, Log-Lik: -2658.805, Max-Change: 0.00011
Iteration: 28, Log-Lik: -2658.805, Max-Change: 0.00010
#>
#> Call:
#> mirt(data = data, model = 1)
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 28 EM iterations.
#> mirt version: 1.44.3
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -2658.805
#> Estimated parameters: 10
#> AIC = 5337.61
#> BIC = 5386.688; SABIC = 5354.927
#> G2 (21) = 31.7, p = 0.0628
#> RMSEA = 0.023, CFI = NaN, TLI = NaN
coef(mod1)
#> $Item.1
#> a1 d g u
#> par 0.988 1.856 0 1
#>
#> $Item.2
#> a1 d g u
#> par 1.081 0.808 0 1
#>
#> $Item.3
#> a1 d g u
#> par 1.706 1.804 0 1
#>
#> $Item.4
#> a1 d g u
#> par 0.765 0.486 0 1
#>
#> $Item.5
#> a1 d g u
#> par 0.736 1.855 0 1
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#>
summary(mod1)
#> F1 h2
#> Item.1 0.502 0.252
#> Item.2 0.536 0.287
#> Item.3 0.708 0.501
#> Item.4 0.410 0.168
#> Item.5 0.397 0.157
#>
#> SS loadings: 1.366
#> Proportion Var: 0.273
#>
#> Factor correlations:
#>
#> F1
#> F1 1
plot(mod1)
plot(mod1, type = 'trace')
# \donttest{
(mod2 <- mirt(data, 1, SE = TRUE)) #standard errors via the Oakes method
#>
Iteration: 1, Log-Lik: -2668.786, Max-Change: 0.18243
Iteration: 2, Log-Lik: -2663.691, Max-Change: 0.13637
Iteration: 3, Log-Lik: -2661.454, Max-Change: 0.10231
Iteration: 4, Log-Lik: -2659.430, Max-Change: 0.04181
Iteration: 5, Log-Lik: -2659.241, Max-Change: 0.03417
Iteration: 6, Log-Lik: -2659.113, Max-Change: 0.02911
Iteration: 7, Log-Lik: -2658.812, Max-Change: 0.00456
Iteration: 8, Log-Lik: -2658.809, Max-Change: 0.00363
Iteration: 9, Log-Lik: -2658.808, Max-Change: 0.00273
Iteration: 10, Log-Lik: -2658.806, Max-Change: 0.00144
Iteration: 11, Log-Lik: -2658.806, Max-Change: 0.00118
Iteration: 12, Log-Lik: -2658.806, Max-Change: 0.00101
Iteration: 13, Log-Lik: -2658.805, Max-Change: 0.00042
Iteration: 14, Log-Lik: -2658.805, Max-Change: 0.00025
Iteration: 15, Log-Lik: -2658.805, Max-Change: 0.00026
Iteration: 16, Log-Lik: -2658.805, Max-Change: 0.00023
Iteration: 17, Log-Lik: -2658.805, Max-Change: 0.00023
Iteration: 18, Log-Lik: -2658.805, Max-Change: 0.00021
Iteration: 19, Log-Lik: -2658.805, Max-Change: 0.00019
Iteration: 20, Log-Lik: -2658.805, Max-Change: 0.00017
Iteration: 21, Log-Lik: -2658.805, Max-Change: 0.00017
Iteration: 22, Log-Lik: -2658.805, Max-Change: 0.00015
Iteration: 23, Log-Lik: -2658.805, Max-Change: 0.00015
Iteration: 24, Log-Lik: -2658.805, Max-Change: 0.00013
Iteration: 25, Log-Lik: -2658.805, Max-Change: 0.00013
Iteration: 26, Log-Lik: -2658.805, Max-Change: 0.00011
Iteration: 27, Log-Lik: -2658.805, Max-Change: 0.00011
Iteration: 28, Log-Lik: -2658.805, Max-Change: 0.00010
#>
#> Calculating information matrix...
#>
#> Call:
#> mirt(data = data, model = 1, SE = TRUE)
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 28 EM iterations.
#> mirt version: 1.44.3
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Information matrix estimated with method: Oakes
#> Second-order test: model is a possible local maximum
#> Condition number of information matrix = 30.23088
#>
#> Log-likelihood = -2658.805
#> Estimated parameters: 10
#> AIC = 5337.61
#> BIC = 5386.688; SABIC = 5354.927
#> G2 (21) = 31.7, p = 0.0628
#> RMSEA = 0.023, CFI = NaN, TLI = NaN
(mod2 <- mirt(data, 1, SE = TRUE, SE.type = 'SEM')) #standard errors with SEM method
#>
Iteration: 1, Log-Lik: -2668.786, Max-Change: 0.18243
Iteration: 2, Log-Lik: -2663.691, Max-Change: 0.13637
Iteration: 3, Log-Lik: -2661.454, Max-Change: 0.10231
Iteration: 4, Log-Lik: -2660.367, Max-Change: 0.07790
Iteration: 5, Log-Lik: -2659.792, Max-Change: 0.06078
Iteration: 6, Log-Lik: -2659.461, Max-Change: 0.04772
Iteration: 7, Log-Lik: -2659.253, Max-Change: 0.03901
Iteration: 8, Log-Lik: -2659.116, Max-Change: 0.03157
Iteration: 9, Log-Lik: -2659.025, Max-Change: 0.02660
Iteration: 10, Log-Lik: -2658.960, Max-Change: 0.02198
Iteration: 11, Log-Lik: -2658.916, Max-Change: 0.01850
Iteration: 12, Log-Lik: -2658.885, Max-Change: 0.01570
Iteration: 13, Log-Lik: -2658.863, Max-Change: 0.01339
Iteration: 14, Log-Lik: -2658.847, Max-Change: 0.01200
Iteration: 15, Log-Lik: -2658.835, Max-Change: 0.00987
Iteration: 16, Log-Lik: -2658.827, Max-Change: 0.00854
Iteration: 17, Log-Lik: -2658.821, Max-Change: 0.00667
Iteration: 18, Log-Lik: -2658.817, Max-Change: 0.00586
Iteration: 19, Log-Lik: -2658.814, Max-Change: 0.00509
Iteration: 20, Log-Lik: -2658.812, Max-Change: 0.00442
Iteration: 21, Log-Lik: -2658.810, Max-Change: 0.00348
Iteration: 22, Log-Lik: -2658.809, Max-Change: 0.00322
Iteration: 23, Log-Lik: -2658.808, Max-Change: 0.00256
Iteration: 24, Log-Lik: -2658.807, Max-Change: 0.00252
Iteration: 25, Log-Lik: -2658.807, Max-Change: 0.00199
Iteration: 26, Log-Lik: -2658.807, Max-Change: 0.00197
Iteration: 27, Log-Lik: -2658.806, Max-Change: 0.00157
Iteration: 28, Log-Lik: -2658.806, Max-Change: 0.00145
Iteration: 29, Log-Lik: -2658.806, Max-Change: 0.00128
Iteration: 30, Log-Lik: -2658.806, Max-Change: 0.00116
Iteration: 31, Log-Lik: -2658.806, Max-Change: 0.00099
Iteration: 32, Log-Lik: -2658.805, Max-Change: 0.00043
Iteration: 33, Log-Lik: -2658.805, Max-Change: 0.00039
Iteration: 34, Log-Lik: -2658.805, Max-Change: 0.00038
Iteration: 35, Log-Lik: -2658.805, Max-Change: 0.00035
Iteration: 36, Log-Lik: -2658.805, Max-Change: 0.00034
Iteration: 37, Log-Lik: -2658.805, Max-Change: 0.00032
Iteration: 38, Log-Lik: -2658.805, Max-Change: 0.00030
Iteration: 39, Log-Lik: -2658.805, Max-Change: 0.00142
Iteration: 40, Log-Lik: -2658.805, Max-Change: 0.00021
Iteration: 41, Log-Lik: -2658.805, Max-Change: 0.00097
Iteration: 42, Log-Lik: -2658.805, Max-Change: 0.00015
Iteration: 43, Log-Lik: -2658.805, Max-Change: 0.00013
Iteration: 44, Log-Lik: -2658.805, Max-Change: 0.00013
Iteration: 45, Log-Lik: -2658.805, Max-Change: 0.00012
Iteration: 46, Log-Lik: -2658.805, Max-Change: 0.00011
Iteration: 47, Log-Lik: -2658.805, Max-Change: 0.00010
Iteration: 48, Log-Lik: -2658.805, Max-Change: 0.00010
Iteration: 49, Log-Lik: -2658.805, Max-Change: 0.00046
Iteration: 50, Log-Lik: -2658.805, Max-Change: 0.00007
Iteration: 51, Log-Lik: -2658.805, Max-Change: 0.00006
Iteration: 52, Log-Lik: -2658.805, Max-Change: 0.00006
Iteration: 53, Log-Lik: -2658.805, Max-Change: 0.00006
Iteration: 54, Log-Lik: -2658.805, Max-Change: 0.00005
Iteration: 55, Log-Lik: -2658.805, Max-Change: 0.00005
Iteration: 56, Log-Lik: -2658.805, Max-Change: 0.00005
Iteration: 57, Log-Lik: -2658.805, Max-Change: 0.00022
Iteration: 58, Log-Lik: -2658.805, Max-Change: 0.00004
Iteration: 59, Log-Lik: -2658.805, Max-Change: 0.00003
Iteration: 60, Log-Lik: -2658.805, Max-Change: 0.00003
Iteration: 61, Log-Lik: -2658.805, Max-Change: 0.00003
Iteration: 62, Log-Lik: -2658.805, Max-Change: 0.00003
Iteration: 63, Log-Lik: -2658.805, Max-Change: 0.00002
Iteration: 64, Log-Lik: -2658.805, Max-Change: 0.00002
Iteration: 65, Log-Lik: -2658.805, Max-Change: 0.00002
Iteration: 66, Log-Lik: -2658.805, Max-Change: 0.00002
Iteration: 67, Log-Lik: -2658.805, Max-Change: 0.00010
Iteration: 68, Log-Lik: -2658.805, Max-Change: 0.00001
Iteration: 69, Log-Lik: -2658.805, Max-Change: 0.00001
Iteration: 70, Log-Lik: -2658.805, Max-Change: 0.00001
Iteration: 71, Log-Lik: -2658.805, Max-Change: 0.00001
Iteration: 72, Log-Lik: -2658.805, Max-Change: 0.00001
Iteration: 73, Log-Lik: -2658.805, Max-Change: 0.00001
Iteration: 74, Log-Lik: -2658.805, Max-Change: 0.00001
#>
#> Calculating information matrix...
#>
#> Call:
#> mirt(data = data, model = 1, SE = TRUE, SE.type = "SEM")
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-05 tolerance after 74 EM iterations.
#> mirt version: 1.44.3
#> M-step optimizer: BFGS
#> EM acceleration: none
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Information matrix estimated with method: SEM
#> Second-order test: model is a possible local maximum
#> Condition number of information matrix = 30.12751
#>
#> Log-likelihood = -2658.805
#> Estimated parameters: 10
#> AIC = 5337.61
#> BIC = 5386.688; SABIC = 5354.927
#> G2 (21) = 31.7, p = 0.0628
#> RMSEA = 0.023, CFI = NaN, TLI = NaN
coef(mod2)
#> $Item.1
#> a1 d g u
#> par 0.988 1.856 0 1
#> CI_2.5 0.639 1.599 NA NA
#> CI_97.5 1.336 2.112 NA NA
#>
#> $Item.2
#> a1 d g u
#> par 1.081 0.808 0 1
#> CI_2.5 0.755 0.629 NA NA
#> CI_97.5 1.407 0.987 NA NA
#>
#> $Item.3
#> a1 d g u
#> par 1.707 1.805 0 1
#> CI_2.5 1.086 1.395 NA NA
#> CI_97.5 2.329 2.215 NA NA
#>
#> $Item.4
#> a1 d g u
#> par 0.765 0.486 0 1
#> CI_2.5 0.500 0.339 NA NA
#> CI_97.5 1.030 0.633 NA NA
#>
#> $Item.5
#> a1 d g u
#> par 0.736 1.854 0 1
#> CI_2.5 0.437 1.630 NA NA
#> CI_97.5 1.034 2.079 NA NA
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#> CI_2.5 NA NA
#> CI_97.5 NA NA
#>
(mod3 <- mirt(data, 1, SE = TRUE, SE.type = 'Richardson')) #with numerical Richardson method
#>
Iteration: 1, Log-Lik: -2668.786, Max-Change: 0.18243
Iteration: 2, Log-Lik: -2663.691, Max-Change: 0.13637
Iteration: 3, Log-Lik: -2661.454, Max-Change: 0.10231
Iteration: 4, Log-Lik: -2659.430, Max-Change: 0.04181
Iteration: 5, Log-Lik: -2659.241, Max-Change: 0.03417
Iteration: 6, Log-Lik: -2659.113, Max-Change: 0.02911
Iteration: 7, Log-Lik: -2658.812, Max-Change: 0.00456
Iteration: 8, Log-Lik: -2658.809, Max-Change: 0.00363
Iteration: 9, Log-Lik: -2658.808, Max-Change: 0.00273
Iteration: 10, Log-Lik: -2658.806, Max-Change: 0.00144
Iteration: 11, Log-Lik: -2658.806, Max-Change: 0.00118
Iteration: 12, Log-Lik: -2658.806, Max-Change: 0.00101
Iteration: 13, Log-Lik: -2658.805, Max-Change: 0.00042
Iteration: 14, Log-Lik: -2658.805, Max-Change: 0.00025
Iteration: 15, Log-Lik: -2658.805, Max-Change: 0.00026
Iteration: 16, Log-Lik: -2658.805, Max-Change: 0.00023
Iteration: 17, Log-Lik: -2658.805, Max-Change: 0.00023
Iteration: 18, Log-Lik: -2658.805, Max-Change: 0.00021
Iteration: 19, Log-Lik: -2658.805, Max-Change: 0.00019
Iteration: 20, Log-Lik: -2658.805, Max-Change: 0.00017
Iteration: 21, Log-Lik: -2658.805, Max-Change: 0.00017
Iteration: 22, Log-Lik: -2658.805, Max-Change: 0.00015
Iteration: 23, Log-Lik: -2658.805, Max-Change: 0.00015
Iteration: 24, Log-Lik: -2658.805, Max-Change: 0.00013
Iteration: 25, Log-Lik: -2658.805, Max-Change: 0.00013
Iteration: 26, Log-Lik: -2658.805, Max-Change: 0.00011
Iteration: 27, Log-Lik: -2658.805, Max-Change: 0.00011
Iteration: 28, Log-Lik: -2658.805, Max-Change: 0.00010
#>
#> Calculating information matrix...
#>
#> Call:
#> mirt(data = data, model = 1, SE = TRUE, SE.type = "Richardson")
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 28 EM iterations.
#> mirt version: 1.44.3
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Information matrix estimated with method: Richardson
#> Second-order test: model is a possible local maximum
#> Condition number of information matrix = 30.23102
#>
#> Log-likelihood = -2658.805
#> Estimated parameters: 10
#> AIC = 5337.61
#> BIC = 5386.688; SABIC = 5354.927
#> G2 (21) = 31.7, p = 0.0628
#> RMSEA = 0.023, CFI = NaN, TLI = NaN
residuals(mod1)
#> LD matrix (lower triangle) and standardized residual correlations (upper triangle)
#>
#> Upper triangle summary:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.037 -0.020 -0.007 0.001 0.024 0.051
#>
#> Item.1 Item.2 Item.3 Item.4 Item.5
#> Item.1 -0.021 -0.029 0.051 0.049
#> Item.2 0.453 0.033 -0.016 -0.037
#> Item.3 0.854 1.060 -0.012 -0.002
#> Item.4 2.572 0.267 0.153 0.000
#> Item.5 2.389 1.384 0.003 0.000
plot(mod1) #test score function
plot(mod1, type = 'trace') #trace lines
plot(mod2, type = 'info') #test information
plot(mod2, MI=200) #expected total score with 95% confidence intervals
# estimated 3PL model for item 5 only
(mod1.3PL <- mirt(data, 1, itemtype = c('2PL', '2PL', '2PL', '2PL', '3PL')))
#>
Iteration: 1, Log-Lik: -2672.054, Max-Change: 0.24544
Iteration: 2, Log-Lik: -2663.819, Max-Change: 0.13674
Iteration: 3, Log-Lik: -2661.462, Max-Change: 0.10270
Iteration: 4, Log-Lik: -2659.415, Max-Change: 0.04081
Iteration: 5, Log-Lik: -2659.229, Max-Change: 0.03430
Iteration: 6, Log-Lik: -2659.100, Max-Change: 0.02876
Iteration: 7, Log-Lik: -2658.813, Max-Change: 0.00848
Iteration: 8, Log-Lik: -2658.806, Max-Change: 0.00676
Iteration: 9, Log-Lik: -2658.803, Max-Change: 0.00505
Iteration: 10, Log-Lik: -2658.799, Max-Change: 0.00378
Iteration: 11, Log-Lik: -2658.798, Max-Change: 0.00349
Iteration: 12, Log-Lik: -2658.797, Max-Change: 0.00290
Iteration: 13, Log-Lik: -2658.796, Max-Change: 0.00239
Iteration: 14, Log-Lik: -2658.795, Max-Change: 0.00188
Iteration: 15, Log-Lik: -2658.795, Max-Change: 0.00163
Iteration: 16, Log-Lik: -2658.794, Max-Change: 0.00101
Iteration: 17, Log-Lik: -2658.794, Max-Change: 0.00057
Iteration: 18, Log-Lik: -2658.794, Max-Change: 0.00043
Iteration: 19, Log-Lik: -2658.794, Max-Change: 0.00044
Iteration: 20, Log-Lik: -2658.794, Max-Change: 0.00040
Iteration: 21, Log-Lik: -2658.794, Max-Change: 0.00038
Iteration: 22, Log-Lik: -2658.794, Max-Change: 0.00031
Iteration: 23, Log-Lik: -2658.794, Max-Change: 0.00032
Iteration: 24, Log-Lik: -2658.794, Max-Change: 0.00029
Iteration: 25, Log-Lik: -2658.794, Max-Change: 0.00028
Iteration: 26, Log-Lik: -2658.794, Max-Change: 0.00025
Iteration: 27, Log-Lik: -2658.794, Max-Change: 0.00024
Iteration: 28, Log-Lik: -2658.794, Max-Change: 0.00021
Iteration: 29, Log-Lik: -2658.794, Max-Change: 0.00021
Iteration: 30, Log-Lik: -2658.794, Max-Change: 0.00019
Iteration: 31, Log-Lik: -2658.794, Max-Change: 0.00018
Iteration: 32, Log-Lik: -2658.794, Max-Change: 0.00016
Iteration: 33, Log-Lik: -2658.794, Max-Change: 0.00016
Iteration: 34, Log-Lik: -2658.794, Max-Change: 0.00014
Iteration: 35, Log-Lik: -2658.794, Max-Change: 0.00014
Iteration: 36, Log-Lik: -2658.794, Max-Change: 0.00063
Iteration: 37, Log-Lik: -2658.794, Max-Change: 0.00039
Iteration: 38, Log-Lik: -2658.794, Max-Change: 0.00028
Iteration: 39, Log-Lik: -2658.794, Max-Change: 0.00019
Iteration: 40, Log-Lik: -2658.794, Max-Change: 0.00039
Iteration: 41, Log-Lik: -2658.794, Max-Change: 0.00028
Iteration: 42, Log-Lik: -2658.794, Max-Change: 0.00020
Iteration: 43, Log-Lik: -2658.794, Max-Change: 0.00008
#>
#> Call:
#> mirt(data = data, model = 1, itemtype = c("2PL", "2PL", "2PL",
#> "2PL", "3PL"))
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 43 EM iterations.
#> mirt version: 1.44.3
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -2658.794
#> Estimated parameters: 11
#> AIC = 5339.587
#> BIC = 5393.573; SABIC = 5358.636
#> G2 (20) = 31.68, p = 0.0469
#> RMSEA = 0.024, CFI = NaN, TLI = NaN
coef(mod1.3PL)
#> $Item.1
#> a1 d g u
#> par 0.987 1.855 0 1
#>
#> $Item.2
#> a1 d g u
#> par 1.082 0.808 0 1
#>
#> $Item.3
#> a1 d g u
#> par 1.706 1.805 0 1
#>
#> $Item.4
#> a1 d g u
#> par 0.764 0.486 0 1
#>
#> $Item.5
#> a1 d g u
#> par 0.778 1.643 0.161 1
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#>
# internally g and u pars are stored as logits, so usually a good idea to include normal prior
# to help stabilize the parameters. For a value around .182 use a mean
# of -1.5 (since 1 / (1 + exp(-(-1.5))) == .182)
model <- 'F = 1-5
PRIOR = (5, g, norm, -1.5, 3)'
mod1.3PL.norm <- mirt(data, model, itemtype = c('2PL', '2PL', '2PL', '2PL', '3PL'))
#>
Iteration: 1, Log-Lik: -2675.466, Max-Change: 0.28143
Iteration: 2, Log-Lik: -2665.875, Max-Change: 0.13677
Iteration: 3, Log-Lik: -2663.485, Max-Change: 0.10277
Iteration: 4, Log-Lik: -2661.455, Max-Change: 0.04260
Iteration: 5, Log-Lik: -2661.259, Max-Change: 0.03555
Iteration: 6, Log-Lik: -2661.125, Max-Change: 0.02961
Iteration: 7, Log-Lik: -2660.829, Max-Change: 0.00835
Iteration: 8, Log-Lik: -2660.823, Max-Change: 0.00636
Iteration: 9, Log-Lik: -2660.819, Max-Change: 0.00487
Iteration: 10, Log-Lik: -2660.814, Max-Change: 0.00390
Iteration: 11, Log-Lik: -2660.812, Max-Change: 0.00267
Iteration: 12, Log-Lik: -2660.811, Max-Change: 0.00234
Iteration: 13, Log-Lik: -2660.810, Max-Change: 0.00169
Iteration: 14, Log-Lik: -2660.810, Max-Change: 0.00153
Iteration: 15, Log-Lik: -2660.810, Max-Change: 0.00138
Iteration: 16, Log-Lik: -2660.809, Max-Change: 0.00070
Iteration: 17, Log-Lik: -2660.809, Max-Change: 0.00051
Iteration: 18, Log-Lik: -2660.809, Max-Change: 0.00023
Iteration: 19, Log-Lik: -2660.809, Max-Change: 0.00025
Iteration: 20, Log-Lik: -2660.809, Max-Change: 0.00025
Iteration: 21, Log-Lik: -2660.809, Max-Change: 0.00113
Iteration: 22, Log-Lik: -2660.809, Max-Change: 0.00016
Iteration: 23, Log-Lik: -2660.809, Max-Change: 0.00068
Iteration: 24, Log-Lik: -2660.809, Max-Change: 0.00014
Iteration: 25, Log-Lik: -2660.809, Max-Change: 0.00012
Iteration: 26, Log-Lik: -2660.809, Max-Change: 0.00009
coef(mod1.3PL.norm)
#> $Item.1
#> a1 d g u
#> par 0.987 1.855 0 1
#>
#> $Item.2
#> a1 d g u
#> par 1.083 0.808 0 1
#>
#> $Item.3
#> a1 d g u
#> par 1.706 1.804 0 1
#>
#> $Item.4
#> a1 d g u
#> par 0.764 0.486 0 1
#>
#> $Item.5
#> a1 d g u
#> par 0.788 1.6 0.19 1
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#>
#limited information fit statistics
M2(mod1.3PL.norm)
#> M2 df p RMSEA RMSEA_5 RMSEA_95 SRMSR TLI
#> stats 8.800082 4 0.06629543 0.03465864 0 0.06610847 0.03207363 0.9454563
#> CFI
#> stats 0.9781825
# unidimensional ideal point model
idealpt <- mirt(data, 1, itemtype = 'ideal')
#>
Iteration: 1, Log-Lik: -2893.174, Max-Change: 0.26330
Iteration: 2, Log-Lik: -2716.222, Max-Change: 0.06349
Iteration: 3, Log-Lik: -2699.962, Max-Change: 0.04532
Iteration: 4, Log-Lik: -2690.600, Max-Change: 0.03741
Iteration: 5, Log-Lik: -2682.871, Max-Change: 0.04590
Iteration: 6, Log-Lik: -2675.645, Max-Change: 0.04405
Iteration: 7, Log-Lik: -2670.247, Max-Change: 0.03961
Iteration: 8, Log-Lik: -2666.364, Max-Change: 0.03373
Iteration: 9, Log-Lik: -2663.753, Max-Change: 0.02734
Iteration: 10, Log-Lik: -2660.022, Max-Change: 0.00695
Iteration: 11, Log-Lik: -2659.872, Max-Change: 0.00601
Iteration: 12, Log-Lik: -2659.780, Max-Change: 0.00512
Iteration: 13, Log-Lik: -2659.574, Max-Change: 0.00224
Iteration: 14, Log-Lik: -2659.555, Max-Change: 0.00193
Iteration: 15, Log-Lik: -2659.541, Max-Change: 0.00168
Iteration: 16, Log-Lik: -2659.491, Max-Change: 0.00107
Iteration: 17, Log-Lik: -2659.487, Max-Change: 0.00095
Iteration: 18, Log-Lik: -2659.484, Max-Change: 0.00096
Iteration: 19, Log-Lik: -2659.469, Max-Change: 0.00083
Iteration: 20, Log-Lik: -2659.467, Max-Change: 0.00074
Iteration: 21, Log-Lik: -2659.466, Max-Change: 0.00068
Iteration: 22, Log-Lik: -2659.460, Max-Change: 0.00041
Iteration: 23, Log-Lik: -2659.459, Max-Change: 0.00040
Iteration: 24, Log-Lik: -2659.458, Max-Change: 0.00039
Iteration: 25, Log-Lik: -2659.456, Max-Change: 0.00036
Iteration: 26, Log-Lik: -2659.456, Max-Change: 0.00029
Iteration: 27, Log-Lik: -2659.456, Max-Change: 0.00026
Iteration: 28, Log-Lik: -2659.455, Max-Change: 0.00015
Iteration: 29, Log-Lik: -2659.454, Max-Change: 0.00015
Iteration: 30, Log-Lik: -2659.454, Max-Change: 0.00015
Iteration: 31, Log-Lik: -2659.454, Max-Change: 0.00011
Iteration: 32, Log-Lik: -2659.454, Max-Change: 0.00010
Iteration: 33, Log-Lik: -2659.454, Max-Change: 0.00009
plot(idealpt, type = 'trace', facet_items = TRUE)
plot(idealpt, type = 'trace', facet_items = FALSE)
# two factors (exploratory)
mod2 <- mirt(data, 2)
#>
Iteration: 1, Log-Lik: -2674.021, Max-Change: 0.20368
Iteration: 2, Log-Lik: -2658.770, Max-Change: 0.12215
Iteration: 3, Log-Lik: -2655.896, Max-Change: 0.07195
Iteration: 4, Log-Lik: -2654.819, Max-Change: 0.03372
Iteration: 5, Log-Lik: -2654.630, Max-Change: 0.02022
Iteration: 6, Log-Lik: -2654.553, Max-Change: 0.01189
Iteration: 7, Log-Lik: -2654.493, Max-Change: 0.00789
Iteration: 8, Log-Lik: -2654.475, Max-Change: 0.00763
Iteration: 9, Log-Lik: -2654.460, Max-Change: 0.00744
Iteration: 10, Log-Lik: -2654.379, Max-Change: 0.00615
Iteration: 11, Log-Lik: -2654.368, Max-Change: 0.00600
Iteration: 12, Log-Lik: -2654.357, Max-Change: 0.00589
Iteration: 13, Log-Lik: -2654.297, Max-Change: 0.00550
Iteration: 14, Log-Lik: -2654.288, Max-Change: 0.00545
Iteration: 15, Log-Lik: -2654.280, Max-Change: 0.00540
Iteration: 16, Log-Lik: -2654.232, Max-Change: 0.00523
Iteration: 17, Log-Lik: -2654.224, Max-Change: 0.00515
Iteration: 18, Log-Lik: -2654.218, Max-Change: 0.00509
Iteration: 19, Log-Lik: -2654.179, Max-Change: 0.00497
Iteration: 20, Log-Lik: -2654.173, Max-Change: 0.00492
Iteration: 21, Log-Lik: -2654.167, Max-Change: 0.00487
Iteration: 22, Log-Lik: -2654.134, Max-Change: 0.00466
Iteration: 23, Log-Lik: -2654.130, Max-Change: 0.00460
Iteration: 24, Log-Lik: -2654.125, Max-Change: 0.00455
Iteration: 25, Log-Lik: -2654.097, Max-Change: 0.00437
Iteration: 26, Log-Lik: -2654.093, Max-Change: 0.00434
Iteration: 27, Log-Lik: -2654.089, Max-Change: 0.00431
Iteration: 28, Log-Lik: -2654.066, Max-Change: 0.00420
Iteration: 29, Log-Lik: -2654.062, Max-Change: 0.00416
Iteration: 30, Log-Lik: -2654.058, Max-Change: 0.00413
Iteration: 31, Log-Lik: -2654.038, Max-Change: 0.00404
Iteration: 32, Log-Lik: -2654.034, Max-Change: 0.00401
Iteration: 33, Log-Lik: -2654.031, Max-Change: 0.00399
Iteration: 34, Log-Lik: -2654.012, Max-Change: 0.00391
Iteration: 35, Log-Lik: -2654.009, Max-Change: 0.00389
Iteration: 36, Log-Lik: -2654.006, Max-Change: 0.00387
Iteration: 37, Log-Lik: -2653.989, Max-Change: 0.00373
Iteration: 38, Log-Lik: -2653.986, Max-Change: 0.00372
Iteration: 39, Log-Lik: -2653.983, Max-Change: 0.00370
Iteration: 40, Log-Lik: -2653.966, Max-Change: 0.00366
Iteration: 41, Log-Lik: -2653.964, Max-Change: 0.00363
Iteration: 42, Log-Lik: -2653.961, Max-Change: 0.00362
Iteration: 43, Log-Lik: -2653.945, Max-Change: 0.00355
Iteration: 44, Log-Lik: -2653.943, Max-Change: 0.00353
Iteration: 45, Log-Lik: -2653.940, Max-Change: 0.00352
Iteration: 46, Log-Lik: -2653.925, Max-Change: 0.00347
Iteration: 47, Log-Lik: -2653.922, Max-Change: 0.00345
Iteration: 48, Log-Lik: -2653.920, Max-Change: 0.00344
Iteration: 49, Log-Lik: -2653.905, Max-Change: 0.00340
Iteration: 50, Log-Lik: -2653.902, Max-Change: 0.00339
Iteration: 51, Log-Lik: -2653.900, Max-Change: 0.00338
Iteration: 52, Log-Lik: -2653.884, Max-Change: 0.00335
Iteration: 53, Log-Lik: -2653.882, Max-Change: 0.00334
Iteration: 54, Log-Lik: -2653.879, Max-Change: 0.00333
Iteration: 55, Log-Lik: -2653.864, Max-Change: 0.00331
Iteration: 56, Log-Lik: -2653.862, Max-Change: 0.00330
Iteration: 57, Log-Lik: -2653.859, Max-Change: 0.00329
Iteration: 58, Log-Lik: -2653.844, Max-Change: 0.00326
Iteration: 59, Log-Lik: -2653.842, Max-Change: 0.00325
Iteration: 60, Log-Lik: -2653.839, Max-Change: 0.00324
Iteration: 61, Log-Lik: -2653.824, Max-Change: 0.00321
Iteration: 62, Log-Lik: -2653.822, Max-Change: 0.00320
Iteration: 63, Log-Lik: -2653.819, Max-Change: 0.00319
Iteration: 64, Log-Lik: -2653.804, Max-Change: 0.00315
Iteration: 65, Log-Lik: -2653.802, Max-Change: 0.00315
Iteration: 66, Log-Lik: -2653.800, Max-Change: 0.00314
Iteration: 67, Log-Lik: -2653.785, Max-Change: 0.00309
Iteration: 68, Log-Lik: -2653.783, Max-Change: 0.00309
Iteration: 69, Log-Lik: -2653.780, Max-Change: 0.00308
Iteration: 70, Log-Lik: -2653.766, Max-Change: 0.00303
Iteration: 71, Log-Lik: -2653.764, Max-Change: 0.00302
Iteration: 72, Log-Lik: -2653.762, Max-Change: 0.00301
Iteration: 73, Log-Lik: -2653.748, Max-Change: 0.00295
Iteration: 74, Log-Lik: -2653.746, Max-Change: 0.00294
Iteration: 75, Log-Lik: -2653.743, Max-Change: 0.00293
Iteration: 76, Log-Lik: -2653.730, Max-Change: 0.00287
Iteration: 77, Log-Lik: -2653.728, Max-Change: 0.00286
Iteration: 78, Log-Lik: -2653.726, Max-Change: 0.00285
Iteration: 79, Log-Lik: -2653.713, Max-Change: 0.00281
Iteration: 80, Log-Lik: -2653.711, Max-Change: 0.00281
Iteration: 81, Log-Lik: -2653.709, Max-Change: 0.00281
Iteration: 82, Log-Lik: -2653.698, Max-Change: 0.00283
Iteration: 83, Log-Lik: -2653.696, Max-Change: 0.00282
Iteration: 84, Log-Lik: -2653.694, Max-Change: 0.00282
Iteration: 85, Log-Lik: -2653.683, Max-Change: 0.00282
Iteration: 86, Log-Lik: -2653.681, Max-Change: 0.00282
Iteration: 87, Log-Lik: -2653.679, Max-Change: 0.00281
Iteration: 88, Log-Lik: -2653.669, Max-Change: 0.00281
Iteration: 89, Log-Lik: -2653.667, Max-Change: 0.00280
Iteration: 90, Log-Lik: -2653.665, Max-Change: 0.00279
Iteration: 91, Log-Lik: -2653.655, Max-Change: 0.00278
Iteration: 92, Log-Lik: -2653.654, Max-Change: 0.00277
Iteration: 93, Log-Lik: -2653.652, Max-Change: 0.00276
Iteration: 94, Log-Lik: -2653.643, Max-Change: 0.00274
Iteration: 95, Log-Lik: -2653.642, Max-Change: 0.00273
Iteration: 96, Log-Lik: -2653.640, Max-Change: 0.00272
Iteration: 97, Log-Lik: -2653.632, Max-Change: 0.00269
Iteration: 98, Log-Lik: -2653.631, Max-Change: 0.00268
Iteration: 99, Log-Lik: -2653.630, Max-Change: 0.00267
Iteration: 100, Log-Lik: -2653.622, Max-Change: 0.00263
Iteration: 101, Log-Lik: -2653.621, Max-Change: 0.00262
Iteration: 102, Log-Lik: -2653.619, Max-Change: 0.00261
Iteration: 103, Log-Lik: -2653.612, Max-Change: 0.00256
Iteration: 104, Log-Lik: -2653.611, Max-Change: 0.00255
Iteration: 105, Log-Lik: -2653.610, Max-Change: 0.00254
Iteration: 106, Log-Lik: -2653.604, Max-Change: 0.00249
Iteration: 107, Log-Lik: -2653.603, Max-Change: 0.00248
Iteration: 108, Log-Lik: -2653.602, Max-Change: 0.00247
Iteration: 109, Log-Lik: -2653.596, Max-Change: 0.00242
Iteration: 110, Log-Lik: -2653.595, Max-Change: 0.00241
Iteration: 111, Log-Lik: -2653.594, Max-Change: 0.00239
Iteration: 112, Log-Lik: -2653.589, Max-Change: 0.00234
Iteration: 113, Log-Lik: -2653.588, Max-Change: 0.00233
Iteration: 114, Log-Lik: -2653.587, Max-Change: 0.00232
Iteration: 115, Log-Lik: -2653.582, Max-Change: 0.00226
Iteration: 116, Log-Lik: -2653.581, Max-Change: 0.00225
Iteration: 117, Log-Lik: -2653.580, Max-Change: 0.00224
Iteration: 118, Log-Lik: -2653.576, Max-Change: 0.00218
Iteration: 119, Log-Lik: -2653.575, Max-Change: 0.00217
Iteration: 120, Log-Lik: -2653.575, Max-Change: 0.00216
Iteration: 121, Log-Lik: -2653.571, Max-Change: 0.00210
Iteration: 122, Log-Lik: -2653.570, Max-Change: 0.00209
Iteration: 123, Log-Lik: -2653.569, Max-Change: 0.00208
Iteration: 124, Log-Lik: -2653.566, Max-Change: 0.00202
Iteration: 125, Log-Lik: -2653.565, Max-Change: 0.00201
Iteration: 126, Log-Lik: -2653.565, Max-Change: 0.00200
Iteration: 127, Log-Lik: -2653.561, Max-Change: 0.00194
Iteration: 128, Log-Lik: -2653.561, Max-Change: 0.00193
Iteration: 129, Log-Lik: -2653.560, Max-Change: 0.00192
Iteration: 130, Log-Lik: -2653.557, Max-Change: 0.00186
Iteration: 131, Log-Lik: -2653.557, Max-Change: 0.00185
Iteration: 132, Log-Lik: -2653.556, Max-Change: 0.00184
Iteration: 133, Log-Lik: -2653.554, Max-Change: 0.00179
Iteration: 134, Log-Lik: -2653.553, Max-Change: 0.00178
Iteration: 135, Log-Lik: -2653.553, Max-Change: 0.00177
Iteration: 136, Log-Lik: -2653.550, Max-Change: 0.00171
Iteration: 137, Log-Lik: -2653.550, Max-Change: 0.00170
Iteration: 138, Log-Lik: -2653.550, Max-Change: 0.00169
Iteration: 139, Log-Lik: -2653.547, Max-Change: 0.00164
Iteration: 140, Log-Lik: -2653.547, Max-Change: 0.00163
Iteration: 141, Log-Lik: -2653.547, Max-Change: 0.00162
Iteration: 142, Log-Lik: -2653.545, Max-Change: 0.00157
Iteration: 143, Log-Lik: -2653.544, Max-Change: 0.00148
Iteration: 144, Log-Lik: -2653.544, Max-Change: 0.00148
Iteration: 145, Log-Lik: -2653.543, Max-Change: 0.00196
Iteration: 146, Log-Lik: -2653.543, Max-Change: 0.00138
Iteration: 147, Log-Lik: -2653.542, Max-Change: 0.00137
Iteration: 148, Log-Lik: -2653.541, Max-Change: 0.00143
Iteration: 149, Log-Lik: -2653.541, Max-Change: 0.00137
Iteration: 150, Log-Lik: -2653.541, Max-Change: 0.00138
Iteration: 151, Log-Lik: -2653.539, Max-Change: 0.00134
Iteration: 152, Log-Lik: -2653.539, Max-Change: 0.00137
Iteration: 153, Log-Lik: -2653.539, Max-Change: 0.00131
Iteration: 154, Log-Lik: -2653.538, Max-Change: 0.00113
Iteration: 155, Log-Lik: -2653.538, Max-Change: 0.00130
Iteration: 156, Log-Lik: -2653.537, Max-Change: 0.00130
Iteration: 157, Log-Lik: -2653.537, Max-Change: 0.00121
Iteration: 158, Log-Lik: -2653.536, Max-Change: 0.00109
Iteration: 159, Log-Lik: -2653.536, Max-Change: 0.00126
Iteration: 160, Log-Lik: -2653.536, Max-Change: 0.00102
Iteration: 161, Log-Lik: -2653.536, Max-Change: 0.00119
Iteration: 162, Log-Lik: -2653.535, Max-Change: 0.00096
Iteration: 163, Log-Lik: -2653.535, Max-Change: 0.00213
Iteration: 164, Log-Lik: -2653.535, Max-Change: 0.00194
Iteration: 165, Log-Lik: -2653.534, Max-Change: 0.00196
Iteration: 166, Log-Lik: -2653.533, Max-Change: 0.00105
Iteration: 167, Log-Lik: -2653.532, Max-Change: 0.00118
Iteration: 168, Log-Lik: -2653.532, Max-Change: 0.00111
Iteration: 169, Log-Lik: -2653.532, Max-Change: 0.00094
Iteration: 170, Log-Lik: -2653.531, Max-Change: 0.00093
Iteration: 171, Log-Lik: -2653.531, Max-Change: 0.00093
Iteration: 172, Log-Lik: -2653.531, Max-Change: 0.00165
Iteration: 173, Log-Lik: -2653.530, Max-Change: 0.00157
Iteration: 174, Log-Lik: -2653.530, Max-Change: 0.00181
Iteration: 175, Log-Lik: -2653.530, Max-Change: 0.00098
Iteration: 176, Log-Lik: -2653.529, Max-Change: 0.00161
Iteration: 177, Log-Lik: -2653.529, Max-Change: 0.00163
Iteration: 178, Log-Lik: -2653.529, Max-Change: 0.00106
Iteration: 179, Log-Lik: -2653.529, Max-Change: 0.00074
Iteration: 180, Log-Lik: -2653.528, Max-Change: 0.00177
Iteration: 181, Log-Lik: -2653.528, Max-Change: 0.00143
Iteration: 182, Log-Lik: -2653.528, Max-Change: 0.00145
Iteration: 183, Log-Lik: -2653.528, Max-Change: 0.00150
Iteration: 184, Log-Lik: -2653.527, Max-Change: 0.00088
Iteration: 185, Log-Lik: -2653.527, Max-Change: 0.00035
Iteration: 186, Log-Lik: -2653.527, Max-Change: 0.00029
Iteration: 187, Log-Lik: -2653.527, Max-Change: 0.00031
Iteration: 188, Log-Lik: -2653.527, Max-Change: 0.00032
Iteration: 189, Log-Lik: -2653.527, Max-Change: 0.00033
Iteration: 190, Log-Lik: -2653.527, Max-Change: 0.00034
Iteration: 191, Log-Lik: -2653.527, Max-Change: 0.00034
Iteration: 192, Log-Lik: -2653.527, Max-Change: 0.00034
Iteration: 193, Log-Lik: -2653.527, Max-Change: 0.00034
Iteration: 194, Log-Lik: -2653.527, Max-Change: 0.00034
Iteration: 195, Log-Lik: -2653.527, Max-Change: 0.00034
Iteration: 196, Log-Lik: -2653.527, Max-Change: 0.00033
Iteration: 197, Log-Lik: -2653.527, Max-Change: 0.00033
Iteration: 198, Log-Lik: -2653.527, Max-Change: 0.00033
Iteration: 199, Log-Lik: -2653.526, Max-Change: 0.00033
Iteration: 200, Log-Lik: -2653.526, Max-Change: 0.00032
Iteration: 201, Log-Lik: -2653.526, Max-Change: 0.00032
Iteration: 202, Log-Lik: -2653.526, Max-Change: 0.00032
Iteration: 203, Log-Lik: -2653.526, Max-Change: 0.00032
Iteration: 204, Log-Lik: -2653.526, Max-Change: 0.00032
Iteration: 205, Log-Lik: -2653.526, Max-Change: 0.00032
Iteration: 206, Log-Lik: -2653.526, Max-Change: 0.00031
Iteration: 207, Log-Lik: -2653.526, Max-Change: 0.00031
Iteration: 208, Log-Lik: -2653.526, Max-Change: 0.00031
Iteration: 209, Log-Lik: -2653.526, Max-Change: 0.00031
Iteration: 210, Log-Lik: -2653.526, Max-Change: 0.00030
Iteration: 211, Log-Lik: -2653.526, Max-Change: 0.00030
Iteration: 212, Log-Lik: -2653.526, Max-Change: 0.00030
Iteration: 213, Log-Lik: -2653.526, Max-Change: 0.00030
Iteration: 214, Log-Lik: -2653.526, Max-Change: 0.00030
Iteration: 215, Log-Lik: -2653.526, Max-Change: 0.00030
Iteration: 216, Log-Lik: -2653.526, Max-Change: 0.00029
Iteration: 217, Log-Lik: -2653.526, Max-Change: 0.00029
Iteration: 218, Log-Lik: -2653.526, Max-Change: 0.00029
Iteration: 219, Log-Lik: -2653.526, Max-Change: 0.00029
Iteration: 220, Log-Lik: -2653.526, Max-Change: 0.00029
Iteration: 221, Log-Lik: -2653.526, Max-Change: 0.00029
Iteration: 222, Log-Lik: -2653.526, Max-Change: 0.00028
Iteration: 223, Log-Lik: -2653.526, Max-Change: 0.00028
Iteration: 224, Log-Lik: -2653.526, Max-Change: 0.00028
Iteration: 225, Log-Lik: -2653.525, Max-Change: 0.00028
Iteration: 226, Log-Lik: -2653.525, Max-Change: 0.00028
Iteration: 227, Log-Lik: -2653.525, Max-Change: 0.00028
Iteration: 228, Log-Lik: -2653.525, Max-Change: 0.00027
Iteration: 229, Log-Lik: -2653.525, Max-Change: 0.00027
Iteration: 230, Log-Lik: -2653.525, Max-Change: 0.00027
Iteration: 231, Log-Lik: -2653.525, Max-Change: 0.00027
Iteration: 232, Log-Lik: -2653.525, Max-Change: 0.00027
Iteration: 233, Log-Lik: -2653.525, Max-Change: 0.00027
Iteration: 234, Log-Lik: -2653.525, Max-Change: 0.00133
Iteration: 235, Log-Lik: -2653.525, Max-Change: 0.00148
Iteration: 236, Log-Lik: -2653.525, Max-Change: 0.00026
Iteration: 237, Log-Lik: -2653.525, Max-Change: 0.00023
Iteration: 238, Log-Lik: -2653.525, Max-Change: 0.00024
Iteration: 239, Log-Lik: -2653.525, Max-Change: 0.00122
Iteration: 240, Log-Lik: -2653.525, Max-Change: 0.00041
Iteration: 241, Log-Lik: -2653.525, Max-Change: 0.00026
Iteration: 242, Log-Lik: -2653.525, Max-Change: 0.00025
Iteration: 243, Log-Lik: -2653.525, Max-Change: 0.00124
Iteration: 244, Log-Lik: -2653.525, Max-Change: 0.00134
Iteration: 245, Log-Lik: -2653.524, Max-Change: 0.00033
Iteration: 246, Log-Lik: -2653.524, Max-Change: 0.00021
Iteration: 247, Log-Lik: -2653.524, Max-Change: 0.00115
Iteration: 248, Log-Lik: -2653.524, Max-Change: 0.00036
Iteration: 249, Log-Lik: -2653.524, Max-Change: 0.00024
Iteration: 250, Log-Lik: -2653.524, Max-Change: 0.00116
Iteration: 251, Log-Lik: -2653.524, Max-Change: 0.00022
Iteration: 252, Log-Lik: -2653.524, Max-Change: 0.00022
Iteration: 253, Log-Lik: -2653.524, Max-Change: 0.00022
Iteration: 254, Log-Lik: -2653.524, Max-Change: 0.00112
Iteration: 255, Log-Lik: -2653.524, Max-Change: 0.00072
Iteration: 256, Log-Lik: -2653.524, Max-Change: 0.00022
Iteration: 257, Log-Lik: -2653.524, Max-Change: 0.00022
Iteration: 258, Log-Lik: -2653.524, Max-Change: 0.00108
Iteration: 259, Log-Lik: -2653.524, Max-Change: 0.00090
Iteration: 260, Log-Lik: -2653.524, Max-Change: 0.00063
Iteration: 261, Log-Lik: -2653.524, Max-Change: 0.00043
Iteration: 262, Log-Lik: -2653.524, Max-Change: 0.00106
Iteration: 263, Log-Lik: -2653.524, Max-Change: 0.00031
Iteration: 264, Log-Lik: -2653.524, Max-Change: 0.00021
Iteration: 265, Log-Lik: -2653.524, Max-Change: 0.00103
Iteration: 266, Log-Lik: -2653.523, Max-Change: 0.00056
Iteration: 267, Log-Lik: -2653.523, Max-Change: 0.00039
Iteration: 268, Log-Lik: -2653.523, Max-Change: 0.00101
Iteration: 269, Log-Lik: -2653.523, Max-Change: 0.00020
Iteration: 270, Log-Lik: -2653.523, Max-Change: 0.00020
Iteration: 271, Log-Lik: -2653.523, Max-Change: 0.00020
Iteration: 272, Log-Lik: -2653.523, Max-Change: 0.00099
Iteration: 273, Log-Lik: -2653.523, Max-Change: 0.00067
Iteration: 274, Log-Lik: -2653.523, Max-Change: 0.00020
Iteration: 275, Log-Lik: -2653.523, Max-Change: 0.00019
Iteration: 276, Log-Lik: -2653.523, Max-Change: 0.00097
Iteration: 277, Log-Lik: -2653.523, Max-Change: 0.00084
Iteration: 278, Log-Lik: -2653.523, Max-Change: 0.00058
Iteration: 279, Log-Lik: -2653.523, Max-Change: 0.00040
Iteration: 280, Log-Lik: -2653.523, Max-Change: 0.00095
Iteration: 281, Log-Lik: -2653.523, Max-Change: 0.00028
Iteration: 282, Log-Lik: -2653.523, Max-Change: 0.00020
Iteration: 283, Log-Lik: -2653.523, Max-Change: 0.00093
Iteration: 284, Log-Lik: -2653.523, Max-Change: 0.00054
Iteration: 285, Log-Lik: -2653.523, Max-Change: 0.00037
Iteration: 286, Log-Lik: -2653.523, Max-Change: 0.00092
Iteration: 287, Log-Lik: -2653.523, Max-Change: 0.00020
Iteration: 288, Log-Lik: -2653.523, Max-Change: 0.00018
Iteration: 289, Log-Lik: -2653.523, Max-Change: 0.00090
Iteration: 290, Log-Lik: -2653.523, Max-Change: 0.00078
Iteration: 291, Log-Lik: -2653.523, Max-Change: 0.00055
Iteration: 292, Log-Lik: -2653.523, Max-Change: 0.00088
Iteration: 293, Log-Lik: -2653.523, Max-Change: 0.00079
Iteration: 294, Log-Lik: -2653.523, Max-Change: 0.00055
Iteration: 295, Log-Lik: -2653.522, Max-Change: 0.00087
Iteration: 296, Log-Lik: -2653.522, Max-Change: 0.00081
Iteration: 297, Log-Lik: -2653.522, Max-Change: 0.00057
Iteration: 298, Log-Lik: -2653.522, Max-Change: 0.00017
Iteration: 299, Log-Lik: -2653.522, Max-Change: 0.00086
Iteration: 300, Log-Lik: -2653.522, Max-Change: 0.00061
Iteration: 301, Log-Lik: -2653.522, Max-Change: 0.00017
Iteration: 302, Log-Lik: -2653.522, Max-Change: 0.00017
Iteration: 303, Log-Lik: -2653.522, Max-Change: 0.00084
Iteration: 304, Log-Lik: -2653.522, Max-Change: 0.00075
Iteration: 305, Log-Lik: -2653.522, Max-Change: 0.00052
Iteration: 306, Log-Lik: -2653.522, Max-Change: 0.00036
Iteration: 307, Log-Lik: -2653.522, Max-Change: 0.00083
Iteration: 308, Log-Lik: -2653.522, Max-Change: 0.00026
Iteration: 309, Log-Lik: -2653.522, Max-Change: 0.00017
Iteration: 310, Log-Lik: -2653.522, Max-Change: 0.00081
Iteration: 311, Log-Lik: -2653.522, Max-Change: 0.00049
Iteration: 312, Log-Lik: -2653.522, Max-Change: 0.00034
Iteration: 313, Log-Lik: -2653.522, Max-Change: 0.00080
Iteration: 314, Log-Lik: -2653.522, Max-Change: 0.00020
Iteration: 315, Log-Lik: -2653.522, Max-Change: 0.00016
Iteration: 316, Log-Lik: -2653.522, Max-Change: 0.00079
Iteration: 317, Log-Lik: -2653.522, Max-Change: 0.00065
Iteration: 318, Log-Lik: -2653.522, Max-Change: 0.00045
Iteration: 319, Log-Lik: -2653.522, Max-Change: 0.00078
Iteration: 320, Log-Lik: -2653.522, Max-Change: 0.00059
Iteration: 321, Log-Lik: -2653.522, Max-Change: 0.00041
Iteration: 322, Log-Lik: -2653.522, Max-Change: 0.00077
Iteration: 323, Log-Lik: -2653.522, Max-Change: 0.00047
Iteration: 324, Log-Lik: -2653.522, Max-Change: 0.00033
Iteration: 325, Log-Lik: -2653.522, Max-Change: 0.00076
Iteration: 326, Log-Lik: -2653.522, Max-Change: 0.00021
Iteration: 327, Log-Lik: -2653.522, Max-Change: 0.00015
Iteration: 328, Log-Lik: -2653.522, Max-Change: 0.00074
Iteration: 329, Log-Lik: -2653.522, Max-Change: 0.00056
Iteration: 330, Log-Lik: -2653.522, Max-Change: 0.00039
Iteration: 331, Log-Lik: -2653.522, Max-Change: 0.00074
Iteration: 332, Log-Lik: -2653.521, Max-Change: 0.00043
Iteration: 333, Log-Lik: -2653.521, Max-Change: 0.00030
Iteration: 334, Log-Lik: -2653.521, Max-Change: 0.00073
Iteration: 335, Log-Lik: -2653.521, Max-Change: 0.00015
Iteration: 336, Log-Lik: -2653.521, Max-Change: 0.00072
Iteration: 337, Log-Lik: -2653.521, Max-Change: 0.00086
Iteration: 338, Log-Lik: -2653.521, Max-Change: 0.00060
Iteration: 339, Log-Lik: -2653.521, Max-Change: 0.00041
Iteration: 340, Log-Lik: -2653.521, Max-Change: 0.00071
Iteration: 341, Log-Lik: -2653.521, Max-Change: 0.00054
Iteration: 342, Log-Lik: -2653.521, Max-Change: 0.00037
Iteration: 343, Log-Lik: -2653.521, Max-Change: 0.00070
Iteration: 344, Log-Lik: -2653.521, Max-Change: 0.00042
Iteration: 345, Log-Lik: -2653.521, Max-Change: 0.00029
Iteration: 346, Log-Lik: -2653.521, Max-Change: 0.00069
Iteration: 347, Log-Lik: -2653.521, Max-Change: 0.00014
Iteration: 348, Log-Lik: -2653.521, Max-Change: 0.00014
Iteration: 349, Log-Lik: -2653.521, Max-Change: 0.00068
Iteration: 350, Log-Lik: -2653.521, Max-Change: 0.00069
Iteration: 351, Log-Lik: -2653.521, Max-Change: 0.00048
Iteration: 352, Log-Lik: -2653.521, Max-Change: 0.00013
Iteration: 353, Log-Lik: -2653.521, Max-Change: 0.00068
Iteration: 354, Log-Lik: -2653.521, Max-Change: 0.00054
Iteration: 355, Log-Lik: -2653.521, Max-Change: 0.00014
Iteration: 356, Log-Lik: -2653.521, Max-Change: 0.00013
Iteration: 357, Log-Lik: -2653.521, Max-Change: 0.00066
Iteration: 358, Log-Lik: -2653.521, Max-Change: 0.00061
Iteration: 359, Log-Lik: -2653.521, Max-Change: 0.00042
Iteration: 360, Log-Lik: -2653.521, Max-Change: 0.00029
Iteration: 361, Log-Lik: -2653.521, Max-Change: 0.00065
Iteration: 362, Log-Lik: -2653.521, Max-Change: 0.00020
Iteration: 363, Log-Lik: -2653.521, Max-Change: 0.00014
Iteration: 364, Log-Lik: -2653.521, Max-Change: 0.00064
Iteration: 365, Log-Lik: -2653.521, Max-Change: 0.00041
Iteration: 366, Log-Lik: -2653.521, Max-Change: 0.00029
Iteration: 367, Log-Lik: -2653.521, Max-Change: 0.00064
Iteration: 368, Log-Lik: -2653.521, Max-Change: 0.00020
Iteration: 369, Log-Lik: -2653.521, Max-Change: 0.00014
Iteration: 370, Log-Lik: -2653.521, Max-Change: 0.00063
Iteration: 371, Log-Lik: -2653.521, Max-Change: 0.00041
Iteration: 372, Log-Lik: -2653.521, Max-Change: 0.00028
Iteration: 373, Log-Lik: -2653.521, Max-Change: 0.00062
Iteration: 374, Log-Lik: -2653.521, Max-Change: 0.00020
Iteration: 375, Log-Lik: -2653.521, Max-Change: 0.00013
Iteration: 376, Log-Lik: -2653.521, Max-Change: 0.00061
Iteration: 377, Log-Lik: -2653.521, Max-Change: 0.00039
Iteration: 378, Log-Lik: -2653.521, Max-Change: 0.00027
Iteration: 379, Log-Lik: -2653.521, Max-Change: 0.00061
Iteration: 380, Log-Lik: -2653.520, Max-Change: 0.00018
Iteration: 381, Log-Lik: -2653.520, Max-Change: 0.00013
Iteration: 382, Log-Lik: -2653.520, Max-Change: 0.00060
Iteration: 383, Log-Lik: -2653.520, Max-Change: 0.00042
Iteration: 384, Log-Lik: -2653.520, Max-Change: 0.00029
Iteration: 385, Log-Lik: -2653.520, Max-Change: 0.00060
Iteration: 386, Log-Lik: -2653.520, Max-Change: 0.00027
Iteration: 387, Log-Lik: -2653.520, Max-Change: 0.00019
Iteration: 388, Log-Lik: -2653.520, Max-Change: 0.00059
Iteration: 389, Log-Lik: -2653.520, Max-Change: 0.00012
Iteration: 390, Log-Lik: -2653.520, Max-Change: 0.00058
Iteration: 391, Log-Lik: -2653.520, Max-Change: 0.00069
Iteration: 392, Log-Lik: -2653.520, Max-Change: 0.00048
Iteration: 393, Log-Lik: -2653.520, Max-Change: 0.00034
Iteration: 394, Log-Lik: -2653.520, Max-Change: 0.00058
Iteration: 395, Log-Lik: -2653.520, Max-Change: 0.00043
Iteration: 396, Log-Lik: -2653.520, Max-Change: 0.00030
Iteration: 397, Log-Lik: -2653.520, Max-Change: 0.00057
Iteration: 398, Log-Lik: -2653.520, Max-Change: 0.00032
Iteration: 399, Log-Lik: -2653.520, Max-Change: 0.00022
Iteration: 400, Log-Lik: -2653.520, Max-Change: 0.00056
Iteration: 401, Log-Lik: -2653.520, Max-Change: 0.00056
Iteration: 402, Log-Lik: -2653.520, Max-Change: 0.00042
Iteration: 403, Log-Lik: -2653.520, Max-Change: 0.00011
Iteration: 404, Log-Lik: -2653.520, Max-Change: 0.00055
Iteration: 405, Log-Lik: -2653.520, Max-Change: 0.00060
Iteration: 406, Log-Lik: -2653.520, Max-Change: 0.00011
Iteration: 407, Log-Lik: -2653.520, Max-Change: 0.00054
Iteration: 408, Log-Lik: -2653.520, Max-Change: 0.00055
Iteration: 409, Log-Lik: -2653.520, Max-Change: 0.00011
Iteration: 410, Log-Lik: -2653.520, Max-Change: 0.00054
Iteration: 411, Log-Lik: -2653.520, Max-Change: 0.00056
Iteration: 412, Log-Lik: -2653.520, Max-Change: 0.00011
Iteration: 413, Log-Lik: -2653.520, Max-Change: 0.00053
Iteration: 414, Log-Lik: -2653.520, Max-Change: 0.00055
Iteration: 415, Log-Lik: -2653.520, Max-Change: 0.00011
Iteration: 416, Log-Lik: -2653.520, Max-Change: 0.00053
Iteration: 417, Log-Lik: -2653.520, Max-Change: 0.00054
Iteration: 418, Log-Lik: -2653.520, Max-Change: 0.00011
Iteration: 419, Log-Lik: -2653.520, Max-Change: 0.00052
Iteration: 420, Log-Lik: -2653.520, Max-Change: 0.00054
Iteration: 421, Log-Lik: -2653.520, Max-Change: 0.00010
Iteration: 422, Log-Lik: -2653.520, Max-Change: 0.00052
Iteration: 423, Log-Lik: -2653.520, Max-Change: 0.00053
Iteration: 424, Log-Lik: -2653.520, Max-Change: 0.00010
Iteration: 425, Log-Lik: -2653.520, Max-Change: 0.00051
Iteration: 426, Log-Lik: -2653.520, Max-Change: 0.00053
Iteration: 427, Log-Lik: -2653.520, Max-Change: 0.00010
Iteration: 428, Log-Lik: -2653.520, Max-Change: 0.00050
Iteration: 429, Log-Lik: -2653.520, Max-Change: 0.00052
Iteration: 430, Log-Lik: -2653.520, Max-Change: 0.00010
Iteration: 431, Log-Lik: -2653.520, Max-Change: 0.00050
Iteration: 432, Log-Lik: -2653.520, Max-Change: 0.00051
Iteration: 433, Log-Lik: -2653.520, Max-Change: 0.00010
Iteration: 434, Log-Lik: -2653.520, Max-Change: 0.00049
Iteration: 435, Log-Lik: -2653.520, Max-Change: 0.00051
Iteration: 436, Log-Lik: -2653.520, Max-Change: 0.00010
coef(mod2)
#> $Item.1
#> a1 a2 d g u
#> par -2.007 0.87 2.648 0 1
#>
#> $Item.2
#> a1 a2 d g u
#> par -0.849 -0.522 0.788 0 1
#>
#> $Item.3
#> a1 a2 d g u
#> par -2.153 -1.836 2.483 0 1
#>
#> $Item.4
#> a1 a2 d g u
#> par -0.756 -0.028 0.485 0 1
#>
#> $Item.5
#> a1 a2 d g u
#> par -0.757 0 1.864 0 1
#>
#> $GroupPars
#> MEAN_1 MEAN_2 COV_11 COV_21 COV_22
#> par 0 0 1 0 1
#>
summary(mod2, rotate = 'oblimin') #oblimin rotation
#>
#> Rotation: oblimin
#>
#> Rotated factor loadings:
#>
#> F1 F2 h2
#> Item.1 0.7944 -0.0111 0.623
#> Item.2 0.0804 0.4630 0.255
#> Item.3 -0.0129 0.8628 0.734
#> Item.4 0.2794 0.1925 0.165
#> Item.5 0.2929 0.1772 0.165
#>
#> Rotated SS loadings: 0.802 1.027
#>
#> Factor correlations:
#>
#> F1 F2
#> F1 1.000
#> F2 0.463 1
residuals(mod2)
#> LD matrix (lower triangle) and standardized residual correlations (upper triangle)
#>
#> Upper triangle summary:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.018 -0.001 0.000 0.000 0.002 0.011
#>
#> Item.1 Item.2 Item.3 Item.4 Item.5
#> Item.1 -0.001 0.001 0.002 0.003
#> Item.2 0.001 0.000 0.011 -0.018
#> Item.3 0.001 0.000 -0.002 0.006
#> Item.4 0.002 0.111 0.004 -0.001
#> Item.5 0.008 0.325 0.041 0.001
plot(mod2)
plot(mod2, rotate = 'oblimin')
anova(mod1, mod2) #compare the two models
#> AIC SABIC HQ BIC logLik X2 df p
#> mod1 5337.610 5354.927 5356.263 5386.688 -2658.805
#> mod2 5335.039 5359.283 5361.153 5403.748 -2653.520 10.571 4 0.032
scoresfull <- fscores(mod2) #factor scores for each response pattern
head(scoresfull)
#> F1 F2
#> [1,] -1.700513 -1.711766
#> [2,] -1.700513 -1.711766
#> [3,] -1.700513 -1.711766
#> [4,] -1.700513 -1.711766
#> [5,] -1.700513 -1.711766
#> [6,] -1.700513 -1.711766
scorestable <- fscores(mod2, full.scores = FALSE) #save factor score table
#>
#> Method: EAP
#> Rotate: oblimin
#>
#> Empirical Reliability:
#>
#> F1 F2
#> 0.2717 0.3565
head(scorestable)
#> Item.1 Item.2 Item.3 Item.4 Item.5 F1 F2 SE_F1
#> [1,] 0 0 0 0 0 -1.700513 -1.7117658 0.8233498
#> [2,] 0 0 0 0 1 -1.442213 -1.5315319 0.8291596
#> [3,] 0 0 0 1 0 -1.448997 -1.5246522 0.8289670
#> [4,] 0 0 0 1 1 -1.186286 -1.3432706 0.8376135
#> [5,] 0 0 1 0 0 -1.369479 -0.7080874 0.8344669
#> [6,] 0 0 1 0 1 -1.099364 -0.5102905 0.8455289
#> SE_F2
#> [1,] 0.7705787
#> [2,] 0.7691522
#> [3,] 0.7691142
#> [4,] 0.7711322
#> [5,] 0.7962954
#> [6,] 0.8101333
# confirmatory (as an example, model is not identified since you need 3 items per factor)
# Two ways to define a confirmatory model: with mirt.model, or with a string
# these model definitions are equivalent
cmodel <- mirt.model('
F1 = 1,4,5
F2 = 2,3')
cmodel2 <- 'F1 = 1,4,5
F2 = 2,3'
cmod <- mirt(data, cmodel)
#>
Iteration: 1, Log-Lik: -2699.825, Max-Change: 0.12711
Iteration: 2, Log-Lik: -2694.976, Max-Change: 0.11542
Iteration: 3, Log-Lik: -2692.006, Max-Change: 0.09999
Iteration: 4, Log-Lik: -2687.101, Max-Change: 0.03783
Iteration: 5, Log-Lik: -2686.796, Max-Change: 0.02687
Iteration: 6, Log-Lik: -2686.657, Max-Change: 0.01944
Iteration: 7, Log-Lik: -2686.485, Max-Change: 0.01320
Iteration: 8, Log-Lik: -2686.465, Max-Change: 0.01296
Iteration: 9, Log-Lik: -2686.448, Max-Change: 0.01236
Iteration: 10, Log-Lik: -2686.377, Max-Change: 0.00963
Iteration: 11, Log-Lik: -2686.369, Max-Change: 0.00919
Iteration: 12, Log-Lik: -2686.363, Max-Change: 0.00800
Iteration: 13, Log-Lik: -2686.346, Max-Change: 0.00698
Iteration: 14, Log-Lik: -2686.341, Max-Change: 0.00640
Iteration: 15, Log-Lik: -2686.338, Max-Change: 0.00648
Iteration: 16, Log-Lik: -2686.326, Max-Change: 0.00528
Iteration: 17, Log-Lik: -2686.323, Max-Change: 0.00549
Iteration: 18, Log-Lik: -2686.321, Max-Change: 0.00422
Iteration: 19, Log-Lik: -2686.318, Max-Change: 0.00499
Iteration: 20, Log-Lik: -2686.317, Max-Change: 0.00386
Iteration: 21, Log-Lik: -2686.315, Max-Change: 0.00370
Iteration: 22, Log-Lik: -2686.310, Max-Change: 0.00285
Iteration: 23, Log-Lik: -2686.309, Max-Change: 0.00284
Iteration: 24, Log-Lik: -2686.308, Max-Change: 0.00277
Iteration: 25, Log-Lik: -2686.305, Max-Change: 0.00210
Iteration: 26, Log-Lik: -2686.305, Max-Change: 0.00348
Iteration: 27, Log-Lik: -2686.304, Max-Change: 0.00202
Iteration: 28, Log-Lik: -2686.304, Max-Change: 0.00201
Iteration: 29, Log-Lik: -2686.304, Max-Change: 0.00319
Iteration: 30, Log-Lik: -2686.303, Max-Change: 0.00156
Iteration: 31, Log-Lik: -2686.303, Max-Change: 0.00179
Iteration: 32, Log-Lik: -2686.303, Max-Change: 0.00277
Iteration: 33, Log-Lik: -2686.302, Max-Change: 0.00151
Iteration: 34, Log-Lik: -2686.302, Max-Change: 0.00150
Iteration: 35, Log-Lik: -2686.302, Max-Change: 0.00145
Iteration: 36, Log-Lik: -2686.302, Max-Change: 0.00137
Iteration: 37, Log-Lik: -2686.302, Max-Change: 0.00136
Iteration: 38, Log-Lik: -2686.301, Max-Change: 0.00298
Iteration: 39, Log-Lik: -2686.301, Max-Change: 0.00136
Iteration: 40, Log-Lik: -2686.301, Max-Change: 0.00233
Iteration: 41, Log-Lik: -2686.301, Max-Change: 0.00117
Iteration: 42, Log-Lik: -2686.301, Max-Change: 0.00112
Iteration: 43, Log-Lik: -2686.300, Max-Change: 0.00228
Iteration: 44, Log-Lik: -2686.300, Max-Change: 0.00054
Iteration: 45, Log-Lik: -2686.300, Max-Change: 0.00037
Iteration: 46, Log-Lik: -2686.300, Max-Change: 0.00042
Iteration: 47, Log-Lik: -2686.300, Max-Change: 0.00039
Iteration: 48, Log-Lik: -2686.300, Max-Change: 0.00041
Iteration: 49, Log-Lik: -2686.300, Max-Change: 0.00036
Iteration: 50, Log-Lik: -2686.300, Max-Change: 0.00041
Iteration: 51, Log-Lik: -2686.300, Max-Change: 0.00185
Iteration: 52, Log-Lik: -2686.299, Max-Change: 0.00207
Iteration: 53, Log-Lik: -2686.299, Max-Change: 0.00027
Iteration: 54, Log-Lik: -2686.299, Max-Change: 0.00031
Iteration: 55, Log-Lik: -2686.299, Max-Change: 0.00031
Iteration: 56, Log-Lik: -2686.299, Max-Change: 0.00033
Iteration: 57, Log-Lik: -2686.299, Max-Change: 0.00159
Iteration: 58, Log-Lik: -2686.299, Max-Change: 0.00035
Iteration: 59, Log-Lik: -2686.299, Max-Change: 0.00028
Iteration: 60, Log-Lik: -2686.299, Max-Change: 0.00032
Iteration: 61, Log-Lik: -2686.299, Max-Change: 0.00143
Iteration: 62, Log-Lik: -2686.299, Max-Change: 0.00080
Iteration: 63, Log-Lik: -2686.299, Max-Change: 0.00053
Iteration: 64, Log-Lik: -2686.299, Max-Change: 0.00026
Iteration: 65, Log-Lik: -2686.299, Max-Change: 0.00029
Iteration: 66, Log-Lik: -2686.299, Max-Change: 0.00134
Iteration: 67, Log-Lik: -2686.299, Max-Change: 0.00046
Iteration: 68, Log-Lik: -2686.299, Max-Change: 0.00031
Iteration: 69, Log-Lik: -2686.299, Max-Change: 0.00028
Iteration: 70, Log-Lik: -2686.299, Max-Change: 0.00123
Iteration: 71, Log-Lik: -2686.299, Max-Change: 0.00028
Iteration: 72, Log-Lik: -2686.299, Max-Change: 0.00021
Iteration: 73, Log-Lik: -2686.299, Max-Change: 0.00120
Iteration: 74, Log-Lik: -2686.299, Max-Change: 0.00027
Iteration: 75, Log-Lik: -2686.299, Max-Change: 0.00024
Iteration: 76, Log-Lik: -2686.299, Max-Change: 0.00108
Iteration: 77, Log-Lik: -2686.299, Max-Change: 0.00025
Iteration: 78, Log-Lik: -2686.299, Max-Change: 0.00019
Iteration: 79, Log-Lik: -2686.299, Max-Change: 0.00105
Iteration: 80, Log-Lik: -2686.299, Max-Change: 0.00022
Iteration: 81, Log-Lik: -2686.299, Max-Change: 0.00021
Iteration: 82, Log-Lik: -2686.298, Max-Change: 0.00095
Iteration: 83, Log-Lik: -2686.298, Max-Change: 0.00028
Iteration: 84, Log-Lik: -2686.298, Max-Change: 0.00019
Iteration: 85, Log-Lik: -2686.298, Max-Change: 0.00091
Iteration: 86, Log-Lik: -2686.298, Max-Change: 0.00086
Iteration: 87, Log-Lik: -2686.298, Max-Change: 0.00019
Iteration: 88, Log-Lik: -2686.298, Max-Change: 0.00018
Iteration: 89, Log-Lik: -2686.298, Max-Change: 0.00078
Iteration: 90, Log-Lik: -2686.298, Max-Change: 0.00041
Iteration: 91, Log-Lik: -2686.298, Max-Change: 0.00017
Iteration: 92, Log-Lik: -2686.298, Max-Change: 0.00014
Iteration: 93, Log-Lik: -2686.298, Max-Change: 0.00016
Iteration: 94, Log-Lik: -2686.298, Max-Change: 0.00014
Iteration: 95, Log-Lik: -2686.298, Max-Change: 0.00016
Iteration: 96, Log-Lik: -2686.298, Max-Change: 0.00072
Iteration: 97, Log-Lik: -2686.298, Max-Change: 0.00028
Iteration: 98, Log-Lik: -2686.298, Max-Change: 0.00019
Iteration: 99, Log-Lik: -2686.298, Max-Change: 0.00015
Iteration: 100, Log-Lik: -2686.298, Max-Change: 0.00067
Iteration: 101, Log-Lik: -2686.298, Max-Change: 0.00014
Iteration: 102, Log-Lik: -2686.298, Max-Change: 0.00012
Iteration: 103, Log-Lik: -2686.298, Max-Change: 0.00013
Iteration: 104, Log-Lik: -2686.298, Max-Change: 0.00061
Iteration: 105, Log-Lik: -2686.298, Max-Change: 0.00023
Iteration: 106, Log-Lik: -2686.298, Max-Change: 0.00013
Iteration: 107, Log-Lik: -2686.298, Max-Change: 0.00011
Iteration: 108, Log-Lik: -2686.298, Max-Change: 0.00012
Iteration: 109, Log-Lik: -2686.298, Max-Change: 0.00011
Iteration: 110, Log-Lik: -2686.298, Max-Change: 0.00012
Iteration: 111, Log-Lik: -2686.298, Max-Change: 0.00056
Iteration: 112, Log-Lik: -2686.298, Max-Change: 0.00022
Iteration: 113, Log-Lik: -2686.298, Max-Change: 0.00015
Iteration: 114, Log-Lik: -2686.298, Max-Change: 0.00012
Iteration: 115, Log-Lik: -2686.298, Max-Change: 0.00052
Iteration: 116, Log-Lik: -2686.298, Max-Change: 0.00011
Iteration: 117, Log-Lik: -2686.298, Max-Change: 0.00048
Iteration: 118, Log-Lik: -2686.298, Max-Change: 0.00032
Iteration: 119, Log-Lik: -2686.298, Max-Change: 0.00022
Iteration: 120, Log-Lik: -2686.298, Max-Change: 0.00014
Iteration: 121, Log-Lik: -2686.298, Max-Change: 0.00048
Iteration: 122, Log-Lik: -2686.298, Max-Change: 0.00016
Iteration: 123, Log-Lik: -2686.298, Max-Change: 0.00010
Iteration: 124, Log-Lik: -2686.298, Max-Change: 0.00044
Iteration: 125, Log-Lik: -2686.298, Max-Change: 0.00008
# cmod <- mirt(data, cmodel2) # same as above
coef(cmod)
#> $Item.1
#> a1 a2 d g u
#> par 1.792 0 2.358 0 1
#>
#> $Item.2
#> a1 a2 d g u
#> par 0 1.427 0.9 0 1
#>
#> $Item.3
#> a1 a2 d g u
#> par 0 1.559 1.725 0 1
#>
#> $Item.4
#> a1 a2 d g u
#> par 0.743 0 0.483 0 1
#>
#> $Item.5
#> a1 a2 d g u
#> par 0.763 0 1.867 0 1
#>
#> $GroupPars
#> MEAN_1 MEAN_2 COV_11 COV_21 COV_22
#> par 0 0 1 0 1
#>
anova(cmod, mod2)
#> AIC SABIC HQ BIC logLik X2 df p
#> cmod 5392.596 5409.913 5411.249 5441.674 -2686.298
#> mod2 5335.039 5359.283 5361.153 5403.748 -2653.520 65.557 4 0
# check if identified by computing information matrix
(cmod <- mirt(data, cmodel, SE = TRUE))
#>
Iteration: 1, Log-Lik: -2699.825, Max-Change: 0.12711
Iteration: 2, Log-Lik: -2694.976, Max-Change: 0.11542
Iteration: 3, Log-Lik: -2692.006, Max-Change: 0.09999
Iteration: 4, Log-Lik: -2687.101, Max-Change: 0.03783
Iteration: 5, Log-Lik: -2686.796, Max-Change: 0.02687
Iteration: 6, Log-Lik: -2686.657, Max-Change: 0.01944
Iteration: 7, Log-Lik: -2686.485, Max-Change: 0.01320
Iteration: 8, Log-Lik: -2686.465, Max-Change: 0.01296
Iteration: 9, Log-Lik: -2686.448, Max-Change: 0.01236
Iteration: 10, Log-Lik: -2686.377, Max-Change: 0.00963
Iteration: 11, Log-Lik: -2686.369, Max-Change: 0.00919
Iteration: 12, Log-Lik: -2686.363, Max-Change: 0.00800
Iteration: 13, Log-Lik: -2686.346, Max-Change: 0.00698
Iteration: 14, Log-Lik: -2686.341, Max-Change: 0.00640
Iteration: 15, Log-Lik: -2686.338, Max-Change: 0.00648
Iteration: 16, Log-Lik: -2686.326, Max-Change: 0.00528
Iteration: 17, Log-Lik: -2686.323, Max-Change: 0.00549
Iteration: 18, Log-Lik: -2686.321, Max-Change: 0.00422
Iteration: 19, Log-Lik: -2686.318, Max-Change: 0.00499
Iteration: 20, Log-Lik: -2686.317, Max-Change: 0.00386
Iteration: 21, Log-Lik: -2686.315, Max-Change: 0.00370
Iteration: 22, Log-Lik: -2686.310, Max-Change: 0.00285
Iteration: 23, Log-Lik: -2686.309, Max-Change: 0.00284
Iteration: 24, Log-Lik: -2686.308, Max-Change: 0.00277
Iteration: 25, Log-Lik: -2686.305, Max-Change: 0.00210
Iteration: 26, Log-Lik: -2686.305, Max-Change: 0.00348
Iteration: 27, Log-Lik: -2686.304, Max-Change: 0.00202
Iteration: 28, Log-Lik: -2686.304, Max-Change: 0.00201
Iteration: 29, Log-Lik: -2686.304, Max-Change: 0.00319
Iteration: 30, Log-Lik: -2686.303, Max-Change: 0.00156
Iteration: 31, Log-Lik: -2686.303, Max-Change: 0.00179
Iteration: 32, Log-Lik: -2686.303, Max-Change: 0.00277
Iteration: 33, Log-Lik: -2686.302, Max-Change: 0.00151
Iteration: 34, Log-Lik: -2686.302, Max-Change: 0.00150
Iteration: 35, Log-Lik: -2686.302, Max-Change: 0.00145
Iteration: 36, Log-Lik: -2686.302, Max-Change: 0.00137
Iteration: 37, Log-Lik: -2686.302, Max-Change: 0.00136
Iteration: 38, Log-Lik: -2686.301, Max-Change: 0.00298
Iteration: 39, Log-Lik: -2686.301, Max-Change: 0.00136
Iteration: 40, Log-Lik: -2686.301, Max-Change: 0.00233
Iteration: 41, Log-Lik: -2686.301, Max-Change: 0.00117
Iteration: 42, Log-Lik: -2686.301, Max-Change: 0.00112
Iteration: 43, Log-Lik: -2686.300, Max-Change: 0.00228
Iteration: 44, Log-Lik: -2686.300, Max-Change: 0.00054
Iteration: 45, Log-Lik: -2686.300, Max-Change: 0.00037
Iteration: 46, Log-Lik: -2686.300, Max-Change: 0.00042
Iteration: 47, Log-Lik: -2686.300, Max-Change: 0.00039
Iteration: 48, Log-Lik: -2686.300, Max-Change: 0.00041
Iteration: 49, Log-Lik: -2686.300, Max-Change: 0.00036
Iteration: 50, Log-Lik: -2686.300, Max-Change: 0.00041
Iteration: 51, Log-Lik: -2686.300, Max-Change: 0.00185
Iteration: 52, Log-Lik: -2686.299, Max-Change: 0.00207
Iteration: 53, Log-Lik: -2686.299, Max-Change: 0.00027
Iteration: 54, Log-Lik: -2686.299, Max-Change: 0.00031
Iteration: 55, Log-Lik: -2686.299, Max-Change: 0.00031
Iteration: 56, Log-Lik: -2686.299, Max-Change: 0.00033
Iteration: 57, Log-Lik: -2686.299, Max-Change: 0.00159
Iteration: 58, Log-Lik: -2686.299, Max-Change: 0.00035
Iteration: 59, Log-Lik: -2686.299, Max-Change: 0.00028
Iteration: 60, Log-Lik: -2686.299, Max-Change: 0.00032
Iteration: 61, Log-Lik: -2686.299, Max-Change: 0.00143
Iteration: 62, Log-Lik: -2686.299, Max-Change: 0.00080
Iteration: 63, Log-Lik: -2686.299, Max-Change: 0.00053
Iteration: 64, Log-Lik: -2686.299, Max-Change: 0.00026
Iteration: 65, Log-Lik: -2686.299, Max-Change: 0.00029
Iteration: 66, Log-Lik: -2686.299, Max-Change: 0.00134
Iteration: 67, Log-Lik: -2686.299, Max-Change: 0.00046
Iteration: 68, Log-Lik: -2686.299, Max-Change: 0.00031
Iteration: 69, Log-Lik: -2686.299, Max-Change: 0.00028
Iteration: 70, Log-Lik: -2686.299, Max-Change: 0.00123
Iteration: 71, Log-Lik: -2686.299, Max-Change: 0.00028
Iteration: 72, Log-Lik: -2686.299, Max-Change: 0.00021
Iteration: 73, Log-Lik: -2686.299, Max-Change: 0.00120
Iteration: 74, Log-Lik: -2686.299, Max-Change: 0.00027
Iteration: 75, Log-Lik: -2686.299, Max-Change: 0.00024
Iteration: 76, Log-Lik: -2686.299, Max-Change: 0.00108
Iteration: 77, Log-Lik: -2686.299, Max-Change: 0.00025
Iteration: 78, Log-Lik: -2686.299, Max-Change: 0.00019
Iteration: 79, Log-Lik: -2686.299, Max-Change: 0.00105
Iteration: 80, Log-Lik: -2686.299, Max-Change: 0.00022
Iteration: 81, Log-Lik: -2686.299, Max-Change: 0.00021
Iteration: 82, Log-Lik: -2686.298, Max-Change: 0.00095
Iteration: 83, Log-Lik: -2686.298, Max-Change: 0.00028
Iteration: 84, Log-Lik: -2686.298, Max-Change: 0.00019
Iteration: 85, Log-Lik: -2686.298, Max-Change: 0.00091
Iteration: 86, Log-Lik: -2686.298, Max-Change: 0.00086
Iteration: 87, Log-Lik: -2686.298, Max-Change: 0.00019
Iteration: 88, Log-Lik: -2686.298, Max-Change: 0.00018
Iteration: 89, Log-Lik: -2686.298, Max-Change: 0.00078
Iteration: 90, Log-Lik: -2686.298, Max-Change: 0.00041
Iteration: 91, Log-Lik: -2686.298, Max-Change: 0.00017
Iteration: 92, Log-Lik: -2686.298, Max-Change: 0.00014
Iteration: 93, Log-Lik: -2686.298, Max-Change: 0.00016
Iteration: 94, Log-Lik: -2686.298, Max-Change: 0.00014
Iteration: 95, Log-Lik: -2686.298, Max-Change: 0.00016
Iteration: 96, Log-Lik: -2686.298, Max-Change: 0.00072
Iteration: 97, Log-Lik: -2686.298, Max-Change: 0.00028
Iteration: 98, Log-Lik: -2686.298, Max-Change: 0.00019
Iteration: 99, Log-Lik: -2686.298, Max-Change: 0.00015
Iteration: 100, Log-Lik: -2686.298, Max-Change: 0.00067
Iteration: 101, Log-Lik: -2686.298, Max-Change: 0.00014
Iteration: 102, Log-Lik: -2686.298, Max-Change: 0.00012
Iteration: 103, Log-Lik: -2686.298, Max-Change: 0.00013
Iteration: 104, Log-Lik: -2686.298, Max-Change: 0.00061
Iteration: 105, Log-Lik: -2686.298, Max-Change: 0.00023
Iteration: 106, Log-Lik: -2686.298, Max-Change: 0.00013
Iteration: 107, Log-Lik: -2686.298, Max-Change: 0.00011
Iteration: 108, Log-Lik: -2686.298, Max-Change: 0.00012
Iteration: 109, Log-Lik: -2686.298, Max-Change: 0.00011
Iteration: 110, Log-Lik: -2686.298, Max-Change: 0.00012
Iteration: 111, Log-Lik: -2686.298, Max-Change: 0.00056
Iteration: 112, Log-Lik: -2686.298, Max-Change: 0.00022
Iteration: 113, Log-Lik: -2686.298, Max-Change: 0.00015
Iteration: 114, Log-Lik: -2686.298, Max-Change: 0.00012
Iteration: 115, Log-Lik: -2686.298, Max-Change: 0.00052
Iteration: 116, Log-Lik: -2686.298, Max-Change: 0.00011
Iteration: 117, Log-Lik: -2686.298, Max-Change: 0.00048
Iteration: 118, Log-Lik: -2686.298, Max-Change: 0.00032
Iteration: 119, Log-Lik: -2686.298, Max-Change: 0.00022
Iteration: 120, Log-Lik: -2686.298, Max-Change: 0.00014
Iteration: 121, Log-Lik: -2686.298, Max-Change: 0.00048
Iteration: 122, Log-Lik: -2686.298, Max-Change: 0.00016
Iteration: 123, Log-Lik: -2686.298, Max-Change: 0.00010
Iteration: 124, Log-Lik: -2686.298, Max-Change: 0.00044
Iteration: 125, Log-Lik: -2686.298, Max-Change: 0.00008
#>
#> Calculating information matrix...
#> Warning: Could not invert information matrix; model may not be (empirically) identified.
#>
#> Call:
#> mirt(data = data, model = cmodel, SE = TRUE)
#>
#> Full-information item factor analysis with 2 factor(s).
#> Converged within 1e-04 tolerance after 125 EM iterations.
#> mirt version: 1.44.3
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 31
#> Latent density type: Gaussian
#>
#> Information matrix estimated with method: Oakes
#> Second-order test: model is not a maximum or the information matrix is too inaccurate
#>
#> Log-likelihood = -2686.298
#> Estimated parameters: 10
#> AIC = 5392.596
#> BIC = 5441.674; SABIC = 5409.913
#> G2 (21) = 86.69, p = 0
#> RMSEA = 0.056, CFI = NaN, TLI = NaN
###########
# data from the 'ltm' package in numeric format
itemstats(Science)
#> $overall
#> N mean_total.score sd_total.score ave.r sd.r alpha SEM.alpha
#> 392 11.668 2.003 0.275 0.098 0.598 1.27
#>
#> $itemstats
#> N mean sd total.r total.r_if_rm alpha_if_rm
#> Comfort 392 3.120 0.588 0.596 0.352 0.552
#> Work 392 2.722 0.807 0.666 0.332 0.567
#> Future 392 2.990 0.757 0.748 0.488 0.437
#> Benefit 392 2.837 0.802 0.684 0.363 0.541
#>
#> $proportions
#> 1 2 3 4
#> Comfort 0.013 0.082 0.679 0.227
#> Work 0.084 0.250 0.526 0.140
#> Future 0.036 0.184 0.536 0.245
#> Benefit 0.054 0.255 0.492 0.199
#>
pmod1 <- mirt(Science, 1)
#>
Iteration: 1, Log-Lik: -1629.361, Max-Change: 0.50660
Iteration: 2, Log-Lik: -1617.374, Max-Change: 0.25442
Iteration: 3, Log-Lik: -1612.894, Max-Change: 0.16991
Iteration: 4, Log-Lik: -1610.306, Max-Change: 0.10461
Iteration: 5, Log-Lik: -1609.814, Max-Change: 0.09162
Iteration: 6, Log-Lik: -1609.534, Max-Change: 0.07363
Iteration: 7, Log-Lik: -1609.030, Max-Change: 0.03677
Iteration: 8, Log-Lik: -1608.988, Max-Change: 0.03200
Iteration: 9, Log-Lik: -1608.958, Max-Change: 0.02754
Iteration: 10, Log-Lik: -1608.878, Max-Change: 0.01443
Iteration: 11, Log-Lik: -1608.875, Max-Change: 0.00847
Iteration: 12, Log-Lik: -1608.873, Max-Change: 0.00515
Iteration: 13, Log-Lik: -1608.872, Max-Change: 0.00550
Iteration: 14, Log-Lik: -1608.872, Max-Change: 0.00318
Iteration: 15, Log-Lik: -1608.871, Max-Change: 0.00462
Iteration: 16, Log-Lik: -1608.871, Max-Change: 0.00277
Iteration: 17, Log-Lik: -1608.870, Max-Change: 0.00145
Iteration: 18, Log-Lik: -1608.870, Max-Change: 0.00175
Iteration: 19, Log-Lik: -1608.870, Max-Change: 0.00126
Iteration: 20, Log-Lik: -1608.870, Max-Change: 0.00025
Iteration: 21, Log-Lik: -1608.870, Max-Change: 0.00285
Iteration: 22, Log-Lik: -1608.870, Max-Change: 0.00108
Iteration: 23, Log-Lik: -1608.870, Max-Change: 0.00022
Iteration: 24, Log-Lik: -1608.870, Max-Change: 0.00059
Iteration: 25, Log-Lik: -1608.870, Max-Change: 0.00014
Iteration: 26, Log-Lik: -1608.870, Max-Change: 0.00068
Iteration: 27, Log-Lik: -1608.870, Max-Change: 0.00065
Iteration: 28, Log-Lik: -1608.870, Max-Change: 0.00019
Iteration: 29, Log-Lik: -1608.870, Max-Change: 0.00061
Iteration: 30, Log-Lik: -1608.870, Max-Change: 0.00012
Iteration: 31, Log-Lik: -1608.870, Max-Change: 0.00012
Iteration: 32, Log-Lik: -1608.870, Max-Change: 0.00058
Iteration: 33, Log-Lik: -1608.870, Max-Change: 0.00055
Iteration: 34, Log-Lik: -1608.870, Max-Change: 0.00015
Iteration: 35, Log-Lik: -1608.870, Max-Change: 0.00052
Iteration: 36, Log-Lik: -1608.870, Max-Change: 0.00010
plot(pmod1)
plot(pmod1, type = 'trace')
plot(pmod1, type = 'itemscore')
summary(pmod1)
#> F1 h2
#> Comfort 0.522 0.273
#> Work 0.584 0.342
#> Future 0.803 0.645
#> Benefit 0.541 0.293
#>
#> SS loadings: 1.552
#> Proportion Var: 0.388
#>
#> Factor correlations:
#>
#> F1
#> F1 1
# Constrain all slopes to be equal with the constrain = list() input or mirt.model() syntax
# first obtain parameter index
values <- mirt(Science,1, pars = 'values')
values #note that slopes are numbered 1,5,9,13, or index with values$parnum[values$name == 'a1']
#> group item class name parnum value lbound ubound est const
#> 1 all Comfort graded a1 1 0.851 -Inf Inf TRUE none
#> 2 all Comfort graded d1 2 4.390 -Inf Inf TRUE none
#> 3 all Comfort graded d2 3 2.583 -Inf Inf TRUE none
#> 4 all Comfort graded d3 4 -1.471 -Inf Inf TRUE none
#> 5 all Work graded a1 5 0.851 -Inf Inf TRUE none
#> 6 all Work graded d1 6 2.707 -Inf Inf TRUE none
#> 7 all Work graded d2 7 0.842 -Inf Inf TRUE none
#> 8 all Work graded d3 8 -2.120 -Inf Inf TRUE none
#> 9 all Future graded a1 9 0.851 -Inf Inf TRUE none
#> 10 all Future graded d1 10 3.543 -Inf Inf TRUE none
#> 11 all Future graded d2 11 1.522 -Inf Inf TRUE none
#> 12 all Future graded d3 12 -1.357 -Inf Inf TRUE none
#> 13 all Benefit graded a1 13 0.851 -Inf Inf TRUE none
#> 14 all Benefit graded d1 14 3.166 -Inf Inf TRUE none
#> 15 all Benefit graded d2 15 0.982 -Inf Inf TRUE none
#> 16 all Benefit graded d3 16 -1.661 -Inf Inf TRUE none
#> 17 all GROUP GroupPars MEAN_1 17 0.000 -Inf Inf FALSE none
#> 18 all GROUP GroupPars COV_11 18 1.000 0 Inf FALSE none
#> nconst prior.type prior_1 prior_2
#> 1 none none NaN NaN
#> 2 none none NaN NaN
#> 3 none none NaN NaN
#> 4 none none NaN NaN
#> 5 none none NaN NaN
#> 6 none none NaN NaN
#> 7 none none NaN NaN
#> 8 none none NaN NaN
#> 9 none none NaN NaN
#> 10 none none NaN NaN
#> 11 none none NaN NaN
#> 12 none none NaN NaN
#> 13 none none NaN NaN
#> 14 none none NaN NaN
#> 15 none none NaN NaN
#> 16 none none NaN NaN
#> 17 none none NaN NaN
#> 18 none none NaN NaN
(pmod1_equalslopes <- mirt(Science, 1, constrain = list(c(1,5,9,13))))
#>
Iteration: 1, Log-Lik: -1629.361, Max-Change: 0.52419
Iteration: 2, Log-Lik: -1618.990, Max-Change: 0.13337
Iteration: 3, Log-Lik: -1615.588, Max-Change: 0.07100
Iteration: 4, Log-Lik: -1614.373, Max-Change: 0.03752
Iteration: 5, Log-Lik: -1614.057, Max-Change: 0.02162
Iteration: 6, Log-Lik: -1613.952, Max-Change: 0.01259
Iteration: 7, Log-Lik: -1613.909, Max-Change: 0.00555
Iteration: 8, Log-Lik: -1613.902, Max-Change: 0.00334
Iteration: 9, Log-Lik: -1613.900, Max-Change: 0.00173
Iteration: 10, Log-Lik: -1613.900, Max-Change: 0.00133
Iteration: 11, Log-Lik: -1613.899, Max-Change: 0.00051
Iteration: 12, Log-Lik: -1613.899, Max-Change: 0.00022
Iteration: 13, Log-Lik: -1613.899, Max-Change: 0.00018
Iteration: 14, Log-Lik: -1613.899, Max-Change: 0.00013
Iteration: 15, Log-Lik: -1613.899, Max-Change: 0.00009
#>
#> Call:
#> mirt(data = Science, model = 1, constrain = list(c(1, 5, 9, 13)))
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 15 EM iterations.
#> mirt version: 1.44.3
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -1613.899
#> Estimated parameters: 13
#> AIC = 3253.798
#> BIC = 3305.425; SABIC = 3264.176
#> G2 (242) = 223.62, p = 0.7959
#> RMSEA = 0, CFI = NaN, TLI = NaN
coef(pmod1_equalslopes)
#> $Comfort
#> a1 d1 d2 d3
#> par 1.321 5.165 2.844 -1.587
#>
#> $Work
#> a1 d1 d2 d3
#> par 1.321 2.992 0.934 -2.319
#>
#> $Future
#> a1 d1 d2 d3
#> par 1.321 4.067 1.662 -1.488
#>
#> $Benefit
#> a1 d1 d2 d3
#> par 1.321 3.55 1.057 -1.806
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#>
# using mirt.model syntax, constrain all item slopes to be equal
model <- 'F = 1-4
CONSTRAIN = (1-4, a1)'
(pmod1_equalslopes <- mirt(Science, model))
#>
Iteration: 1, Log-Lik: -1629.361, Max-Change: 0.52419
Iteration: 2, Log-Lik: -1618.990, Max-Change: 0.13337
Iteration: 3, Log-Lik: -1615.588, Max-Change: 0.07100
Iteration: 4, Log-Lik: -1614.373, Max-Change: 0.03752
Iteration: 5, Log-Lik: -1614.057, Max-Change: 0.02162
Iteration: 6, Log-Lik: -1613.952, Max-Change: 0.01259
Iteration: 7, Log-Lik: -1613.909, Max-Change: 0.00555
Iteration: 8, Log-Lik: -1613.902, Max-Change: 0.00334
Iteration: 9, Log-Lik: -1613.900, Max-Change: 0.00173
Iteration: 10, Log-Lik: -1613.900, Max-Change: 0.00133
Iteration: 11, Log-Lik: -1613.899, Max-Change: 0.00051
Iteration: 12, Log-Lik: -1613.899, Max-Change: 0.00022
Iteration: 13, Log-Lik: -1613.899, Max-Change: 0.00018
Iteration: 14, Log-Lik: -1613.899, Max-Change: 0.00013
Iteration: 15, Log-Lik: -1613.899, Max-Change: 0.00009
#>
#> Call:
#> mirt(data = Science, model = model)
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 15 EM iterations.
#> mirt version: 1.44.3
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -1613.899
#> Estimated parameters: 13
#> AIC = 3253.798
#> BIC = 3305.425; SABIC = 3264.176
#> G2 (242) = 223.62, p = 0.7959
#> RMSEA = 0, CFI = NaN, TLI = NaN
coef(pmod1_equalslopes)
#> $Comfort
#> a1 d1 d2 d3
#> par 1.321 5.165 2.844 -1.587
#>
#> $Work
#> a1 d1 d2 d3
#> par 1.321 2.992 0.934 -2.319
#>
#> $Future
#> a1 d1 d2 d3
#> par 1.321 4.067 1.662 -1.488
#>
#> $Benefit
#> a1 d1 d2 d3
#> par 1.321 3.55 1.057 -1.806
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#>
coef(pmod1_equalslopes)
#> $Comfort
#> a1 d1 d2 d3
#> par 1.321 5.165 2.844 -1.587
#>
#> $Work
#> a1 d1 d2 d3
#> par 1.321 2.992 0.934 -2.319
#>
#> $Future
#> a1 d1 d2 d3
#> par 1.321 4.067 1.662 -1.488
#>
#> $Benefit
#> a1 d1 d2 d3
#> par 1.321 3.55 1.057 -1.806
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#>
anova(pmod1_equalslopes, pmod1) #significantly worse fit with almost all criteria
#> AIC SABIC HQ BIC logLik X2 df p
#> pmod1_equalslopes 3253.798 3264.176 3274.259 3305.425 -1613.899
#> pmod1 3249.739 3262.512 3274.922 3313.279 -1608.870 10.059 3 0.018
pmod2 <- mirt(Science, 2)
#>
Iteration: 1, Log-Lik: -1634.562, Max-Change: 0.49365
Iteration: 2, Log-Lik: -1608.496, Max-Change: 0.17069
Iteration: 3, Log-Lik: -1604.784, Max-Change: 0.08523
Iteration: 4, Log-Lik: -1604.195, Max-Change: 0.05345
Iteration: 5, Log-Lik: -1603.777, Max-Change: 0.03491
Iteration: 6, Log-Lik: -1603.581, Max-Change: 0.02948
Iteration: 7, Log-Lik: -1603.263, Max-Change: 0.02614
Iteration: 8, Log-Lik: -1603.177, Max-Change: 0.02281
Iteration: 9, Log-Lik: -1603.099, Max-Change: 0.02311
Iteration: 10, Log-Lik: -1602.717, Max-Change: 0.01961
Iteration: 11, Log-Lik: -1602.673, Max-Change: 0.01556
Iteration: 12, Log-Lik: -1602.635, Max-Change: 0.01694
Iteration: 13, Log-Lik: -1602.443, Max-Change: 0.01534
Iteration: 14, Log-Lik: -1602.421, Max-Change: 0.01311
Iteration: 15, Log-Lik: -1602.401, Max-Change: 0.01384
Iteration: 16, Log-Lik: -1602.303, Max-Change: 0.00987
Iteration: 17, Log-Lik: -1602.288, Max-Change: 0.01006
Iteration: 18, Log-Lik: -1602.275, Max-Change: 0.00939
Iteration: 19, Log-Lik: -1602.206, Max-Change: 0.00972
Iteration: 20, Log-Lik: -1602.198, Max-Change: 0.01016
Iteration: 21, Log-Lik: -1602.189, Max-Change: 0.00670
Iteration: 22, Log-Lik: -1602.165, Max-Change: 0.00679
Iteration: 23, Log-Lik: -1602.158, Max-Change: 0.00694
Iteration: 24, Log-Lik: -1602.152, Max-Change: 0.00555
Iteration: 25, Log-Lik: -1602.116, Max-Change: 0.00689
Iteration: 26, Log-Lik: -1602.112, Max-Change: 0.00465
Iteration: 27, Log-Lik: -1602.107, Max-Change: 0.00478
Iteration: 28, Log-Lik: -1602.082, Max-Change: 0.00389
Iteration: 29, Log-Lik: -1602.078, Max-Change: 0.00745
Iteration: 30, Log-Lik: -1602.074, Max-Change: 0.00380
Iteration: 31, Log-Lik: -1602.069, Max-Change: 0.00373
Iteration: 32, Log-Lik: -1602.066, Max-Change: 0.00792
Iteration: 33, Log-Lik: -1602.063, Max-Change: 0.00397
Iteration: 34, Log-Lik: -1602.060, Max-Change: 0.00364
Iteration: 35, Log-Lik: -1602.057, Max-Change: 0.00808
Iteration: 36, Log-Lik: -1602.055, Max-Change: 0.00332
Iteration: 37, Log-Lik: -1602.052, Max-Change: 0.00613
Iteration: 38, Log-Lik: -1602.049, Max-Change: 0.00319
Iteration: 39, Log-Lik: -1602.047, Max-Change: 0.00596
Iteration: 40, Log-Lik: -1602.043, Max-Change: 0.00303
Iteration: 41, Log-Lik: -1602.040, Max-Change: 0.00302
Iteration: 42, Log-Lik: -1602.038, Max-Change: 0.00611
Iteration: 43, Log-Lik: -1602.034, Max-Change: 0.00392
Iteration: 44, Log-Lik: -1602.033, Max-Change: 0.00329
Iteration: 45, Log-Lik: -1602.030, Max-Change: 0.00406
Iteration: 46, Log-Lik: -1602.026, Max-Change: 0.00303
Iteration: 47, Log-Lik: -1602.025, Max-Change: 0.00261
Iteration: 48, Log-Lik: -1602.023, Max-Change: 0.00457
Iteration: 49, Log-Lik: -1602.021, Max-Change: 0.00265
Iteration: 50, Log-Lik: -1602.020, Max-Change: 0.00290
Iteration: 51, Log-Lik: -1602.018, Max-Change: 0.00268
Iteration: 52, Log-Lik: -1602.010, Max-Change: 0.00310
Iteration: 53, Log-Lik: -1602.008, Max-Change: 0.00361
Iteration: 54, Log-Lik: -1602.007, Max-Change: 0.00238
Iteration: 55, Log-Lik: -1602.006, Max-Change: 0.00327
Iteration: 56, Log-Lik: -1602.005, Max-Change: 0.00269
Iteration: 57, Log-Lik: -1602.004, Max-Change: 0.00324
Iteration: 58, Log-Lik: -1602.002, Max-Change: 0.00218
Iteration: 59, Log-Lik: -1602.001, Max-Change: 0.00198
Iteration: 60, Log-Lik: -1602.000, Max-Change: 0.00346
Iteration: 61, Log-Lik: -1601.999, Max-Change: 0.00226
Iteration: 62, Log-Lik: -1601.998, Max-Change: 0.00247
Iteration: 63, Log-Lik: -1601.997, Max-Change: 0.00264
Iteration: 64, Log-Lik: -1601.996, Max-Change: 0.00380
Iteration: 65, Log-Lik: -1601.995, Max-Change: 0.00236
Iteration: 66, Log-Lik: -1601.994, Max-Change: 0.00244
Iteration: 67, Log-Lik: -1601.992, Max-Change: 0.00164
Iteration: 68, Log-Lik: -1601.992, Max-Change: 0.00214
Iteration: 69, Log-Lik: -1601.991, Max-Change: 0.00193
Iteration: 70, Log-Lik: -1601.990, Max-Change: 0.00267
Iteration: 71, Log-Lik: -1601.989, Max-Change: 0.00227
Iteration: 72, Log-Lik: -1601.989, Max-Change: 0.00232
Iteration: 73, Log-Lik: -1601.988, Max-Change: 0.00172
Iteration: 74, Log-Lik: -1601.987, Max-Change: 0.00149
Iteration: 75, Log-Lik: -1601.987, Max-Change: 0.00245
Iteration: 76, Log-Lik: -1601.986, Max-Change: 0.00149
Iteration: 77, Log-Lik: -1601.985, Max-Change: 0.00215
Iteration: 78, Log-Lik: -1601.985, Max-Change: 0.00206
Iteration: 79, Log-Lik: -1601.984, Max-Change: 0.00223
Iteration: 80, Log-Lik: -1601.983, Max-Change: 0.00190
Iteration: 81, Log-Lik: -1601.983, Max-Change: 0.00181
Iteration: 82, Log-Lik: -1601.982, Max-Change: 0.00125
Iteration: 83, Log-Lik: -1601.981, Max-Change: 0.00136
Iteration: 84, Log-Lik: -1601.981, Max-Change: 0.00207
Iteration: 85, Log-Lik: -1601.981, Max-Change: 0.00124
Iteration: 86, Log-Lik: -1601.980, Max-Change: 0.00187
Iteration: 87, Log-Lik: -1601.980, Max-Change: 0.00123
Iteration: 88, Log-Lik: -1601.980, Max-Change: 0.00193
Iteration: 89, Log-Lik: -1601.980, Max-Change: 0.00123
Iteration: 90, Log-Lik: -1601.979, Max-Change: 0.00198
Iteration: 91, Log-Lik: -1601.979, Max-Change: 0.00118
Iteration: 92, Log-Lik: -1601.979, Max-Change: 0.00121
Iteration: 93, Log-Lik: -1601.979, Max-Change: 0.00196
Iteration: 94, Log-Lik: -1601.978, Max-Change: 0.00112
Iteration: 95, Log-Lik: -1601.978, Max-Change: 0.00117
Iteration: 96, Log-Lik: -1601.978, Max-Change: 0.00193
Iteration: 97, Log-Lik: -1601.978, Max-Change: 0.00106
Iteration: 98, Log-Lik: -1601.977, Max-Change: 0.00112
Iteration: 99, Log-Lik: -1601.977, Max-Change: 0.00187
Iteration: 100, Log-Lik: -1601.977, Max-Change: 0.00103
Iteration: 101, Log-Lik: -1601.977, Max-Change: 0.00109
Iteration: 102, Log-Lik: -1601.977, Max-Change: 0.00127
Iteration: 103, Log-Lik: -1601.976, Max-Change: 0.00118
Iteration: 104, Log-Lik: -1601.976, Max-Change: 0.00115
Iteration: 105, Log-Lik: -1601.976, Max-Change: 0.00115
Iteration: 106, Log-Lik: -1601.975, Max-Change: 0.00108
Iteration: 107, Log-Lik: -1601.975, Max-Change: 0.00108
Iteration: 108, Log-Lik: -1601.975, Max-Change: 0.00107
Iteration: 109, Log-Lik: -1601.974, Max-Change: 0.00103
Iteration: 110, Log-Lik: -1601.974, Max-Change: 0.00102
Iteration: 111, Log-Lik: -1601.974, Max-Change: 0.00101
Iteration: 112, Log-Lik: -1601.974, Max-Change: 0.00083
Iteration: 113, Log-Lik: -1601.974, Max-Change: 0.00088
Iteration: 114, Log-Lik: -1601.974, Max-Change: 0.00090
Iteration: 115, Log-Lik: -1601.973, Max-Change: 0.00108
Iteration: 116, Log-Lik: -1601.973, Max-Change: 0.00037
Iteration: 117, Log-Lik: -1601.973, Max-Change: 0.00138
Iteration: 118, Log-Lik: -1601.973, Max-Change: 0.00320
Iteration: 119, Log-Lik: -1601.973, Max-Change: 0.00085
Iteration: 120, Log-Lik: -1601.973, Max-Change: 0.00039
Iteration: 121, Log-Lik: -1601.973, Max-Change: 0.00034
Iteration: 122, Log-Lik: -1601.973, Max-Change: 0.00026
Iteration: 123, Log-Lik: -1601.973, Max-Change: 0.00109
Iteration: 124, Log-Lik: -1601.973, Max-Change: 0.00128
Iteration: 125, Log-Lik: -1601.973, Max-Change: 0.00113
Iteration: 126, Log-Lik: -1601.973, Max-Change: 0.00094
Iteration: 127, Log-Lik: -1601.973, Max-Change: 0.00080
Iteration: 128, Log-Lik: -1601.972, Max-Change: 0.00028
Iteration: 129, Log-Lik: -1601.972, Max-Change: 0.00105
Iteration: 130, Log-Lik: -1601.972, Max-Change: 0.00291
Iteration: 131, Log-Lik: -1601.972, Max-Change: 0.00082
Iteration: 132, Log-Lik: -1601.972, Max-Change: 0.00034
Iteration: 133, Log-Lik: -1601.972, Max-Change: 0.00029
Iteration: 134, Log-Lik: -1601.972, Max-Change: 0.00112
Iteration: 135, Log-Lik: -1601.972, Max-Change: 0.00244
Iteration: 136, Log-Lik: -1601.972, Max-Change: 0.00039
Iteration: 137, Log-Lik: -1601.972, Max-Change: 0.00027
Iteration: 138, Log-Lik: -1601.972, Max-Change: 0.00022
Iteration: 139, Log-Lik: -1601.972, Max-Change: 0.00112
Iteration: 140, Log-Lik: -1601.972, Max-Change: 0.00024
Iteration: 141, Log-Lik: -1601.972, Max-Change: 0.00098
Iteration: 142, Log-Lik: -1601.972, Max-Change: 0.00261
Iteration: 143, Log-Lik: -1601.972, Max-Change: 0.00031
Iteration: 144, Log-Lik: -1601.972, Max-Change: 0.00023
Iteration: 145, Log-Lik: -1601.972, Max-Change: 0.00208
Iteration: 146, Log-Lik: -1601.972, Max-Change: 0.00074
Iteration: 147, Log-Lik: -1601.972, Max-Change: 0.00031
Iteration: 148, Log-Lik: -1601.972, Max-Change: 0.00027
Iteration: 149, Log-Lik: -1601.971, Max-Change: 0.00104
Iteration: 150, Log-Lik: -1601.971, Max-Change: 0.00114
Iteration: 151, Log-Lik: -1601.971, Max-Change: 0.00026
Iteration: 152, Log-Lik: -1601.971, Max-Change: 0.00099
Iteration: 153, Log-Lik: -1601.971, Max-Change: 0.00235
Iteration: 154, Log-Lik: -1601.971, Max-Change: 0.00028
Iteration: 155, Log-Lik: -1601.971, Max-Change: 0.00022
Iteration: 156, Log-Lik: -1601.971, Max-Change: 0.00019
Iteration: 157, Log-Lik: -1601.971, Max-Change: 0.00104
Iteration: 158, Log-Lik: -1601.971, Max-Change: 0.00023
Iteration: 159, Log-Lik: -1601.971, Max-Change: 0.00088
Iteration: 160, Log-Lik: -1601.971, Max-Change: 0.00085
Iteration: 161, Log-Lik: -1601.971, Max-Change: 0.00030
Iteration: 162, Log-Lik: -1601.971, Max-Change: 0.00019
Iteration: 163, Log-Lik: -1601.971, Max-Change: 0.00075
Iteration: 164, Log-Lik: -1601.971, Max-Change: 0.00106
Iteration: 165, Log-Lik: -1601.971, Max-Change: 0.00093
Iteration: 166, Log-Lik: -1601.971, Max-Change: 0.00081
Iteration: 167, Log-Lik: -1601.971, Max-Change: 0.00068
Iteration: 168, Log-Lik: -1601.971, Max-Change: 0.00022
Iteration: 169, Log-Lik: -1601.971, Max-Change: 0.00020
Iteration: 170, Log-Lik: -1601.971, Max-Change: 0.00080
Iteration: 171, Log-Lik: -1601.971, Max-Change: 0.00104
Iteration: 172, Log-Lik: -1601.971, Max-Change: 0.00026
Iteration: 173, Log-Lik: -1601.971, Max-Change: 0.00019
Iteration: 174, Log-Lik: -1601.971, Max-Change: 0.00078
Iteration: 175, Log-Lik: -1601.971, Max-Change: 0.00103
Iteration: 176, Log-Lik: -1601.971, Max-Change: 0.00071
Iteration: 177, Log-Lik: -1601.971, Max-Change: 0.00014
Iteration: 178, Log-Lik: -1601.971, Max-Change: 0.00066
Iteration: 179, Log-Lik: -1601.971, Max-Change: 0.00021
Iteration: 180, Log-Lik: -1601.971, Max-Change: 0.00065
Iteration: 181, Log-Lik: -1601.971, Max-Change: 0.00147
Iteration: 182, Log-Lik: -1601.970, Max-Change: 0.00020
Iteration: 183, Log-Lik: -1601.970, Max-Change: 0.00017
Iteration: 184, Log-Lik: -1601.970, Max-Change: 0.00062
Iteration: 185, Log-Lik: -1601.970, Max-Change: 0.00058
Iteration: 186, Log-Lik: -1601.970, Max-Change: 0.00064
Iteration: 187, Log-Lik: -1601.970, Max-Change: 0.00105
Iteration: 188, Log-Lik: -1601.970, Max-Change: 0.00019
Iteration: 189, Log-Lik: -1601.970, Max-Change: 0.00077
Iteration: 190, Log-Lik: -1601.970, Max-Change: 0.00071
Iteration: 191, Log-Lik: -1601.970, Max-Change: 0.00021
Iteration: 192, Log-Lik: -1601.970, Max-Change: 0.00077
Iteration: 193, Log-Lik: -1601.970, Max-Change: 0.00081
Iteration: 194, Log-Lik: -1601.970, Max-Change: 0.00028
Iteration: 195, Log-Lik: -1601.970, Max-Change: 0.00018
Iteration: 196, Log-Lik: -1601.970, Max-Change: 0.00069
Iteration: 197, Log-Lik: -1601.970, Max-Change: 0.00063
Iteration: 198, Log-Lik: -1601.970, Max-Change: 0.00020
Iteration: 199, Log-Lik: -1601.970, Max-Change: 0.00018
Iteration: 200, Log-Lik: -1601.970, Max-Change: 0.00068
Iteration: 201, Log-Lik: -1601.970, Max-Change: 0.00064
Iteration: 202, Log-Lik: -1601.970, Max-Change: 0.00023
Iteration: 203, Log-Lik: -1601.970, Max-Change: 0.00016
Iteration: 204, Log-Lik: -1601.970, Max-Change: 0.00062
Iteration: 205, Log-Lik: -1601.970, Max-Change: 0.00064
Iteration: 206, Log-Lik: -1601.970, Max-Change: 0.00021
Iteration: 207, Log-Lik: -1601.970, Max-Change: 0.00072
Iteration: 208, Log-Lik: -1601.970, Max-Change: 0.00018
Iteration: 209, Log-Lik: -1601.970, Max-Change: 0.00061
Iteration: 210, Log-Lik: -1601.970, Max-Change: 0.00020
Iteration: 211, Log-Lik: -1601.970, Max-Change: 0.00018
Iteration: 212, Log-Lik: -1601.970, Max-Change: 0.00067
Iteration: 213, Log-Lik: -1601.970, Max-Change: 0.00065
Iteration: 214, Log-Lik: -1601.970, Max-Change: 0.00021
Iteration: 215, Log-Lik: -1601.970, Max-Change: 0.00014
Iteration: 216, Log-Lik: -1601.970, Max-Change: 0.00058
Iteration: 217, Log-Lik: -1601.970, Max-Change: 0.00060
Iteration: 218, Log-Lik: -1601.970, Max-Change: 0.00020
Iteration: 219, Log-Lik: -1601.970, Max-Change: 0.00068
Iteration: 220, Log-Lik: -1601.970, Max-Change: 0.00019
Iteration: 221, Log-Lik: -1601.970, Max-Change: 0.00059
Iteration: 222, Log-Lik: -1601.970, Max-Change: 0.00019
Iteration: 223, Log-Lik: -1601.970, Max-Change: 0.00018
Iteration: 224, Log-Lik: -1601.970, Max-Change: 0.00064
Iteration: 225, Log-Lik: -1601.970, Max-Change: 0.00013
Iteration: 226, Log-Lik: -1601.970, Max-Change: 0.00059
Iteration: 227, Log-Lik: -1601.970, Max-Change: 0.00020
Iteration: 228, Log-Lik: -1601.970, Max-Change: 0.00013
Iteration: 229, Log-Lik: -1601.970, Max-Change: 0.00054
Iteration: 230, Log-Lik: -1601.970, Max-Change: 0.00052
Iteration: 231, Log-Lik: -1601.970, Max-Change: 0.00015
Iteration: 232, Log-Lik: -1601.970, Max-Change: 0.00014
Iteration: 233, Log-Lik: -1601.970, Max-Change: 0.00055
Iteration: 234, Log-Lik: -1601.970, Max-Change: 0.00052
Iteration: 235, Log-Lik: -1601.970, Max-Change: 0.00019
Iteration: 236, Log-Lik: -1601.970, Max-Change: 0.00013
Iteration: 237, Log-Lik: -1601.970, Max-Change: 0.00053
Iteration: 238, Log-Lik: -1601.970, Max-Change: 0.00054
Iteration: 239, Log-Lik: -1601.970, Max-Change: 0.00017
Iteration: 240, Log-Lik: -1601.970, Max-Change: 0.00062
Iteration: 241, Log-Lik: -1601.970, Max-Change: 0.00017
Iteration: 242, Log-Lik: -1601.970, Max-Change: 0.00053
Iteration: 243, Log-Lik: -1601.970, Max-Change: 0.00017
Iteration: 244, Log-Lik: -1601.970, Max-Change: 0.00016
Iteration: 245, Log-Lik: -1601.970, Max-Change: 0.00058
Iteration: 246, Log-Lik: -1601.970, Max-Change: 0.00011
Iteration: 247, Log-Lik: -1601.970, Max-Change: 0.00054
Iteration: 248, Log-Lik: -1601.970, Max-Change: 0.00018
Iteration: 249, Log-Lik: -1601.970, Max-Change: 0.00062
Iteration: 250, Log-Lik: -1601.970, Max-Change: 0.00018
Iteration: 251, Log-Lik: -1601.970, Max-Change: 0.00054
Iteration: 252, Log-Lik: -1601.970, Max-Change: 0.00017
Iteration: 253, Log-Lik: -1601.970, Max-Change: 0.00016
Iteration: 254, Log-Lik: -1601.970, Max-Change: 0.00058
Iteration: 255, Log-Lik: -1601.970, Max-Change: 0.00012
Iteration: 256, Log-Lik: -1601.970, Max-Change: 0.00055
Iteration: 257, Log-Lik: -1601.970, Max-Change: 0.00018
Iteration: 258, Log-Lik: -1601.970, Max-Change: 0.00012
Iteration: 259, Log-Lik: -1601.970, Max-Change: 0.00050
Iteration: 260, Log-Lik: -1601.969, Max-Change: 0.00048
Iteration: 261, Log-Lik: -1601.969, Max-Change: 0.00014
Iteration: 262, Log-Lik: -1601.969, Max-Change: 0.00013
Iteration: 263, Log-Lik: -1601.969, Max-Change: 0.00051
Iteration: 264, Log-Lik: -1601.969, Max-Change: 0.00049
Iteration: 265, Log-Lik: -1601.969, Max-Change: 0.00017
Iteration: 266, Log-Lik: -1601.969, Max-Change: 0.00059
Iteration: 267, Log-Lik: -1601.969, Max-Change: 0.00012
Iteration: 268, Log-Lik: -1601.969, Max-Change: 0.00011
Iteration: 269, Log-Lik: -1601.969, Max-Change: 0.00047
Iteration: 270, Log-Lik: -1601.969, Max-Change: 0.00013
Iteration: 271, Log-Lik: -1601.969, Max-Change: 0.00012
Iteration: 272, Log-Lik: -1601.969, Max-Change: 0.00049
Iteration: 273, Log-Lik: -1601.969, Max-Change: 0.00047
Iteration: 274, Log-Lik: -1601.969, Max-Change: 0.00016
Iteration: 275, Log-Lik: -1601.969, Max-Change: 0.00058
Iteration: 276, Log-Lik: -1601.969, Max-Change: 0.00012
Iteration: 277, Log-Lik: -1601.969, Max-Change: 0.00011
Iteration: 278, Log-Lik: -1601.969, Max-Change: 0.00046
Iteration: 279, Log-Lik: -1601.969, Max-Change: 0.00012
Iteration: 280, Log-Lik: -1601.969, Max-Change: 0.00012
Iteration: 281, Log-Lik: -1601.969, Max-Change: 0.00048
Iteration: 282, Log-Lik: -1601.969, Max-Change: 0.00047
Iteration: 283, Log-Lik: -1601.969, Max-Change: 0.00016
Iteration: 284, Log-Lik: -1601.969, Max-Change: 0.00056
Iteration: 285, Log-Lik: -1601.969, Max-Change: 0.00011
Iteration: 286, Log-Lik: -1601.969, Max-Change: 0.00011
Iteration: 287, Log-Lik: -1601.969, Max-Change: 0.00045
Iteration: 288, Log-Lik: -1601.969, Max-Change: 0.00012
Iteration: 289, Log-Lik: -1601.969, Max-Change: 0.00011
Iteration: 290, Log-Lik: -1601.969, Max-Change: 0.00047
Iteration: 291, Log-Lik: -1601.969, Max-Change: 0.00046
Iteration: 292, Log-Lik: -1601.969, Max-Change: 0.00016
Iteration: 293, Log-Lik: -1601.969, Max-Change: 0.00055
Iteration: 294, Log-Lik: -1601.969, Max-Change: 0.00011
Iteration: 295, Log-Lik: -1601.969, Max-Change: 0.00010
Iteration: 296, Log-Lik: -1601.969, Max-Change: 0.00044
Iteration: 297, Log-Lik: -1601.969, Max-Change: 0.00012
Iteration: 298, Log-Lik: -1601.969, Max-Change: 0.00011
Iteration: 299, Log-Lik: -1601.969, Max-Change: 0.00046
Iteration: 300, Log-Lik: -1601.969, Max-Change: 0.00045
Iteration: 301, Log-Lik: -1601.969, Max-Change: 0.00015
Iteration: 302, Log-Lik: -1601.969, Max-Change: 0.00054
Iteration: 303, Log-Lik: -1601.969, Max-Change: 0.00011
Iteration: 304, Log-Lik: -1601.969, Max-Change: 0.00010
Iteration: 305, Log-Lik: -1601.969, Max-Change: 0.00043
Iteration: 306, Log-Lik: -1601.969, Max-Change: 0.00012
Iteration: 307, Log-Lik: -1601.969, Max-Change: 0.00011
Iteration: 308, Log-Lik: -1601.969, Max-Change: 0.00045
Iteration: 309, Log-Lik: -1601.969, Max-Change: 0.00044
Iteration: 310, Log-Lik: -1601.969, Max-Change: 0.00015
Iteration: 311, Log-Lik: -1601.969, Max-Change: 0.00053
Iteration: 312, Log-Lik: -1601.969, Max-Change: 0.00011
Iteration: 313, Log-Lik: -1601.969, Max-Change: 0.00010
summary(pmod2)
#>
#> Rotation: oblimin
#>
#> Rotated factor loadings:
#>
#> F1 F2 h2
#> Comfort 0.6016 0.0312 0.382
#> Work -0.0573 0.7971 0.592
#> Future 0.3302 0.5153 0.548
#> Benefit 0.7231 -0.0239 0.506
#>
#> Rotated SS loadings: 0.997 0.902
#>
#> Factor correlations:
#>
#> F1 F2
#> F1 1.000
#> F2 0.511 1
plot(pmod2, rotate = 'oblimin')
itemplot(pmod2, 1, rotate = 'oblimin')
anova(pmod1, pmod2)
#> AIC SABIC HQ BIC logLik X2 df p
#> pmod1 3249.739 3262.512 3274.922 3313.279 -1608.870
#> pmod2 3241.938 3257.106 3271.843 3317.392 -1601.969 13.801 3 0.003
# unidimensional fit with a generalized partial credit and nominal model
(gpcmod <- mirt(Science, 1, 'gpcm'))
#>
Iteration: 1, Log-Lik: -1689.735, Max-Change: 1.30401
Iteration: 2, Log-Lik: -1618.015, Max-Change: 0.28548
Iteration: 3, Log-Lik: -1615.635, Max-Change: 0.27916
Iteration: 4, Log-Lik: -1613.549, Max-Change: 0.13014
Iteration: 5, Log-Lik: -1613.306, Max-Change: 0.08712
Iteration: 6, Log-Lik: -1613.172, Max-Change: 0.09075
Iteration: 7, Log-Lik: -1612.802, Max-Change: 0.06897
Iteration: 8, Log-Lik: -1612.774, Max-Change: 0.05440
Iteration: 9, Log-Lik: -1612.756, Max-Change: 0.03767
Iteration: 10, Log-Lik: -1612.733, Max-Change: 0.03981
Iteration: 11, Log-Lik: -1612.724, Max-Change: 0.02653
Iteration: 12, Log-Lik: -1612.718, Max-Change: 0.03424
Iteration: 13, Log-Lik: -1612.700, Max-Change: 0.00646
Iteration: 14, Log-Lik: -1612.697, Max-Change: 0.01774
Iteration: 15, Log-Lik: -1612.695, Max-Change: 0.01250
Iteration: 16, Log-Lik: -1612.692, Max-Change: 0.01716
Iteration: 17, Log-Lik: -1612.690, Max-Change: 0.01090
Iteration: 18, Log-Lik: -1612.689, Max-Change: 0.01170
Iteration: 19, Log-Lik: -1612.687, Max-Change: 0.00599
Iteration: 20, Log-Lik: -1612.687, Max-Change: 0.00160
Iteration: 21, Log-Lik: -1612.687, Max-Change: 0.00208
Iteration: 22, Log-Lik: -1612.687, Max-Change: 0.02543
Iteration: 23, Log-Lik: -1612.685, Max-Change: 0.00161
Iteration: 24, Log-Lik: -1612.685, Max-Change: 0.00099
Iteration: 25, Log-Lik: -1612.685, Max-Change: 0.00044
Iteration: 26, Log-Lik: -1612.685, Max-Change: 0.00027
Iteration: 27, Log-Lik: -1612.685, Max-Change: 0.00102
Iteration: 28, Log-Lik: -1612.685, Max-Change: 0.00049
Iteration: 29, Log-Lik: -1612.685, Max-Change: 0.00020
Iteration: 30, Log-Lik: -1612.685, Max-Change: 0.00019
Iteration: 31, Log-Lik: -1612.685, Max-Change: 0.01678
Iteration: 32, Log-Lik: -1612.684, Max-Change: 0.00133
Iteration: 33, Log-Lik: -1612.684, Max-Change: 0.00078
Iteration: 34, Log-Lik: -1612.684, Max-Change: 0.00030
Iteration: 35, Log-Lik: -1612.684, Max-Change: 0.00090
Iteration: 36, Log-Lik: -1612.684, Max-Change: 0.00027
Iteration: 37, Log-Lik: -1612.684, Max-Change: 0.00014
Iteration: 38, Log-Lik: -1612.684, Max-Change: 0.00083
Iteration: 39, Log-Lik: -1612.684, Max-Change: 0.00024
Iteration: 40, Log-Lik: -1612.684, Max-Change: 0.00012
Iteration: 41, Log-Lik: -1612.684, Max-Change: 0.01511
Iteration: 42, Log-Lik: -1612.683, Max-Change: 0.00108
Iteration: 43, Log-Lik: -1612.683, Max-Change: 0.00105
Iteration: 44, Log-Lik: -1612.683, Max-Change: 0.00038
Iteration: 45, Log-Lik: -1612.683, Max-Change: 0.00111
Iteration: 46, Log-Lik: -1612.683, Max-Change: 0.00022
Iteration: 47, Log-Lik: -1612.683, Max-Change: 0.00015
Iteration: 48, Log-Lik: -1612.683, Max-Change: 0.00063
Iteration: 49, Log-Lik: -1612.683, Max-Change: 0.00021
Iteration: 50, Log-Lik: -1612.683, Max-Change: 0.00009
#>
#> Call:
#> mirt(data = Science, model = 1, itemtype = "gpcm")
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 50 EM iterations.
#> mirt version: 1.44.3
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -1612.683
#> Estimated parameters: 16
#> AIC = 3257.366
#> BIC = 3320.906; SABIC = 3270.139
#> G2 (239) = 221.19, p = 0.7896
#> RMSEA = 0, CFI = NaN, TLI = NaN
coef(gpcmod)
#> $Comfort
#> a1 ak0 ak1 ak2 ak3 d0 d1 d2 d3
#> par 0.865 0 1 2 3 0 2.831 5.324 3.998
#>
#> $Work
#> a1 ak0 ak1 ak2 ak3 d0 d1 d2 d3
#> par 0.841 0 1 2 3 0 1.711 2.578 0.848
#>
#> $Future
#> a1 ak0 ak1 ak2 ak3 d0 d1 d2 d3
#> par 2.204 0 1 2 3 0 4.601 6.759 4.918
#>
#> $Benefit
#> a1 ak0 ak1 ak2 ak3 d0 d1 d2 d3
#> par 0.724 0 1 2 3 0 2.099 2.899 1.721
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#>
# for the nominal model the lowest and highest categories are assumed to be the
# theoretically lowest and highest categories that related to the latent trait(s)
(nomod <- mirt(Science, 1, 'nominal'))
#>
Iteration: 1, Log-Lik: -2231.749, Max-Change: 3.43133
Iteration: 2, Log-Lik: -1647.755, Max-Change: 0.78640
Iteration: 3, Log-Lik: -1629.925, Max-Change: 0.48800
Iteration: 4, Log-Lik: -1621.546, Max-Change: 0.44557
Iteration: 5, Log-Lik: -1616.776, Max-Change: 0.30268
Iteration: 6, Log-Lik: -1613.789, Max-Change: 0.29869
Iteration: 7, Log-Lik: -1610.323, Max-Change: 0.20615
Iteration: 8, Log-Lik: -1609.697, Max-Change: 0.28886
Iteration: 9, Log-Lik: -1609.348, Max-Change: 0.13388
Iteration: 10, Log-Lik: -1609.105, Max-Change: 0.11615
Iteration: 11, Log-Lik: -1608.975, Max-Change: 0.10205
Iteration: 12, Log-Lik: -1608.881, Max-Change: 0.09345
Iteration: 13, Log-Lik: -1608.596, Max-Change: 0.06321
Iteration: 14, Log-Lik: -1608.565, Max-Change: 0.03301
Iteration: 15, Log-Lik: -1608.548, Max-Change: 0.02973
Iteration: 16, Log-Lik: -1608.507, Max-Change: 0.01790
Iteration: 17, Log-Lik: -1608.500, Max-Change: 0.02676
Iteration: 18, Log-Lik: -1608.494, Max-Change: 0.02509
Iteration: 19, Log-Lik: -1608.472, Max-Change: 0.00996
Iteration: 20, Log-Lik: -1608.468, Max-Change: 0.00382
Iteration: 21, Log-Lik: -1608.467, Max-Change: 0.00338
Iteration: 22, Log-Lik: -1608.464, Max-Change: 0.03036
Iteration: 23, Log-Lik: -1608.462, Max-Change: 0.00312
Iteration: 24, Log-Lik: -1608.462, Max-Change: 0.00244
Iteration: 25, Log-Lik: -1608.461, Max-Change: 0.00209
Iteration: 26, Log-Lik: -1608.460, Max-Change: 0.00238
Iteration: 27, Log-Lik: -1608.460, Max-Change: 0.00206
Iteration: 28, Log-Lik: -1608.460, Max-Change: 0.02332
Iteration: 29, Log-Lik: -1608.458, Max-Change: 0.00177
Iteration: 30, Log-Lik: -1608.458, Max-Change: 0.00144
Iteration: 31, Log-Lik: -1608.458, Max-Change: 0.00192
Iteration: 32, Log-Lik: -1608.458, Max-Change: 0.00042
Iteration: 33, Log-Lik: -1608.458, Max-Change: 0.00168
Iteration: 34, Log-Lik: -1608.458, Max-Change: 0.00024
Iteration: 35, Log-Lik: -1608.458, Max-Change: 0.00416
Iteration: 36, Log-Lik: -1608.458, Max-Change: 0.00063
Iteration: 37, Log-Lik: -1608.457, Max-Change: 0.00059
Iteration: 38, Log-Lik: -1608.457, Max-Change: 0.00021
Iteration: 39, Log-Lik: -1608.457, Max-Change: 0.00124
Iteration: 40, Log-Lik: -1608.457, Max-Change: 0.00057
Iteration: 41, Log-Lik: -1608.457, Max-Change: 0.00036
Iteration: 42, Log-Lik: -1608.457, Max-Change: 0.00023
Iteration: 43, Log-Lik: -1608.457, Max-Change: 0.02043
Iteration: 44, Log-Lik: -1608.456, Max-Change: 0.00064
Iteration: 45, Log-Lik: -1608.456, Max-Change: 0.00021
Iteration: 46, Log-Lik: -1608.456, Max-Change: 0.00104
Iteration: 47, Log-Lik: -1608.456, Max-Change: 0.00061
Iteration: 48, Log-Lik: -1608.456, Max-Change: 0.00021
Iteration: 49, Log-Lik: -1608.456, Max-Change: 0.00017
Iteration: 50, Log-Lik: -1608.456, Max-Change: 0.00168
Iteration: 51, Log-Lik: -1608.456, Max-Change: 0.00018
Iteration: 52, Log-Lik: -1608.456, Max-Change: 0.00017
Iteration: 53, Log-Lik: -1608.456, Max-Change: 0.00250
Iteration: 54, Log-Lik: -1608.456, Max-Change: 0.00019
Iteration: 55, Log-Lik: -1608.456, Max-Change: 0.00018
Iteration: 56, Log-Lik: -1608.456, Max-Change: 0.02338
Iteration: 57, Log-Lik: -1608.455, Max-Change: 0.00081
Iteration: 58, Log-Lik: -1608.455, Max-Change: 0.00080
Iteration: 59, Log-Lik: -1608.455, Max-Change: 0.00022
Iteration: 60, Log-Lik: -1608.455, Max-Change: 0.00084
Iteration: 61, Log-Lik: -1608.455, Max-Change: 0.00040
Iteration: 62, Log-Lik: -1608.455, Max-Change: 0.00033
Iteration: 63, Log-Lik: -1608.455, Max-Change: 0.00026
Iteration: 64, Log-Lik: -1608.455, Max-Change: 0.00126
Iteration: 65, Log-Lik: -1608.455, Max-Change: 0.00015
Iteration: 66, Log-Lik: -1608.455, Max-Change: 0.00083
Iteration: 67, Log-Lik: -1608.455, Max-Change: 0.00022
Iteration: 68, Log-Lik: -1608.455, Max-Change: 0.00018
Iteration: 69, Log-Lik: -1608.455, Max-Change: 0.00014
Iteration: 70, Log-Lik: -1608.455, Max-Change: 0.00151
Iteration: 71, Log-Lik: -1608.455, Max-Change: 0.00007
#>
#> Call:
#> mirt(data = Science, model = 1, itemtype = "nominal")
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 71 EM iterations.
#> mirt version: 1.44.3
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -1608.455
#> Estimated parameters: 24
#> AIC = 3264.91
#> BIC = 3360.22; SABIC = 3284.069
#> G2 (231) = 212.73, p = 0.8002
#> RMSEA = 0, CFI = NaN, TLI = NaN
coef(nomod) #ordering of ak values suggest that the items are indeed ordinal
#> $Comfort
#> a1 ak0 ak1 ak2 ak3 d0 d1 d2 d3
#> par 1.008 0 1.541 1.999 3 0 3.639 5.905 4.533
#>
#> $Work
#> a1 ak0 ak1 ak2 ak3 d0 d1 d2 d3
#> par 0.841 0 0.689 1.5 3 0 1.464 2.326 0.325
#>
#> $Future
#> a1 ak0 ak1 ak2 ak3 d0 d1 d2 d3
#> par 2.041 0 0.762 1.861 3 0 3.668 5.868 3.949
#>
#> $Benefit
#> a1 ak0 ak1 ak2 ak3 d0 d1 d2 d3
#> par 0.779 0 1.036 1.742 3 0 2.144 2.911 1.621
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#>
anova(gpcmod, nomod)
#> AIC SABIC HQ BIC logLik X2 df p
#> gpcmod 3257.366 3270.139 3282.549 3320.906 -1612.683
#> nomod 3264.910 3284.069 3302.684 3360.220 -1608.455 8.456 8 0.39
itemplot(nomod, 3)
# generalized graded unfolding model
(ggum <- mirt(Science, 1, 'ggum'))
#>
Iteration: 1, Log-Lik: -2388.995, Max-Change: 3.08016
Iteration: 2, Log-Lik: -1679.438, Max-Change: 0.47739
Iteration: 3, Log-Lik: -1652.163, Max-Change: 0.34562
Iteration: 4, Log-Lik: -1642.296, Max-Change: 0.97795
Iteration: 5, Log-Lik: -1636.629, Max-Change: 0.33846
Iteration: 6, Log-Lik: -1633.519, Max-Change: 0.27952
Iteration: 7, Log-Lik: -1628.256, Max-Change: 0.27248
Iteration: 8, Log-Lik: -1627.028, Max-Change: 0.11293
Iteration: 9, Log-Lik: -1626.690, Max-Change: 0.05547
Iteration: 10, Log-Lik: -1626.444, Max-Change: 0.04692
Iteration: 11, Log-Lik: -1626.287, Max-Change: 0.04250
Iteration: 12, Log-Lik: -1626.133, Max-Change: 0.03955
Iteration: 13, Log-Lik: -1625.368, Max-Change: 0.06118
Iteration: 14, Log-Lik: -1625.115, Max-Change: 0.06741
Iteration: 15, Log-Lik: -1624.829, Max-Change: 0.06444
Iteration: 16, Log-Lik: -1623.241, Max-Change: 0.07203
Iteration: 17, Log-Lik: -1622.990, Max-Change: 0.05949
Iteration: 18, Log-Lik: -1622.783, Max-Change: 0.05611
Iteration: 19, Log-Lik: -1622.128, Max-Change: 0.02824
Iteration: 20, Log-Lik: -1622.029, Max-Change: 0.05839
Iteration: 21, Log-Lik: -1621.934, Max-Change: 0.05555
Iteration: 22, Log-Lik: -1621.366, Max-Change: 0.07372
Iteration: 23, Log-Lik: -1621.252, Max-Change: 0.07649
Iteration: 24, Log-Lik: -1621.138, Max-Change: 0.08094
Iteration: 25, Log-Lik: -1620.515, Max-Change: 0.07139
Iteration: 26, Log-Lik: -1620.421, Max-Change: 0.06977
Iteration: 27, Log-Lik: -1620.330, Max-Change: 0.06036
Iteration: 28, Log-Lik: -1619.845, Max-Change: 0.05589
Iteration: 29, Log-Lik: -1619.772, Max-Change: 0.11283
Iteration: 30, Log-Lik: -1619.695, Max-Change: 0.12739
Iteration: 31, Log-Lik: -1619.386, Max-Change: 0.21379
Iteration: 32, Log-Lik: -1619.316, Max-Change: 0.16191
Iteration: 33, Log-Lik: -1619.252, Max-Change: 0.08229
Iteration: 34, Log-Lik: -1619.184, Max-Change: 0.02466
Iteration: 35, Log-Lik: -1619.125, Max-Change: 0.01769
Iteration: 36, Log-Lik: -1619.066, Max-Change: 0.01795
Iteration: 37, Log-Lik: -1618.904, Max-Change: 0.03020
Iteration: 38, Log-Lik: -1618.839, Max-Change: 0.02970
Iteration: 39, Log-Lik: -1618.770, Max-Change: 0.03217
Iteration: 40, Log-Lik: -1618.282, Max-Change: 0.04409
Iteration: 41, Log-Lik: -1618.137, Max-Change: 0.12568
Iteration: 42, Log-Lik: -1617.958, Max-Change: 0.11871
Iteration: 43, Log-Lik: -1616.469, Max-Change: 0.07637
Iteration: 44, Log-Lik: -1616.063, Max-Change: 0.16886
Iteration: 45, Log-Lik: -1615.501, Max-Change: 0.17764
Iteration: 46, Log-Lik: -1613.920, Max-Change: 0.06439
Iteration: 47, Log-Lik: -1613.601, Max-Change: 0.24756
Iteration: 48, Log-Lik: -1613.216, Max-Change: 0.17363
Iteration: 49, Log-Lik: -1612.730, Max-Change: 0.04968
Iteration: 50, Log-Lik: -1612.542, Max-Change: 0.06775
Iteration: 51, Log-Lik: -1612.384, Max-Change: 0.04577
Iteration: 52, Log-Lik: -1612.162, Max-Change: 0.04358
Iteration: 53, Log-Lik: -1612.071, Max-Change: 0.04231
Iteration: 54, Log-Lik: -1611.995, Max-Change: 0.04127
Iteration: 55, Log-Lik: -1611.708, Max-Change: 0.03821
Iteration: 56, Log-Lik: -1611.680, Max-Change: 0.03691
Iteration: 57, Log-Lik: -1611.656, Max-Change: 0.03649
Iteration: 58, Log-Lik: -1611.554, Max-Change: 0.03487
Iteration: 59, Log-Lik: -1611.544, Max-Change: 0.03381
Iteration: 60, Log-Lik: -1611.535, Max-Change: 0.01777
Iteration: 61, Log-Lik: -1611.529, Max-Change: 0.03280
Iteration: 62, Log-Lik: -1611.522, Max-Change: 0.03171
Iteration: 63, Log-Lik: -1611.517, Max-Change: 0.03050
Iteration: 64, Log-Lik: -1611.494, Max-Change: 0.01915
Iteration: 65, Log-Lik: -1611.492, Max-Change: 0.01703
Iteration: 66, Log-Lik: -1611.491, Max-Change: 0.01379
Iteration: 67, Log-Lik: -1611.487, Max-Change: 0.00838
Iteration: 68, Log-Lik: -1611.487, Max-Change: 0.00693
Iteration: 69, Log-Lik: -1611.486, Max-Change: 0.00605
Iteration: 70, Log-Lik: -1611.485, Max-Change: 0.00193
Iteration: 71, Log-Lik: -1611.485, Max-Change: 0.00231
Iteration: 72, Log-Lik: -1611.485, Max-Change: 0.00167
Iteration: 73, Log-Lik: -1611.485, Max-Change: 0.00161
Iteration: 74, Log-Lik: -1611.485, Max-Change: 0.00181
Iteration: 75, Log-Lik: -1611.484, Max-Change: 0.00138
Iteration: 76, Log-Lik: -1611.484, Max-Change: 0.00134
Iteration: 77, Log-Lik: -1611.484, Max-Change: 0.00124
Iteration: 78, Log-Lik: -1611.484, Max-Change: 0.00115
Iteration: 79, Log-Lik: -1611.484, Max-Change: 0.00284
Iteration: 80, Log-Lik: -1611.484, Max-Change: 0.00059
Iteration: 81, Log-Lik: -1611.484, Max-Change: 0.00054
Iteration: 82, Log-Lik: -1611.484, Max-Change: 0.00175
Iteration: 83, Log-Lik: -1611.484, Max-Change: 0.00028
Iteration: 84, Log-Lik: -1611.484, Max-Change: 0.00027
Iteration: 85, Log-Lik: -1611.484, Max-Change: 0.00013
Iteration: 86, Log-Lik: -1611.484, Max-Change: 0.00014
Iteration: 87, Log-Lik: -1611.484, Max-Change: 0.00012
Iteration: 88, Log-Lik: -1611.484, Max-Change: 0.00011
Iteration: 89, Log-Lik: -1611.484, Max-Change: 0.00010
#>
#> Call:
#> mirt(data = Science, model = 1, itemtype = "ggum")
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 89 EM iterations.
#> mirt version: 1.44.3
#> M-step optimizer: nlminb
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -1611.484
#> Estimated parameters: 20
#> AIC = 3262.968
#> BIC = 3342.393; SABIC = 3278.934
#> G2 (235) = 218.79, p = 0.7687
#> RMSEA = 0, CFI = NaN, TLI = NaN
coef(ggum, simplify=TRUE)
#> $items
#> a1 b1 t1 t2 t3
#> Comfort 0.824 3.478 6.826 6.475 1.780
#> Work 0.818 3.217 5.280 4.274 0.969
#> Future 2.241 2.800 4.888 3.774 1.961
#> Benefit 0.696 3.584 6.556 4.725 1.744
#>
#> $means
#> F1
#> 0
#>
#> $cov
#> F1
#> F1 1
#>
plot(ggum)
plot(ggum, type = 'trace')
plot(ggum, type = 'itemscore')
# monotonic polyomial models
(monopoly <- mirt(Science, 1, 'monopoly'))
#>
Iteration: 1, Log-Lik: -1632.979, Max-Change: 1.28373
Iteration: 2, Log-Lik: -1611.751, Max-Change: 0.41513
Iteration: 3, Log-Lik: -1606.871, Max-Change: 0.36005
Iteration: 4, Log-Lik: -1604.594, Max-Change: 0.27466
Iteration: 5, Log-Lik: -1603.496, Max-Change: 0.23078
Iteration: 6, Log-Lik: -1602.840, Max-Change: 0.24411
Iteration: 7, Log-Lik: -1602.112, Max-Change: 0.21274
Iteration: 8, Log-Lik: -1601.964, Max-Change: 0.21474
Iteration: 9, Log-Lik: -1601.865, Max-Change: 0.22537
Iteration: 10, Log-Lik: -1601.642, Max-Change: 4.58130
Iteration: 11, Log-Lik: -1601.472, Max-Change: 0.07416
Iteration: 12, Log-Lik: -1601.449, Max-Change: 0.06098
Iteration: 13, Log-Lik: -1601.409, Max-Change: 0.04782
Iteration: 14, Log-Lik: -1601.394, Max-Change: 0.03673
Iteration: 15, Log-Lik: -1601.391, Max-Change: 0.03510
Iteration: 16, Log-Lik: -1601.383, Max-Change: 0.02470
Iteration: 17, Log-Lik: -1601.379, Max-Change: 0.01471
Iteration: 18, Log-Lik: -1601.377, Max-Change: 0.01196
Iteration: 19, Log-Lik: -1601.372, Max-Change: 0.02687
Iteration: 20, Log-Lik: -1601.368, Max-Change: 0.02172
Iteration: 21, Log-Lik: -1601.365, Max-Change: 0.01112
Iteration: 22, Log-Lik: -1601.363, Max-Change: 0.02105
Iteration: 23, Log-Lik: -1601.359, Max-Change: 0.01257
Iteration: 24, Log-Lik: -1601.356, Max-Change: 0.02499
Iteration: 25, Log-Lik: -1601.349, Max-Change: 0.01583
Iteration: 26, Log-Lik: -1601.345, Max-Change: 0.02541
Iteration: 27, Log-Lik: -1601.340, Max-Change: 0.02675
Iteration: 28, Log-Lik: -1601.305, Max-Change: 0.03104
Iteration: 29, Log-Lik: -1601.297, Max-Change: 0.03283
Iteration: 30, Log-Lik: -1601.289, Max-Change: 0.03016
Iteration: 31, Log-Lik: -1601.269, Max-Change: 0.02590
Iteration: 32, Log-Lik: -1601.261, Max-Change: 0.03046
Iteration: 33, Log-Lik: -1601.254, Max-Change: 0.03114
Iteration: 34, Log-Lik: -1601.244, Max-Change: 0.02666
Iteration: 35, Log-Lik: -1601.237, Max-Change: 0.02706
Iteration: 36, Log-Lik: -1601.231, Max-Change: 0.01928
Iteration: 37, Log-Lik: -1601.218, Max-Change: 0.02858
Iteration: 38, Log-Lik: -1601.213, Max-Change: 0.02332
Iteration: 39, Log-Lik: -1601.208, Max-Change: 0.02639
Iteration: 40, Log-Lik: -1601.203, Max-Change: 0.02226
Iteration: 41, Log-Lik: -1601.199, Max-Change: 0.02057
Iteration: 42, Log-Lik: -1601.196, Max-Change: 0.01714
Iteration: 43, Log-Lik: -1601.190, Max-Change: 0.02512
Iteration: 44, Log-Lik: -1601.188, Max-Change: 0.01461
Iteration: 45, Log-Lik: -1601.186, Max-Change: 0.00160
Iteration: 46, Log-Lik: -1601.185, Max-Change: 0.00845
Iteration: 47, Log-Lik: -1601.185, Max-Change: 0.02043
Iteration: 48, Log-Lik: -1601.182, Max-Change: 0.01742
Iteration: 49, Log-Lik: -1601.178, Max-Change: 0.01864
Iteration: 50, Log-Lik: -1601.175, Max-Change: 0.00089
Iteration: 51, Log-Lik: -1601.175, Max-Change: 0.00048
Iteration: 52, Log-Lik: -1601.175, Max-Change: 0.01066
Iteration: 53, Log-Lik: -1601.174, Max-Change: 0.00134
Iteration: 54, Log-Lik: -1601.174, Max-Change: 0.00062
Iteration: 55, Log-Lik: -1601.174, Max-Change: 0.00007
#>
#> Call:
#> mirt(data = Science, model = 1, itemtype = "monopoly")
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 55 EM iterations.
#> mirt version: 1.44.3
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -1601.174
#> Estimated parameters: 24
#> AIC = 3250.347
#> BIC = 3345.657; SABIC = 3269.506
#> G2 (231) = 198.17, p = 0.9424
#> RMSEA = 0, CFI = NaN, TLI = NaN
coef(monopoly, simplify=TRUE)
#> $items
#> omega xi1 xi2 xi3 alpha1 tau2
#> Comfort -1.431 2.911 2.218 -1.469 -0.934 0.728
#> Work -0.412 1.378 0.698 -2.152 -0.499 -1.151
#> Future 0.833 4.988 2.259 -1.910 0.019 -8.472
#> Benefit -1.714 1.883 0.618 -1.389 -1.424 0.716
#>
#> $means
#> F1
#> 0
#>
#> $cov
#> F1
#> F1 1
#>
plot(monopoly)
plot(monopoly, type = 'trace')
plot(monopoly, type = 'itemscore')
# unipolar IRT model
unimod <- mirt(Science, itemtype = 'ULL')
#>
Iteration: 1, Log-Lik: -1644.943, Max-Change: 0.41474
Iteration: 2, Log-Lik: -1618.453, Max-Change: 0.32498
Iteration: 3, Log-Lik: -1611.142, Max-Change: 0.23517
Iteration: 4, Log-Lik: -1608.577, Max-Change: 0.15407
Iteration: 5, Log-Lik: -1607.588, Max-Change: 0.12836
Iteration: 6, Log-Lik: -1607.050, Max-Change: 0.15376
Iteration: 7, Log-Lik: -1606.229, Max-Change: 0.07291
Iteration: 8, Log-Lik: -1606.031, Max-Change: 0.05626
Iteration: 9, Log-Lik: -1605.916, Max-Change: 0.05430
Iteration: 10, Log-Lik: -1605.695, Max-Change: 0.03203
Iteration: 11, Log-Lik: -1605.672, Max-Change: 0.02436
Iteration: 12, Log-Lik: -1605.661, Max-Change: 0.02554
Iteration: 13, Log-Lik: -1605.637, Max-Change: 0.01607
Iteration: 14, Log-Lik: -1605.632, Max-Change: 0.01219
Iteration: 15, Log-Lik: -1605.628, Max-Change: 0.01067
Iteration: 16, Log-Lik: -1605.622, Max-Change: 0.00325
Iteration: 17, Log-Lik: -1605.622, Max-Change: 0.00018
Iteration: 18, Log-Lik: -1605.622, Max-Change: 0.01898
Iteration: 19, Log-Lik: -1605.617, Max-Change: 0.00551
Iteration: 20, Log-Lik: -1605.616, Max-Change: 0.00039
Iteration: 21, Log-Lik: -1605.616, Max-Change: 0.00395
Iteration: 22, Log-Lik: -1605.616, Max-Change: 0.00118
Iteration: 23, Log-Lik: -1605.616, Max-Change: 0.00176
Iteration: 24, Log-Lik: -1605.616, Max-Change: 0.00056
Iteration: 25, Log-Lik: -1605.616, Max-Change: 0.00284
Iteration: 26, Log-Lik: -1605.616, Max-Change: 0.00019
Iteration: 27, Log-Lik: -1605.616, Max-Change: 0.00026
Iteration: 28, Log-Lik: -1605.616, Max-Change: 0.00019
Iteration: 29, Log-Lik: -1605.616, Max-Change: 0.00039
Iteration: 30, Log-Lik: -1605.616, Max-Change: 0.00014
Iteration: 31, Log-Lik: -1605.616, Max-Change: 0.00061
Iteration: 32, Log-Lik: -1605.616, Max-Change: 0.00024
Iteration: 33, Log-Lik: -1605.616, Max-Change: 0.00051
Iteration: 34, Log-Lik: -1605.616, Max-Change: 0.00105
Iteration: 35, Log-Lik: -1605.616, Max-Change: 0.00023
Iteration: 36, Log-Lik: -1605.616, Max-Change: 0.00050
Iteration: 37, Log-Lik: -1605.616, Max-Change: 0.00042
Iteration: 38, Log-Lik: -1605.616, Max-Change: 0.00021
Iteration: 39, Log-Lik: -1605.616, Max-Change: 0.00058
Iteration: 40, Log-Lik: -1605.616, Max-Change: 0.00021
Iteration: 41, Log-Lik: -1605.616, Max-Change: 0.00047
Iteration: 42, Log-Lik: -1605.616, Max-Change: 0.00018
Iteration: 43, Log-Lik: -1605.616, Max-Change: 0.00080
Iteration: 44, Log-Lik: -1605.616, Max-Change: 0.00018
Iteration: 45, Log-Lik: -1605.616, Max-Change: 0.00035
Iteration: 46, Log-Lik: -1605.616, Max-Change: 0.00030
Iteration: 47, Log-Lik: -1605.616, Max-Change: 0.00074
Iteration: 48, Log-Lik: -1605.616, Max-Change: 0.00017
Iteration: 49, Log-Lik: -1605.616, Max-Change: 0.00015
Iteration: 50, Log-Lik: -1605.616, Max-Change: 0.00029
Iteration: 51, Log-Lik: -1605.616, Max-Change: 0.00067
Iteration: 52, Log-Lik: -1605.616, Max-Change: 0.00038
Iteration: 53, Log-Lik: -1605.616, Max-Change: 0.00023
Iteration: 54, Log-Lik: -1605.616, Max-Change: 0.00042
Iteration: 55, Log-Lik: -1605.616, Max-Change: 0.00037
Iteration: 56, Log-Lik: -1605.616, Max-Change: 0.00051
Iteration: 57, Log-Lik: -1605.616, Max-Change: 0.00029
Iteration: 58, Log-Lik: -1605.615, Max-Change: 0.00022
Iteration: 59, Log-Lik: -1605.615, Max-Change: 0.00041
Iteration: 60, Log-Lik: -1605.615, Max-Change: 0.00014
Iteration: 61, Log-Lik: -1605.615, Max-Change: 0.00011
Iteration: 62, Log-Lik: -1605.615, Max-Change: 0.00073
Iteration: 63, Log-Lik: -1605.615, Max-Change: 0.00093
Iteration: 64, Log-Lik: -1605.615, Max-Change: 0.00044
Iteration: 65, Log-Lik: -1605.615, Max-Change: 0.00017
Iteration: 66, Log-Lik: -1605.615, Max-Change: 0.00038
Iteration: 67, Log-Lik: -1605.615, Max-Change: 0.00020
Iteration: 68, Log-Lik: -1605.615, Max-Change: 0.00036
Iteration: 69, Log-Lik: -1605.615, Max-Change: 0.00016
Iteration: 70, Log-Lik: -1605.615, Max-Change: 0.00069
Iteration: 71, Log-Lik: -1605.615, Max-Change: 0.00023
Iteration: 72, Log-Lik: -1605.615, Max-Change: 0.00035
Iteration: 73, Log-Lik: -1605.615, Max-Change: 0.00048
Iteration: 74, Log-Lik: -1605.615, Max-Change: 0.00018
Iteration: 75, Log-Lik: -1605.615, Max-Change: 0.00041
Iteration: 76, Log-Lik: -1605.615, Max-Change: 0.00023
Iteration: 77, Log-Lik: -1605.615, Max-Change: 0.00043
Iteration: 78, Log-Lik: -1605.615, Max-Change: 0.00018
Iteration: 79, Log-Lik: -1605.615, Max-Change: 0.00015
Iteration: 80, Log-Lik: -1605.615, Max-Change: 0.00035
Iteration: 81, Log-Lik: -1605.615, Max-Change: 0.00041
Iteration: 82, Log-Lik: -1605.615, Max-Change: 0.00040
Iteration: 83, Log-Lik: -1605.615, Max-Change: 0.00015
Iteration: 84, Log-Lik: -1605.615, Max-Change: 0.00018
Iteration: 85, Log-Lik: -1605.615, Max-Change: 0.00040
Iteration: 86, Log-Lik: -1605.615, Max-Change: 0.00064
Iteration: 87, Log-Lik: -1605.615, Max-Change: 0.00027
Iteration: 88, Log-Lik: -1605.615, Max-Change: 0.00020
Iteration: 89, Log-Lik: -1605.615, Max-Change: 0.00026
Iteration: 90, Log-Lik: -1605.615, Max-Change: 0.00016
Iteration: 91, Log-Lik: -1605.615, Max-Change: 0.00012
Iteration: 92, Log-Lik: -1605.615, Max-Change: 0.00111
Iteration: 93, Log-Lik: -1605.615, Max-Change: 0.00052
Iteration: 94, Log-Lik: -1605.615, Max-Change: 0.00040
Iteration: 95, Log-Lik: -1605.615, Max-Change: 0.00011
Iteration: 96, Log-Lik: -1605.615, Max-Change: 0.00016
Iteration: 97, Log-Lik: -1605.615, Max-Change: 0.00024
Iteration: 98, Log-Lik: -1605.615, Max-Change: 0.00044
Iteration: 99, Log-Lik: -1605.615, Max-Change: 0.00015
Iteration: 100, Log-Lik: -1605.615, Max-Change: 0.00012
Iteration: 101, Log-Lik: -1605.615, Max-Change: 0.00018
Iteration: 102, Log-Lik: -1605.615, Max-Change: 0.00050
Iteration: 103, Log-Lik: -1605.615, Max-Change: 0.00012
Iteration: 104, Log-Lik: -1605.615, Max-Change: 0.00014
Iteration: 105, Log-Lik: -1605.615, Max-Change: 0.00050
Iteration: 106, Log-Lik: -1605.615, Max-Change: 0.00015
Iteration: 107, Log-Lik: -1605.615, Max-Change: 0.00019
Iteration: 108, Log-Lik: -1605.615, Max-Change: 0.00012
Iteration: 109, Log-Lik: -1605.615, Max-Change: 0.00044
Iteration: 110, Log-Lik: -1605.615, Max-Change: 0.00020
Iteration: 111, Log-Lik: -1605.615, Max-Change: 0.00027
Iteration: 112, Log-Lik: -1605.615, Max-Change: 0.00115
Iteration: 113, Log-Lik: -1605.615, Max-Change: 0.00030
Iteration: 114, Log-Lik: -1605.615, Max-Change: 0.00014
Iteration: 115, Log-Lik: -1605.615, Max-Change: 0.00041
Iteration: 116, Log-Lik: -1605.615, Max-Change: 0.00052
Iteration: 117, Log-Lik: -1605.615, Max-Change: 0.00020
Iteration: 118, Log-Lik: -1605.615, Max-Change: 0.00017
Iteration: 119, Log-Lik: -1605.615, Max-Change: 0.00038
Iteration: 120, Log-Lik: -1605.615, Max-Change: 0.00011
Iteration: 121, Log-Lik: -1605.615, Max-Change: 0.00047
Iteration: 122, Log-Lik: -1605.615, Max-Change: 0.00020
Iteration: 123, Log-Lik: -1605.615, Max-Change: 0.00041
Iteration: 124, Log-Lik: -1605.615, Max-Change: 0.00033
Iteration: 125, Log-Lik: -1605.615, Max-Change: 0.00013
Iteration: 126, Log-Lik: -1605.615, Max-Change: 0.00024
Iteration: 127, Log-Lik: -1605.615, Max-Change: 0.00024
Iteration: 128, Log-Lik: -1605.615, Max-Change: 0.00052
Iteration: 129, Log-Lik: -1605.615, Max-Change: 0.00017
Iteration: 130, Log-Lik: -1605.615, Max-Change: 0.00014
Iteration: 131, Log-Lik: -1605.615, Max-Change: 0.00027
Iteration: 132, Log-Lik: -1605.615, Max-Change: 0.00012
Iteration: 133, Log-Lik: -1605.615, Max-Change: 0.00049
Iteration: 134, Log-Lik: -1605.615, Max-Change: 0.00017
Iteration: 135, Log-Lik: -1605.615, Max-Change: 0.00031
Iteration: 136, Log-Lik: -1605.615, Max-Change: 0.00034
Iteration: 137, Log-Lik: -1605.615, Max-Change: 0.00014
Iteration: 138, Log-Lik: -1605.615, Max-Change: 0.00031
Iteration: 139, Log-Lik: -1605.615, Max-Change: 0.00023
Iteration: 140, Log-Lik: -1605.615, Max-Change: 0.00009
coef(unimod, simplify=TRUE)
#> $items
#> eta1 log_lambda1 log_lambda2 log_lambda3
#> Comfort 1.175 4.776 2.299 -1.709
#> Work 1.618 2.533 0.554 -2.736
#> Future 2.801 4.030 1.525 -2.594
#> Benefit 1.319 3.020 0.681 -1.995
#>
#> $GroupPars
#> meanlog sdlog
#> par 0 1
#>
plot(unimod)
plot(unimod, type = 'trace')
itemplot(unimod, 1)
# following use the correct log-normal density for latent trait
itemfit(unimod)
#> item S_X2 df.S_X2 RMSEA.S_X2 p.S_X2
#> 1 Comfort 5.664 6 0.000 0.462
#> 2 Work 10.136 8 0.026 0.256
#> 3 Future 19.477 8 0.061 0.013
#> 4 Benefit 12.106 11 0.016 0.356
M2(unimod, type = 'C2')
#> M2 df p RMSEA RMSEA_5 RMSEA_95 SRMSR
#> stats 18.69535 2 8.716799e-05 0.1461148 0.09026025 0.2096111 0.0786373
#> TLI CFI
#> stats 0.7376985 0.9125662
fs <- fscores(unimod)
hist(fs, 20)
fscores(unimod, method = 'EAPsum', full.scores = FALSE)
#> df X2 p.X2 SEM.alpha rxx.alpha rxx_F1
#> stats 10 33.926 0 1.305 0.658 0.531
#>
#> Sum.Scores F1 SE_F1 observed expected std.res
#> 4 4 0.138 0.153 2 0.127 5.251
#> 5 5 0.304 0.088 1 0.766 0.267
#> 6 6 0.328 0.084 2 4.339 1.123
#> 7 7 0.352 0.126 1 13.909 3.461
#> 8 8 0.407 0.199 11 27.739 3.178
#> 9 9 0.530 0.305 32 40.624 1.353
#> 10 10 0.748 0.440 58 52.271 0.792
#> 11 11 1.053 0.604 70 63.507 0.815
#> 12 12 1.478 0.845 91 68.879 2.665
#> 13 13 2.164 1.282 56 54.418 0.214
#> 14 14 3.299 2.001 36 36.187 0.031
#> 15 15 5.109 3.236 20 20.821 0.180
#> 16 16 8.222 5.298 12 8.414 1.236
## example applying survey weights.
# weight the first half of the cases to be more representative of population
survey.weights <- c(rep(2, nrow(Science)/2), rep(1, nrow(Science)/2))
survey.weights <- survey.weights/sum(survey.weights) * nrow(Science)
unweighted <- mirt(Science, 1)
#>
Iteration: 1, Log-Lik: -1629.361, Max-Change: 0.50660
Iteration: 2, Log-Lik: -1617.374, Max-Change: 0.25442
Iteration: 3, Log-Lik: -1612.894, Max-Change: 0.16991
Iteration: 4, Log-Lik: -1610.306, Max-Change: 0.10461
Iteration: 5, Log-Lik: -1609.814, Max-Change: 0.09162
Iteration: 6, Log-Lik: -1609.534, Max-Change: 0.07363
Iteration: 7, Log-Lik: -1609.030, Max-Change: 0.03677
Iteration: 8, Log-Lik: -1608.988, Max-Change: 0.03200
Iteration: 9, Log-Lik: -1608.958, Max-Change: 0.02754
Iteration: 10, Log-Lik: -1608.878, Max-Change: 0.01443
Iteration: 11, Log-Lik: -1608.875, Max-Change: 0.00847
Iteration: 12, Log-Lik: -1608.873, Max-Change: 0.00515
Iteration: 13, Log-Lik: -1608.872, Max-Change: 0.00550
Iteration: 14, Log-Lik: -1608.872, Max-Change: 0.00318
Iteration: 15, Log-Lik: -1608.871, Max-Change: 0.00462
Iteration: 16, Log-Lik: -1608.871, Max-Change: 0.00277
Iteration: 17, Log-Lik: -1608.870, Max-Change: 0.00145
Iteration: 18, Log-Lik: -1608.870, Max-Change: 0.00175
Iteration: 19, Log-Lik: -1608.870, Max-Change: 0.00126
Iteration: 20, Log-Lik: -1608.870, Max-Change: 0.00025
Iteration: 21, Log-Lik: -1608.870, Max-Change: 0.00285
Iteration: 22, Log-Lik: -1608.870, Max-Change: 0.00108
Iteration: 23, Log-Lik: -1608.870, Max-Change: 0.00022
Iteration: 24, Log-Lik: -1608.870, Max-Change: 0.00059
Iteration: 25, Log-Lik: -1608.870, Max-Change: 0.00014
Iteration: 26, Log-Lik: -1608.870, Max-Change: 0.00068
Iteration: 27, Log-Lik: -1608.870, Max-Change: 0.00065
Iteration: 28, Log-Lik: -1608.870, Max-Change: 0.00019
Iteration: 29, Log-Lik: -1608.870, Max-Change: 0.00061
Iteration: 30, Log-Lik: -1608.870, Max-Change: 0.00012
Iteration: 31, Log-Lik: -1608.870, Max-Change: 0.00012
Iteration: 32, Log-Lik: -1608.870, Max-Change: 0.00058
Iteration: 33, Log-Lik: -1608.870, Max-Change: 0.00055
Iteration: 34, Log-Lik: -1608.870, Max-Change: 0.00015
Iteration: 35, Log-Lik: -1608.870, Max-Change: 0.00052
Iteration: 36, Log-Lik: -1608.870, Max-Change: 0.00010
weighted <- mirt(Science, 1, survey.weights=survey.weights)
#>
Iteration: 1, Log-Lik: -1645.766, Max-Change: 0.53685
Iteration: 2, Log-Lik: -1636.301, Max-Change: 0.20495
Iteration: 3, Log-Lik: -1632.918, Max-Change: 0.16001
Iteration: 4, Log-Lik: -1630.851, Max-Change: 0.10241
Iteration: 5, Log-Lik: -1630.399, Max-Change: 0.07562
Iteration: 6, Log-Lik: -1630.135, Max-Change: 0.06727
Iteration: 7, Log-Lik: -1629.625, Max-Change: 0.04208
Iteration: 8, Log-Lik: -1629.557, Max-Change: 0.03806
Iteration: 9, Log-Lik: -1629.503, Max-Change: 0.03490
Iteration: 10, Log-Lik: -1629.325, Max-Change: 0.02305
Iteration: 11, Log-Lik: -1629.316, Max-Change: 0.01321
Iteration: 12, Log-Lik: -1629.310, Max-Change: 0.01669
Iteration: 13, Log-Lik: -1629.292, Max-Change: 0.00712
Iteration: 14, Log-Lik: -1629.289, Max-Change: 0.01075
Iteration: 15, Log-Lik: -1629.288, Max-Change: 0.00655
Iteration: 16, Log-Lik: -1629.285, Max-Change: 0.00332
Iteration: 17, Log-Lik: -1629.285, Max-Change: 0.00763
Iteration: 18, Log-Lik: -1629.284, Max-Change: 0.00312
Iteration: 19, Log-Lik: -1629.284, Max-Change: 0.00421
Iteration: 20, Log-Lik: -1629.284, Max-Change: 0.00658
Iteration: 21, Log-Lik: -1629.283, Max-Change: 0.00218
Iteration: 22, Log-Lik: -1629.283, Max-Change: 0.00284
Iteration: 23, Log-Lik: -1629.283, Max-Change: 0.00568
Iteration: 24, Log-Lik: -1629.282, Max-Change: 0.00177
Iteration: 25, Log-Lik: -1629.282, Max-Change: 0.00161
Iteration: 26, Log-Lik: -1629.282, Max-Change: 0.00184
Iteration: 27, Log-Lik: -1629.282, Max-Change: 0.00039
Iteration: 28, Log-Lik: -1629.282, Max-Change: 0.00037
Iteration: 29, Log-Lik: -1629.282, Max-Change: 0.00134
Iteration: 30, Log-Lik: -1629.282, Max-Change: 0.00512
Iteration: 31, Log-Lik: -1629.282, Max-Change: 0.00112
Iteration: 32, Log-Lik: -1629.282, Max-Change: 0.00029
Iteration: 33, Log-Lik: -1629.282, Max-Change: 0.00080
Iteration: 34, Log-Lik: -1629.282, Max-Change: 0.00017
Iteration: 35, Log-Lik: -1629.282, Max-Change: 0.00148
Iteration: 36, Log-Lik: -1629.282, Max-Change: 0.00083
Iteration: 37, Log-Lik: -1629.282, Max-Change: 0.00018
Iteration: 38, Log-Lik: -1629.282, Max-Change: 0.00074
Iteration: 39, Log-Lik: -1629.282, Max-Change: 0.00076
Iteration: 40, Log-Lik: -1629.282, Max-Change: 0.00108
Iteration: 41, Log-Lik: -1629.282, Max-Change: 0.00019
Iteration: 42, Log-Lik: -1629.282, Max-Change: 0.00061
Iteration: 43, Log-Lik: -1629.281, Max-Change: 0.00014
Iteration: 44, Log-Lik: -1629.281, Max-Change: 0.00064
Iteration: 45, Log-Lik: -1629.281, Max-Change: 0.00015
Iteration: 46, Log-Lik: -1629.281, Max-Change: 0.00014
Iteration: 47, Log-Lik: -1629.281, Max-Change: 0.00057
Iteration: 48, Log-Lik: -1629.281, Max-Change: 0.00060
Iteration: 49, Log-Lik: -1629.281, Max-Change: 0.00016
Iteration: 50, Log-Lik: -1629.281, Max-Change: 0.00057
Iteration: 51, Log-Lik: -1629.281, Max-Change: 0.00058
Iteration: 52, Log-Lik: -1629.281, Max-Change: 0.00016
Iteration: 53, Log-Lik: -1629.281, Max-Change: 0.00055
Iteration: 54, Log-Lik: -1629.281, Max-Change: 0.00011
Iteration: 55, Log-Lik: -1629.281, Max-Change: 0.00054
Iteration: 56, Log-Lik: -1629.281, Max-Change: 0.00018
Iteration: 57, Log-Lik: -1629.281, Max-Change: 0.00011
Iteration: 58, Log-Lik: -1629.281, Max-Change: 0.00046
Iteration: 59, Log-Lik: -1629.281, Max-Change: 0.00049
Iteration: 60, Log-Lik: -1629.281, Max-Change: 0.00013
Iteration: 61, Log-Lik: -1629.281, Max-Change: 0.00012
Iteration: 62, Log-Lik: -1629.281, Max-Change: 0.00043
Iteration: 63, Log-Lik: -1629.281, Max-Change: 0.00046
Iteration: 64, Log-Lik: -1629.281, Max-Change: 0.00014
Iteration: 65, Log-Lik: -1629.281, Max-Change: 0.00044
Iteration: 66, Log-Lik: -1629.281, Max-Change: 0.00009
###########
# empirical dimensionality testing that includes 'guessing'
data(SAT12)
data <- key2binary(SAT12,
key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
itemstats(data)
#> $overall
#> N mean_total.score sd_total.score ave.r sd.r alpha SEM.alpha
#> 600 18.202 5.054 0.108 0.075 0.798 2.272
#>
#> $itemstats
#> N mean sd total.r total.r_if_rm alpha_if_rm
#> Item.1 600 0.283 0.451 0.380 0.300 0.793
#> Item.2 600 0.568 0.496 0.539 0.464 0.785
#> Item.3 600 0.280 0.449 0.446 0.371 0.789
#> Item.4 600 0.378 0.485 0.325 0.235 0.796
#> Item.5 600 0.620 0.486 0.424 0.340 0.791
#> Item.6 600 0.160 0.367 0.414 0.351 0.791
#> Item.7 600 0.760 0.427 0.366 0.289 0.793
#> Item.8 600 0.202 0.402 0.307 0.233 0.795
#> Item.9 600 0.885 0.319 0.189 0.127 0.798
#> Item.10 600 0.422 0.494 0.465 0.383 0.789
#> Item.11 600 0.983 0.128 0.181 0.156 0.797
#> Item.12 600 0.415 0.493 0.173 0.076 0.803
#> Item.13 600 0.662 0.474 0.438 0.358 0.790
#> Item.14 600 0.723 0.448 0.411 0.333 0.791
#> Item.15 600 0.817 0.387 0.393 0.325 0.792
#> Item.16 600 0.413 0.493 0.367 0.278 0.794
#> Item.17 600 0.963 0.188 0.238 0.202 0.796
#> Item.18 600 0.352 0.478 0.576 0.508 0.783
#> Item.19 600 0.548 0.498 0.401 0.314 0.792
#> Item.20 600 0.873 0.333 0.376 0.318 0.792
#> Item.21 600 0.915 0.279 0.190 0.136 0.798
#> Item.22 600 0.935 0.247 0.284 0.238 0.795
#> Item.23 600 0.313 0.464 0.338 0.253 0.795
#> Item.24 600 0.728 0.445 0.422 0.346 0.791
#> Item.25 600 0.375 0.485 0.383 0.297 0.793
#> Item.26 600 0.460 0.499 0.562 0.489 0.783
#> Item.27 600 0.862 0.346 0.425 0.367 0.791
#> Item.28 600 0.530 0.500 0.465 0.383 0.789
#> Item.29 600 0.340 0.474 0.407 0.324 0.791
#> Item.30 600 0.440 0.497 0.255 0.159 0.799
#> Item.31 600 0.833 0.373 0.479 0.419 0.788
#> Item.32 600 0.162 0.368 0.110 0.037 0.802
#>
#> $proportions
#> 0 1
#> Item.1 0.717 0.283
#> Item.2 0.432 0.568
#> Item.3 0.720 0.280
#> Item.4 0.622 0.378
#> Item.5 0.380 0.620
#> Item.6 0.840 0.160
#> Item.7 0.240 0.760
#> Item.8 0.798 0.202
#> Item.9 0.115 0.885
#> Item.10 0.578 0.422
#> Item.11 0.017 0.983
#> Item.12 0.585 0.415
#> Item.13 0.338 0.662
#> Item.14 0.277 0.723
#> Item.15 0.183 0.817
#> Item.16 0.587 0.413
#> Item.17 0.037 0.963
#> Item.18 0.648 0.352
#> Item.19 0.452 0.548
#> Item.20 0.127 0.873
#> Item.21 0.085 0.915
#> Item.22 0.065 0.935
#> Item.23 0.687 0.313
#> Item.24 0.272 0.728
#> Item.25 0.625 0.375
#> Item.26 0.540 0.460
#> Item.27 0.138 0.862
#> Item.28 0.470 0.530
#> Item.29 0.660 0.340
#> Item.30 0.560 0.440
#> Item.31 0.167 0.833
#> Item.32 0.838 0.162
#>
mod1 <- mirt(data, 1)
#>
Iteration: 1, Log-Lik: -9647.510, Max-Change: 0.81958
Iteration: 2, Log-Lik: -9501.953, Max-Change: 0.61213
Iteration: 3, Log-Lik: -9491.324, Max-Change: 0.30029
Iteration: 4, Log-Lik: -9489.773, Max-Change: 0.17556
Iteration: 5, Log-Lik: -9489.311, Max-Change: 0.05283
Iteration: 6, Log-Lik: -9489.122, Max-Change: 0.03138
Iteration: 7, Log-Lik: -9489.045, Max-Change: 0.01853
Iteration: 8, Log-Lik: -9489.000, Max-Change: 0.01225
Iteration: 9, Log-Lik: -9488.978, Max-Change: 0.00708
Iteration: 10, Log-Lik: -9488.964, Max-Change: 0.00300
Iteration: 11, Log-Lik: -9488.961, Max-Change: 0.00284
Iteration: 12, Log-Lik: -9488.959, Max-Change: 0.00186
Iteration: 13, Log-Lik: -9488.958, Max-Change: 0.00149
Iteration: 14, Log-Lik: -9488.957, Max-Change: 0.00118
Iteration: 15, Log-Lik: -9488.956, Max-Change: 0.00173
Iteration: 16, Log-Lik: -9488.956, Max-Change: 0.00086
Iteration: 17, Log-Lik: -9488.955, Max-Change: 0.00026
Iteration: 18, Log-Lik: -9488.955, Max-Change: 0.00020
Iteration: 19, Log-Lik: -9488.955, Max-Change: 0.00017
Iteration: 20, Log-Lik: -9488.955, Max-Change: 0.00015
Iteration: 21, Log-Lik: -9488.955, Max-Change: 0.00014
Iteration: 22, Log-Lik: -9488.955, Max-Change: 0.00045
Iteration: 23, Log-Lik: -9488.955, Max-Change: 0.00004
extract.mirt(mod1, 'time') #time elapsed for each estimation component
#> TOTAL: Data Estep Mstep SE Post
#> 0.238 0.033 0.076 0.118 0.000 0.001
# optionally use Newton-Raphson for (generally) faster convergence in the M-step's
mod1 <- mirt(data, 1, optimizer = 'NR')
#>
Iteration: 1, Log-Lik: -9647.510, Max-Change: 0.79951
Iteration: 2, Log-Lik: -9503.605, Max-Change: 0.35290
Iteration: 3, Log-Lik: -9491.858, Max-Change: 0.17654
Iteration: 4, Log-Lik: -9490.044, Max-Change: 0.09576
Iteration: 5, Log-Lik: -9489.448, Max-Change: 0.05539
Iteration: 6, Log-Lik: -9489.192, Max-Change: 0.03370
Iteration: 7, Log-Lik: -9489.012, Max-Change: 0.01254
Iteration: 8, Log-Lik: -9488.984, Max-Change: 0.00869
Iteration: 9, Log-Lik: -9488.970, Max-Change: 0.00607
Iteration: 10, Log-Lik: -9488.957, Max-Change: 0.00186
Iteration: 11, Log-Lik: -9488.956, Max-Change: 0.00134
Iteration: 12, Log-Lik: -9488.956, Max-Change: 0.00096
Iteration: 13, Log-Lik: -9488.955, Max-Change: 0.00026
Iteration: 14, Log-Lik: -9488.955, Max-Change: 0.00019
Iteration: 15, Log-Lik: -9488.955, Max-Change: 0.00016
Iteration: 16, Log-Lik: -9488.955, Max-Change: 0.00009
extract.mirt(mod1, 'time')
#> TOTAL: Data Estep Mstep SE Post
#> 0.238 0.035 0.089 0.071 0.000 0.001
mod2 <- mirt(data, 2, optimizer = 'NR')
#>
Iteration: 1, Log-Lik: -10018.384, Max-Change: 0.61117
Iteration: 2, Log-Lik: -9561.695, Max-Change: 0.40673
Iteration: 3, Log-Lik: -9487.442, Max-Change: 0.26447
Iteration: 4, Log-Lik: -9463.109, Max-Change: 0.17883
Iteration: 5, Log-Lik: -9452.978, Max-Change: 0.12468
Iteration: 6, Log-Lik: -9448.191, Max-Change: 0.08906
Iteration: 7, Log-Lik: -9445.721, Max-Change: 0.06487
Iteration: 8, Log-Lik: -9444.354, Max-Change: 0.04801
Iteration: 9, Log-Lik: -9443.550, Max-Change: 0.03602
Iteration: 10, Log-Lik: -9442.377, Max-Change: 0.01473
Iteration: 11, Log-Lik: -9442.274, Max-Change: 0.01272
Iteration: 12, Log-Lik: -9442.199, Max-Change: 0.01100
Iteration: 13, Log-Lik: -9441.989, Max-Change: 0.00244
Iteration: 14, Log-Lik: -9441.986, Max-Change: 0.00209
Iteration: 15, Log-Lik: -9441.984, Max-Change: 0.00177
Iteration: 16, Log-Lik: -9441.979, Max-Change: 0.00069
Iteration: 17, Log-Lik: -9441.979, Max-Change: 0.00063
Iteration: 18, Log-Lik: -9441.978, Max-Change: 0.00057
Iteration: 19, Log-Lik: -9441.978, Max-Change: 0.00025
Iteration: 20, Log-Lik: -9441.978, Max-Change: 0.00023
Iteration: 21, Log-Lik: -9441.978, Max-Change: 0.00022
Iteration: 22, Log-Lik: -9441.978, Max-Change: 0.00016
Iteration: 23, Log-Lik: -9441.978, Max-Change: 0.00016
Iteration: 24, Log-Lik: -9441.978, Max-Change: 0.00016
Iteration: 25, Log-Lik: -9441.978, Max-Change: 0.00015
Iteration: 26, Log-Lik: -9441.978, Max-Change: 0.00015
Iteration: 27, Log-Lik: -9441.978, Max-Change: 0.00015
Iteration: 28, Log-Lik: -9441.978, Max-Change: 0.00015
Iteration: 29, Log-Lik: -9441.978, Max-Change: 0.00015
Iteration: 30, Log-Lik: -9441.978, Max-Change: 0.00015
Iteration: 31, Log-Lik: -9441.978, Max-Change: 0.00015
Iteration: 32, Log-Lik: -9441.978, Max-Change: 0.00015
Iteration: 33, Log-Lik: -9441.978, Max-Change: 0.00015
Iteration: 34, Log-Lik: -9441.977, Max-Change: 0.00015
Iteration: 35, Log-Lik: -9441.977, Max-Change: 0.00015
Iteration: 36, Log-Lik: -9441.977, Max-Change: 0.00015
Iteration: 37, Log-Lik: -9441.977, Max-Change: 0.00015
Iteration: 38, Log-Lik: -9441.977, Max-Change: 0.00015
Iteration: 39, Log-Lik: -9441.977, Max-Change: 0.00015
Iteration: 40, Log-Lik: -9441.977, Max-Change: 0.00015
Iteration: 41, Log-Lik: -9441.977, Max-Change: 0.00015
Iteration: 42, Log-Lik: -9441.977, Max-Change: 0.00015
Iteration: 43, Log-Lik: -9441.977, Max-Change: 0.00015
Iteration: 44, Log-Lik: -9441.977, Max-Change: 0.00015
Iteration: 45, Log-Lik: -9441.977, Max-Change: 0.00015
Iteration: 46, Log-Lik: -9441.977, Max-Change: 0.00015
Iteration: 47, Log-Lik: -9441.977, Max-Change: 0.00015
Iteration: 48, Log-Lik: -9441.977, Max-Change: 0.00015
Iteration: 49, Log-Lik: -9441.977, Max-Change: 0.00014
Iteration: 50, Log-Lik: -9441.977, Max-Change: 0.00014
Iteration: 51, Log-Lik: -9441.977, Max-Change: 0.00014
Iteration: 52, Log-Lik: -9441.977, Max-Change: 0.00014
Iteration: 53, Log-Lik: -9441.977, Max-Change: 0.00014
Iteration: 54, Log-Lik: -9441.977, Max-Change: 0.00014
Iteration: 55, Log-Lik: -9441.977, Max-Change: 0.00014
Iteration: 56, Log-Lik: -9441.977, Max-Change: 0.00014
Iteration: 57, Log-Lik: -9441.977, Max-Change: 0.00014
Iteration: 58, Log-Lik: -9441.977, Max-Change: 0.00014
Iteration: 59, Log-Lik: -9441.977, Max-Change: 0.00014
Iteration: 60, Log-Lik: -9441.977, Max-Change: 0.00014
Iteration: 61, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 62, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 63, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 64, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 65, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 66, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 67, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 68, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 69, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 70, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 71, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 72, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 73, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 74, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 75, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 76, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 77, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 78, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 79, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 80, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 81, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 82, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 83, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 84, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 85, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 86, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 87, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 88, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 89, Log-Lik: -9441.976, Max-Change: 0.00014
Iteration: 90, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 91, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 92, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 93, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 94, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 95, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 96, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 97, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 98, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 99, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 100, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 101, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 102, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 103, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 104, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 105, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 106, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 107, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 108, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 109, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 110, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 111, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 112, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 113, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 114, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 115, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 116, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 117, Log-Lik: -9441.975, Max-Change: 0.00014
Iteration: 118, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 119, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 120, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 121, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 122, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 123, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 124, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 125, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 126, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 127, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 128, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 129, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 130, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 131, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 132, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 133, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 134, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 135, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 136, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 137, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 138, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 139, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 140, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 141, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 142, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 143, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 144, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 145, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 146, Log-Lik: -9441.974, Max-Change: 0.00014
Iteration: 147, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 148, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 149, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 150, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 151, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 152, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 153, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 154, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 155, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 156, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 157, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 158, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 159, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 160, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 161, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 162, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 163, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 164, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 165, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 166, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 167, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 168, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 169, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 170, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 171, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 172, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 173, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 174, Log-Lik: -9441.973, Max-Change: 0.00014
Iteration: 175, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 176, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 177, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 178, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 179, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 180, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 181, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 182, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 183, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 184, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 185, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 186, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 187, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 188, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 189, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 190, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 191, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 192, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 193, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 194, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 195, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 196, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 197, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 198, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 199, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 200, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 201, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 202, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 203, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 204, Log-Lik: -9441.972, Max-Change: 0.00014
Iteration: 205, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 206, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 207, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 208, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 209, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 210, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 211, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 212, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 213, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 214, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 215, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 216, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 217, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 218, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 219, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 220, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 221, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 222, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 223, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 224, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 225, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 226, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 227, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 228, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 229, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 230, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 231, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 232, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 233, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 234, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 235, Log-Lik: -9441.971, Max-Change: 0.00014
Iteration: 236, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 237, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 238, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 239, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 240, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 241, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 242, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 243, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 244, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 245, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 246, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 247, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 248, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 249, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 250, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 251, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 252, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 253, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 254, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 255, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 256, Log-Lik: -9441.970, Max-Change: 0.00014
Iteration: 257, Log-Lik: -9441.970, Max-Change: 0.00013
Iteration: 258, Log-Lik: -9441.970, Max-Change: 0.00013
Iteration: 259, Log-Lik: -9441.970, Max-Change: 0.00013
Iteration: 260, Log-Lik: -9441.970, Max-Change: 0.00013
Iteration: 261, Log-Lik: -9441.970, Max-Change: 0.00013
Iteration: 262, Log-Lik: -9441.970, Max-Change: 0.00013
Iteration: 263, Log-Lik: -9441.970, Max-Change: 0.00013
Iteration: 264, Log-Lik: -9441.970, Max-Change: 0.00013
Iteration: 265, Log-Lik: -9441.970, Max-Change: 0.00013
Iteration: 266, Log-Lik: -9441.970, Max-Change: 0.00013
Iteration: 267, Log-Lik: -9441.970, Max-Change: 0.00013
Iteration: 268, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 269, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 270, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 271, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 272, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 273, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 274, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 275, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 276, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 277, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 278, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 279, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 280, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 281, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 282, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 283, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 284, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 285, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 286, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 287, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 288, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 289, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 290, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 291, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 292, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 293, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 294, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 295, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 296, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 297, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 298, Log-Lik: -9441.969, Max-Change: 0.00013
Iteration: 299, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 300, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 301, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 302, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 303, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 304, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 305, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 306, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 307, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 308, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 309, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 310, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 311, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 312, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 313, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 314, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 315, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 316, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 317, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 318, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 319, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 320, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 321, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 322, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 323, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 324, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 325, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 326, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 327, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 328, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 329, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 330, Log-Lik: -9441.968, Max-Change: 0.00013
Iteration: 331, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 332, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 333, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 334, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 335, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 336, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 337, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 338, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 339, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 340, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 341, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 342, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 343, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 344, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 345, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 346, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 347, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 348, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 349, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 350, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 351, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 352, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 353, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 354, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 355, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 356, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 357, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 358, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 359, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 360, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 361, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 362, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 363, Log-Lik: -9441.967, Max-Change: 0.00013
Iteration: 364, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 365, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 366, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 367, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 368, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 369, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 370, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 371, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 372, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 373, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 374, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 375, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 376, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 377, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 378, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 379, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 380, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 381, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 382, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 383, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 384, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 385, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 386, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 387, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 388, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 389, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 390, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 391, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 392, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 393, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 394, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 395, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 396, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 397, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 398, Log-Lik: -9441.966, Max-Change: 0.00013
Iteration: 399, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 400, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 401, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 402, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 403, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 404, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 405, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 406, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 407, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 408, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 409, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 410, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 411, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 412, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 413, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 414, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 415, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 416, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 417, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 418, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 419, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 420, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 421, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 422, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 423, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 424, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 425, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 426, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 427, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 428, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 429, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 430, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 431, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 432, Log-Lik: -9441.965, Max-Change: 0.00013
Iteration: 433, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 434, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 435, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 436, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 437, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 438, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 439, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 440, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 441, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 442, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 443, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 444, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 445, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 446, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 447, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 448, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 449, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 450, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 451, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 452, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 453, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 454, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 455, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 456, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 457, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 458, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 459, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 460, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 461, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 462, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 463, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 464, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 465, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 466, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 467, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 468, Log-Lik: -9441.964, Max-Change: 0.00013
Iteration: 469, Log-Lik: -9441.963, Max-Change: 0.00013
Iteration: 470, Log-Lik: -9441.963, Max-Change: 0.00013
Iteration: 471, Log-Lik: -9441.963, Max-Change: 0.00013
Iteration: 472, Log-Lik: -9441.963, Max-Change: 0.00013
Iteration: 473, Log-Lik: -9441.963, Max-Change: 0.00013
Iteration: 474, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 475, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 476, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 477, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 478, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 479, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 480, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 481, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 482, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 483, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 484, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 485, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 486, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 487, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 488, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 489, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 490, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 491, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 492, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 493, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 494, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 495, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 496, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 497, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 498, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 499, Log-Lik: -9441.963, Max-Change: 0.00012
Iteration: 500, Log-Lik: -9441.963, Max-Change: 0.00012
#> Warning: EM cycles terminated after 500 iterations.
# difficulty converging with reduced quadpts, reduce TOL
mod3 <- mirt(data, 3, TOL = .001, optimizer = 'NR')
#>
Iteration: 1, Log-Lik: -10705.957, Max-Change: 2.05455
Iteration: 2, Log-Lik: -9595.971, Max-Change: 0.39417
Iteration: 3, Log-Lik: -9483.087, Max-Change: 0.26428
Iteration: 4, Log-Lik: -9449.347, Max-Change: 0.18541
Iteration: 5, Log-Lik: -9435.746, Max-Change: 0.13719
Iteration: 6, Log-Lik: -9429.262, Max-Change: 0.10565
Iteration: 7, Log-Lik: -9425.796, Max-Change: 0.08294
Iteration: 8, Log-Lik: -9423.776, Max-Change: 0.06541
Iteration: 9, Log-Lik: -9422.513, Max-Change: 0.05146
Iteration: 10, Log-Lik: -9420.218, Max-Change: 0.01798
Iteration: 11, Log-Lik: -9420.016, Max-Change: 0.01740
Iteration: 12, Log-Lik: -9419.850, Max-Change: 0.01675
Iteration: 13, Log-Lik: -9419.219, Max-Change: 0.01197
Iteration: 14, Log-Lik: -9419.177, Max-Change: 0.01171
Iteration: 15, Log-Lik: -9419.139, Max-Change: 0.01142
Iteration: 16, Log-Lik: -9418.958, Max-Change: 0.00960
Iteration: 17, Log-Lik: -9418.937, Max-Change: 0.00943
Iteration: 18, Log-Lik: -9418.917, Max-Change: 0.00928
Iteration: 19, Log-Lik: -9418.806, Max-Change: 0.00837
Iteration: 20, Log-Lik: -9418.789, Max-Change: 0.00834
Iteration: 21, Log-Lik: -9418.773, Max-Change: 0.00830
Iteration: 22, Log-Lik: -9418.674, Max-Change: 0.00796
Iteration: 23, Log-Lik: -9418.658, Max-Change: 0.00793
Iteration: 24, Log-Lik: -9418.641, Max-Change: 0.00789
Iteration: 25, Log-Lik: -9418.543, Max-Change: 0.00754
Iteration: 26, Log-Lik: -9418.527, Max-Change: 0.00753
Iteration: 27, Log-Lik: -9418.510, Max-Change: 0.00750
Iteration: 28, Log-Lik: -9418.410, Max-Change: 0.00715
Iteration: 29, Log-Lik: -9418.393, Max-Change: 0.00712
Iteration: 30, Log-Lik: -9418.376, Max-Change: 0.00708
Iteration: 31, Log-Lik: -9418.272, Max-Change: 0.00660
Iteration: 32, Log-Lik: -9418.255, Max-Change: 0.00657
Iteration: 33, Log-Lik: -9418.237, Max-Change: 0.00652
Iteration: 34, Log-Lik: -9418.127, Max-Change: 0.00608
Iteration: 35, Log-Lik: -9418.108, Max-Change: 0.00591
Iteration: 36, Log-Lik: -9418.088, Max-Change: 0.00585
Iteration: 37, Log-Lik: -9417.968, Max-Change: 0.00536
Iteration: 38, Log-Lik: -9417.946, Max-Change: 0.00513
Iteration: 39, Log-Lik: -9417.924, Max-Change: 0.00507
Iteration: 40, Log-Lik: -9417.787, Max-Change: 0.00521
Iteration: 41, Log-Lik: -9417.762, Max-Change: 0.00522
Iteration: 42, Log-Lik: -9417.737, Max-Change: 0.00525
Iteration: 43, Log-Lik: -9417.578, Max-Change: 0.00556
Iteration: 44, Log-Lik: -9417.549, Max-Change: 0.00564
Iteration: 45, Log-Lik: -9417.519, Max-Change: 0.00573
Iteration: 46, Log-Lik: -9417.334, Max-Change: 0.00609
Iteration: 47, Log-Lik: -9417.301, Max-Change: 0.00617
Iteration: 48, Log-Lik: -9417.267, Max-Change: 0.00624
Iteration: 49, Log-Lik: -9417.061, Max-Change: 0.00642
Iteration: 50, Log-Lik: -9417.026, Max-Change: 0.00647
Iteration: 51, Log-Lik: -9416.991, Max-Change: 0.00649
Iteration: 52, Log-Lik: -9416.782, Max-Change: 0.00636
Iteration: 53, Log-Lik: -9416.749, Max-Change: 0.00635
Iteration: 54, Log-Lik: -9416.716, Max-Change: 0.00632
Iteration: 55, Log-Lik: -9416.533, Max-Change: 0.00583
Iteration: 56, Log-Lik: -9416.507, Max-Change: 0.00577
Iteration: 57, Log-Lik: -9416.482, Max-Change: 0.00569
Iteration: 58, Log-Lik: -9416.347, Max-Change: 0.00562
Iteration: 59, Log-Lik: -9416.329, Max-Change: 0.00564
Iteration: 60, Log-Lik: -9416.313, Max-Change: 0.00558
Iteration: 61, Log-Lik: -9416.226, Max-Change: 0.00510
Iteration: 62, Log-Lik: -9416.216, Max-Change: 0.00517
Iteration: 63, Log-Lik: -9416.206, Max-Change: 0.00508
Iteration: 64, Log-Lik: -9416.154, Max-Change: 0.00431
Iteration: 65, Log-Lik: -9416.148, Max-Change: 0.00440
Iteration: 66, Log-Lik: -9416.142, Max-Change: 0.00432
Iteration: 67, Log-Lik: -9416.110, Max-Change: 0.00361
Iteration: 68, Log-Lik: -9416.106, Max-Change: 0.00369
Iteration: 69, Log-Lik: -9416.102, Max-Change: 0.00364
Iteration: 70, Log-Lik: -9416.080, Max-Change: 0.00308
Iteration: 71, Log-Lik: -9416.077, Max-Change: 0.00316
Iteration: 72, Log-Lik: -9416.074, Max-Change: 0.00312
Iteration: 73, Log-Lik: -9416.057, Max-Change: 0.00273
Iteration: 74, Log-Lik: -9416.054, Max-Change: 0.00279
Iteration: 75, Log-Lik: -9416.052, Max-Change: 0.00276
Iteration: 76, Log-Lik: -9416.037, Max-Change: 0.00255
Iteration: 77, Log-Lik: -9416.035, Max-Change: 0.00254
Iteration: 78, Log-Lik: -9416.032, Max-Change: 0.00252
Iteration: 79, Log-Lik: -9416.019, Max-Change: 0.00243
Iteration: 80, Log-Lik: -9416.017, Max-Change: 0.00242
Iteration: 81, Log-Lik: -9416.015, Max-Change: 0.00241
Iteration: 82, Log-Lik: -9416.002, Max-Change: 0.00234
Iteration: 83, Log-Lik: -9416.000, Max-Change: 0.00233
Iteration: 84, Log-Lik: -9415.998, Max-Change: 0.00232
Iteration: 85, Log-Lik: -9415.985, Max-Change: 0.00226
Iteration: 86, Log-Lik: -9415.983, Max-Change: 0.00225
Iteration: 87, Log-Lik: -9415.981, Max-Change: 0.00225
Iteration: 88, Log-Lik: -9415.970, Max-Change: 0.00218
Iteration: 89, Log-Lik: -9415.968, Max-Change: 0.00218
Iteration: 90, Log-Lik: -9415.966, Max-Change: 0.00217
Iteration: 91, Log-Lik: -9415.955, Max-Change: 0.00211
Iteration: 92, Log-Lik: -9415.953, Max-Change: 0.00210
Iteration: 93, Log-Lik: -9415.951, Max-Change: 0.00209
Iteration: 94, Log-Lik: -9415.940, Max-Change: 0.00204
Iteration: 95, Log-Lik: -9415.938, Max-Change: 0.00203
Iteration: 96, Log-Lik: -9415.937, Max-Change: 0.00203
Iteration: 97, Log-Lik: -9415.926, Max-Change: 0.00200
Iteration: 98, Log-Lik: -9415.925, Max-Change: 0.00200
Iteration: 99, Log-Lik: -9415.923, Max-Change: 0.00199
Iteration: 100, Log-Lik: -9415.913, Max-Change: 0.00196
Iteration: 101, Log-Lik: -9415.911, Max-Change: 0.00196
Iteration: 102, Log-Lik: -9415.910, Max-Change: 0.00195
Iteration: 103, Log-Lik: -9415.900, Max-Change: 0.00192
Iteration: 104, Log-Lik: -9415.899, Max-Change: 0.00191
Iteration: 105, Log-Lik: -9415.897, Max-Change: 0.00190
Iteration: 106, Log-Lik: -9415.888, Max-Change: 0.00187
Iteration: 107, Log-Lik: -9415.887, Max-Change: 0.00186
Iteration: 108, Log-Lik: -9415.885, Max-Change: 0.00186
Iteration: 109, Log-Lik: -9415.876, Max-Change: 0.00182
Iteration: 110, Log-Lik: -9415.875, Max-Change: 0.00182
Iteration: 111, Log-Lik: -9415.874, Max-Change: 0.00181
Iteration: 112, Log-Lik: -9415.865, Max-Change: 0.00177
Iteration: 113, Log-Lik: -9415.864, Max-Change: 0.00177
Iteration: 114, Log-Lik: -9415.863, Max-Change: 0.00176
Iteration: 115, Log-Lik: -9415.855, Max-Change: 0.00173
Iteration: 116, Log-Lik: -9415.853, Max-Change: 0.00172
Iteration: 117, Log-Lik: -9415.852, Max-Change: 0.00172
Iteration: 118, Log-Lik: -9415.844, Max-Change: 0.00168
Iteration: 119, Log-Lik: -9415.843, Max-Change: 0.00167
Iteration: 120, Log-Lik: -9415.842, Max-Change: 0.00167
Iteration: 121, Log-Lik: -9415.834, Max-Change: 0.00163
Iteration: 122, Log-Lik: -9415.833, Max-Change: 0.00163
Iteration: 123, Log-Lik: -9415.832, Max-Change: 0.00162
Iteration: 124, Log-Lik: -9415.825, Max-Change: 0.00159
Iteration: 125, Log-Lik: -9415.823, Max-Change: 0.00158
Iteration: 126, Log-Lik: -9415.822, Max-Change: 0.00158
Iteration: 127, Log-Lik: -9415.815, Max-Change: 0.00155
Iteration: 128, Log-Lik: -9415.814, Max-Change: 0.00154
Iteration: 129, Log-Lik: -9415.813, Max-Change: 0.00154
Iteration: 130, Log-Lik: -9415.806, Max-Change: 0.00150
Iteration: 131, Log-Lik: -9415.805, Max-Change: 0.00150
Iteration: 132, Log-Lik: -9415.804, Max-Change: 0.00149
Iteration: 133, Log-Lik: -9415.798, Max-Change: 0.00146
Iteration: 134, Log-Lik: -9415.797, Max-Change: 0.00146
Iteration: 135, Log-Lik: -9415.796, Max-Change: 0.00145
Iteration: 136, Log-Lik: -9415.789, Max-Change: 0.00142
Iteration: 137, Log-Lik: -9415.788, Max-Change: 0.00142
Iteration: 138, Log-Lik: -9415.787, Max-Change: 0.00141
Iteration: 139, Log-Lik: -9415.781, Max-Change: 0.00138
Iteration: 140, Log-Lik: -9415.780, Max-Change: 0.00138
Iteration: 141, Log-Lik: -9415.779, Max-Change: 0.00137
Iteration: 142, Log-Lik: -9415.773, Max-Change: 0.00134
Iteration: 143, Log-Lik: -9415.772, Max-Change: 0.00134
Iteration: 144, Log-Lik: -9415.771, Max-Change: 0.00133
Iteration: 145, Log-Lik: -9415.765, Max-Change: 0.00130
Iteration: 146, Log-Lik: -9415.764, Max-Change: 0.00130
Iteration: 147, Log-Lik: -9415.763, Max-Change: 0.00129
Iteration: 148, Log-Lik: -9415.758, Max-Change: 0.00126
Iteration: 149, Log-Lik: -9415.757, Max-Change: 0.00126
Iteration: 150, Log-Lik: -9415.756, Max-Change: 0.00126
Iteration: 151, Log-Lik: -9415.750, Max-Change: 0.00123
Iteration: 152, Log-Lik: -9415.749, Max-Change: 0.00122
Iteration: 153, Log-Lik: -9415.748, Max-Change: 0.00122
Iteration: 154, Log-Lik: -9415.743, Max-Change: 0.00119
Iteration: 155, Log-Lik: -9415.742, Max-Change: 0.00119
Iteration: 156, Log-Lik: -9415.741, Max-Change: 0.00118
Iteration: 157, Log-Lik: -9415.736, Max-Change: 0.00115
Iteration: 158, Log-Lik: -9415.735, Max-Change: 0.00115
Iteration: 159, Log-Lik: -9415.734, Max-Change: 0.00115
Iteration: 160, Log-Lik: -9415.728, Max-Change: 0.00116
Iteration: 161, Log-Lik: -9415.728, Max-Change: 0.00116
Iteration: 162, Log-Lik: -9415.727, Max-Change: 0.00116
Iteration: 163, Log-Lik: -9415.722, Max-Change: 0.00117
Iteration: 164, Log-Lik: -9415.721, Max-Change: 0.00117
Iteration: 165, Log-Lik: -9415.720, Max-Change: 0.00117
Iteration: 166, Log-Lik: -9415.715, Max-Change: 0.00119
Iteration: 167, Log-Lik: -9415.714, Max-Change: 0.00119
Iteration: 168, Log-Lik: -9415.713, Max-Change: 0.00119
Iteration: 169, Log-Lik: -9415.708, Max-Change: 0.00120
Iteration: 170, Log-Lik: -9415.707, Max-Change: 0.00120
Iteration: 171, Log-Lik: -9415.706, Max-Change: 0.00120
Iteration: 172, Log-Lik: -9415.701, Max-Change: 0.00121
Iteration: 173, Log-Lik: -9415.700, Max-Change: 0.00121
Iteration: 174, Log-Lik: -9415.700, Max-Change: 0.00121
Iteration: 175, Log-Lik: -9415.695, Max-Change: 0.00123
Iteration: 176, Log-Lik: -9415.694, Max-Change: 0.00123
Iteration: 177, Log-Lik: -9415.693, Max-Change: 0.00123
Iteration: 178, Log-Lik: -9415.688, Max-Change: 0.00124
Iteration: 179, Log-Lik: -9415.687, Max-Change: 0.00124
Iteration: 180, Log-Lik: -9415.686, Max-Change: 0.00124
Iteration: 181, Log-Lik: -9415.682, Max-Change: 0.00125
Iteration: 182, Log-Lik: -9415.681, Max-Change: 0.00125
Iteration: 183, Log-Lik: -9415.680, Max-Change: 0.00125
Iteration: 184, Log-Lik: -9415.675, Max-Change: 0.00126
Iteration: 185, Log-Lik: -9415.674, Max-Change: 0.00126
Iteration: 186, Log-Lik: -9415.674, Max-Change: 0.00127
Iteration: 187, Log-Lik: -9415.669, Max-Change: 0.00128
Iteration: 188, Log-Lik: -9415.668, Max-Change: 0.00128
Iteration: 189, Log-Lik: -9415.667, Max-Change: 0.00128
Iteration: 190, Log-Lik: -9415.662, Max-Change: 0.00129
Iteration: 191, Log-Lik: -9415.662, Max-Change: 0.00129
Iteration: 192, Log-Lik: -9415.661, Max-Change: 0.00129
Iteration: 193, Log-Lik: -9415.656, Max-Change: 0.00130
Iteration: 194, Log-Lik: -9415.655, Max-Change: 0.00130
Iteration: 195, Log-Lik: -9415.655, Max-Change: 0.00130
Iteration: 196, Log-Lik: -9415.650, Max-Change: 0.00131
Iteration: 197, Log-Lik: -9415.649, Max-Change: 0.00131
Iteration: 198, Log-Lik: -9415.648, Max-Change: 0.00131
Iteration: 199, Log-Lik: -9415.644, Max-Change: 0.00132
Iteration: 200, Log-Lik: -9415.643, Max-Change: 0.00132
Iteration: 201, Log-Lik: -9415.642, Max-Change: 0.00132
Iteration: 202, Log-Lik: -9415.637, Max-Change: 0.00133
Iteration: 203, Log-Lik: -9415.637, Max-Change: 0.00133
Iteration: 204, Log-Lik: -9415.636, Max-Change: 0.00133
Iteration: 205, Log-Lik: -9415.631, Max-Change: 0.00134
Iteration: 206, Log-Lik: -9415.630, Max-Change: 0.00134
Iteration: 207, Log-Lik: -9415.629, Max-Change: 0.00134
Iteration: 208, Log-Lik: -9415.625, Max-Change: 0.00135
Iteration: 209, Log-Lik: -9415.624, Max-Change: 0.00135
Iteration: 210, Log-Lik: -9415.623, Max-Change: 0.00135
Iteration: 211, Log-Lik: -9415.618, Max-Change: 0.00136
Iteration: 212, Log-Lik: -9415.618, Max-Change: 0.00136
Iteration: 213, Log-Lik: -9415.617, Max-Change: 0.00136
Iteration: 214, Log-Lik: -9415.612, Max-Change: 0.00137
Iteration: 215, Log-Lik: -9415.611, Max-Change: 0.00137
Iteration: 216, Log-Lik: -9415.610, Max-Change: 0.00137
Iteration: 217, Log-Lik: -9415.606, Max-Change: 0.00138
Iteration: 218, Log-Lik: -9415.605, Max-Change: 0.00138
Iteration: 219, Log-Lik: -9415.604, Max-Change: 0.00138
Iteration: 220, Log-Lik: -9415.599, Max-Change: 0.00139
Iteration: 221, Log-Lik: -9415.598, Max-Change: 0.00139
Iteration: 222, Log-Lik: -9415.598, Max-Change: 0.00139
Iteration: 223, Log-Lik: -9415.593, Max-Change: 0.00139
Iteration: 224, Log-Lik: -9415.592, Max-Change: 0.00139
Iteration: 225, Log-Lik: -9415.591, Max-Change: 0.00139
Iteration: 226, Log-Lik: -9415.586, Max-Change: 0.00140
Iteration: 227, Log-Lik: -9415.585, Max-Change: 0.00140
Iteration: 228, Log-Lik: -9415.585, Max-Change: 0.00140
Iteration: 229, Log-Lik: -9415.580, Max-Change: 0.00141
Iteration: 230, Log-Lik: -9415.579, Max-Change: 0.00141
Iteration: 231, Log-Lik: -9415.578, Max-Change: 0.00141
Iteration: 232, Log-Lik: -9415.573, Max-Change: 0.00142
Iteration: 233, Log-Lik: -9415.572, Max-Change: 0.00142
Iteration: 234, Log-Lik: -9415.571, Max-Change: 0.00142
Iteration: 235, Log-Lik: -9415.566, Max-Change: 0.00142
Iteration: 236, Log-Lik: -9415.566, Max-Change: 0.00142
Iteration: 237, Log-Lik: -9415.565, Max-Change: 0.00142
Iteration: 238, Log-Lik: -9415.560, Max-Change: 0.00143
Iteration: 239, Log-Lik: -9415.559, Max-Change: 0.00143
Iteration: 240, Log-Lik: -9415.558, Max-Change: 0.00143
Iteration: 241, Log-Lik: -9415.553, Max-Change: 0.00144
Iteration: 242, Log-Lik: -9415.552, Max-Change: 0.00144
Iteration: 243, Log-Lik: -9415.551, Max-Change: 0.00144
Iteration: 244, Log-Lik: -9415.546, Max-Change: 0.00144
Iteration: 245, Log-Lik: -9415.545, Max-Change: 0.00144
Iteration: 246, Log-Lik: -9415.544, Max-Change: 0.00144
Iteration: 247, Log-Lik: -9415.539, Max-Change: 0.00145
Iteration: 248, Log-Lik: -9415.538, Max-Change: 0.00145
Iteration: 249, Log-Lik: -9415.537, Max-Change: 0.00145
Iteration: 250, Log-Lik: -9415.531, Max-Change: 0.00146
Iteration: 251, Log-Lik: -9415.531, Max-Change: 0.00146
Iteration: 252, Log-Lik: -9415.530, Max-Change: 0.00146
Iteration: 253, Log-Lik: -9415.524, Max-Change: 0.00146
Iteration: 254, Log-Lik: -9415.523, Max-Change: 0.00146
Iteration: 255, Log-Lik: -9415.522, Max-Change: 0.00146
Iteration: 256, Log-Lik: -9415.517, Max-Change: 0.00147
Iteration: 257, Log-Lik: -9415.516, Max-Change: 0.00147
Iteration: 258, Log-Lik: -9415.515, Max-Change: 0.00147
Iteration: 259, Log-Lik: -9415.509, Max-Change: 0.00147
Iteration: 260, Log-Lik: -9415.508, Max-Change: 0.00147
Iteration: 261, Log-Lik: -9415.507, Max-Change: 0.00147
Iteration: 262, Log-Lik: -9415.502, Max-Change: 0.00148
Iteration: 263, Log-Lik: -9415.501, Max-Change: 0.00148
Iteration: 264, Log-Lik: -9415.500, Max-Change: 0.00148
Iteration: 265, Log-Lik: -9415.494, Max-Change: 0.00148
Iteration: 266, Log-Lik: -9415.493, Max-Change: 0.00148
Iteration: 267, Log-Lik: -9415.492, Max-Change: 0.00148
Iteration: 268, Log-Lik: -9415.486, Max-Change: 0.00149
Iteration: 269, Log-Lik: -9415.485, Max-Change: 0.00149
Iteration: 270, Log-Lik: -9415.484, Max-Change: 0.00149
Iteration: 271, Log-Lik: -9415.478, Max-Change: 0.00149
Iteration: 272, Log-Lik: -9415.477, Max-Change: 0.00149
Iteration: 273, Log-Lik: -9415.476, Max-Change: 0.00149
Iteration: 274, Log-Lik: -9415.470, Max-Change: 0.00150
Iteration: 275, Log-Lik: -9415.469, Max-Change: 0.00150
Iteration: 276, Log-Lik: -9415.468, Max-Change: 0.00150
Iteration: 277, Log-Lik: -9415.462, Max-Change: 0.00150
Iteration: 278, Log-Lik: -9415.461, Max-Change: 0.00150
Iteration: 279, Log-Lik: -9415.460, Max-Change: 0.00150
Iteration: 280, Log-Lik: -9415.453, Max-Change: 0.00150
Iteration: 281, Log-Lik: -9415.452, Max-Change: 0.00150
Iteration: 282, Log-Lik: -9415.451, Max-Change: 0.00150
Iteration: 283, Log-Lik: -9415.445, Max-Change: 0.00151
Iteration: 284, Log-Lik: -9415.444, Max-Change: 0.00151
Iteration: 285, Log-Lik: -9415.443, Max-Change: 0.00151
Iteration: 286, Log-Lik: -9415.436, Max-Change: 0.00151
Iteration: 287, Log-Lik: -9415.435, Max-Change: 0.00151
Iteration: 288, Log-Lik: -9415.434, Max-Change: 0.00151
Iteration: 289, Log-Lik: -9415.428, Max-Change: 0.00151
Iteration: 290, Log-Lik: -9415.426, Max-Change: 0.00151
Iteration: 291, Log-Lik: -9415.425, Max-Change: 0.00151
Iteration: 292, Log-Lik: -9415.419, Max-Change: 0.00151
Iteration: 293, Log-Lik: -9415.418, Max-Change: 0.00151
Iteration: 294, Log-Lik: -9415.416, Max-Change: 0.00151
Iteration: 295, Log-Lik: -9415.410, Max-Change: 0.00151
Iteration: 296, Log-Lik: -9415.409, Max-Change: 0.00151
Iteration: 297, Log-Lik: -9415.407, Max-Change: 0.00152
Iteration: 298, Log-Lik: -9415.401, Max-Change: 0.00152
Iteration: 299, Log-Lik: -9415.399, Max-Change: 0.00152
Iteration: 300, Log-Lik: -9415.398, Max-Change: 0.00152
Iteration: 301, Log-Lik: -9415.391, Max-Change: 0.00152
Iteration: 302, Log-Lik: -9415.390, Max-Change: 0.00152
Iteration: 303, Log-Lik: -9415.389, Max-Change: 0.00152
Iteration: 304, Log-Lik: -9415.382, Max-Change: 0.00152
Iteration: 305, Log-Lik: -9415.381, Max-Change: 0.00152
Iteration: 306, Log-Lik: -9415.380, Max-Change: 0.00152
Iteration: 307, Log-Lik: -9415.373, Max-Change: 0.00152
Iteration: 308, Log-Lik: -9415.371, Max-Change: 0.00152
Iteration: 309, Log-Lik: -9415.370, Max-Change: 0.00152
Iteration: 310, Log-Lik: -9415.363, Max-Change: 0.00151
Iteration: 311, Log-Lik: -9415.362, Max-Change: 0.00151
Iteration: 312, Log-Lik: -9415.361, Max-Change: 0.00151
Iteration: 313, Log-Lik: -9415.353, Max-Change: 0.00151
Iteration: 314, Log-Lik: -9415.352, Max-Change: 0.00151
Iteration: 315, Log-Lik: -9415.351, Max-Change: 0.00151
Iteration: 316, Log-Lik: -9415.344, Max-Change: 0.00151
Iteration: 317, Log-Lik: -9415.343, Max-Change: 0.00151
Iteration: 318, Log-Lik: -9415.341, Max-Change: 0.00151
Iteration: 319, Log-Lik: -9415.334, Max-Change: 0.00151
Iteration: 320, Log-Lik: -9415.333, Max-Change: 0.00151
Iteration: 321, Log-Lik: -9415.332, Max-Change: 0.00151
Iteration: 322, Log-Lik: -9415.324, Max-Change: 0.00150
Iteration: 323, Log-Lik: -9415.323, Max-Change: 0.00150
Iteration: 324, Log-Lik: -9415.322, Max-Change: 0.00150
Iteration: 325, Log-Lik: -9415.315, Max-Change: 0.00150
Iteration: 326, Log-Lik: -9415.313, Max-Change: 0.00150
Iteration: 327, Log-Lik: -9415.312, Max-Change: 0.00150
Iteration: 328, Log-Lik: -9415.305, Max-Change: 0.00149
Iteration: 329, Log-Lik: -9415.303, Max-Change: 0.00149
Iteration: 330, Log-Lik: -9415.302, Max-Change: 0.00149
Iteration: 331, Log-Lik: -9415.295, Max-Change: 0.00148
Iteration: 332, Log-Lik: -9415.294, Max-Change: 0.00148
Iteration: 333, Log-Lik: -9415.292, Max-Change: 0.00148
Iteration: 334, Log-Lik: -9415.285, Max-Change: 0.00148
Iteration: 335, Log-Lik: -9415.284, Max-Change: 0.00147
Iteration: 336, Log-Lik: -9415.283, Max-Change: 0.00147
Iteration: 337, Log-Lik: -9415.275, Max-Change: 0.00147
Iteration: 338, Log-Lik: -9415.274, Max-Change: 0.00147
Iteration: 339, Log-Lik: -9415.273, Max-Change: 0.00147
Iteration: 340, Log-Lik: -9415.266, Max-Change: 0.00146
Iteration: 341, Log-Lik: -9415.264, Max-Change: 0.00146
Iteration: 342, Log-Lik: -9415.263, Max-Change: 0.00146
Iteration: 343, Log-Lik: -9415.256, Max-Change: 0.00145
Iteration: 344, Log-Lik: -9415.255, Max-Change: 0.00145
Iteration: 345, Log-Lik: -9415.253, Max-Change: 0.00144
Iteration: 346, Log-Lik: -9415.246, Max-Change: 0.00143
Iteration: 347, Log-Lik: -9415.245, Max-Change: 0.00143
Iteration: 348, Log-Lik: -9415.244, Max-Change: 0.00143
Iteration: 349, Log-Lik: -9415.237, Max-Change: 0.00142
Iteration: 350, Log-Lik: -9415.236, Max-Change: 0.00142
Iteration: 351, Log-Lik: -9415.234, Max-Change: 0.00142
Iteration: 352, Log-Lik: -9415.227, Max-Change: 0.00141
Iteration: 353, Log-Lik: -9415.226, Max-Change: 0.00141
Iteration: 354, Log-Lik: -9415.225, Max-Change: 0.00141
Iteration: 355, Log-Lik: -9415.218, Max-Change: 0.00139
Iteration: 356, Log-Lik: -9415.217, Max-Change: 0.00139
Iteration: 357, Log-Lik: -9415.216, Max-Change: 0.00139
Iteration: 358, Log-Lik: -9415.209, Max-Change: 0.00138
Iteration: 359, Log-Lik: -9415.208, Max-Change: 0.00138
Iteration: 360, Log-Lik: -9415.207, Max-Change: 0.00137
Iteration: 361, Log-Lik: -9415.200, Max-Change: 0.00136
Iteration: 362, Log-Lik: -9415.199, Max-Change: 0.00136
Iteration: 363, Log-Lik: -9415.198, Max-Change: 0.00136
Iteration: 364, Log-Lik: -9415.192, Max-Change: 0.00134
Iteration: 365, Log-Lik: -9415.191, Max-Change: 0.00134
Iteration: 366, Log-Lik: -9415.189, Max-Change: 0.00134
Iteration: 367, Log-Lik: -9415.183, Max-Change: 0.00132
Iteration: 368, Log-Lik: -9415.182, Max-Change: 0.00132
Iteration: 369, Log-Lik: -9415.181, Max-Change: 0.00132
Iteration: 370, Log-Lik: -9415.175, Max-Change: 0.00130
Iteration: 371, Log-Lik: -9415.174, Max-Change: 0.00130
Iteration: 372, Log-Lik: -9415.173, Max-Change: 0.00130
Iteration: 373, Log-Lik: -9415.167, Max-Change: 0.00128
Iteration: 374, Log-Lik: -9415.166, Max-Change: 0.00128
Iteration: 375, Log-Lik: -9415.165, Max-Change: 0.00128
Iteration: 376, Log-Lik: -9415.159, Max-Change: 0.00126
Iteration: 377, Log-Lik: -9415.158, Max-Change: 0.00126
Iteration: 378, Log-Lik: -9415.157, Max-Change: 0.00126
Iteration: 379, Log-Lik: -9415.151, Max-Change: 0.00124
Iteration: 380, Log-Lik: -9415.150, Max-Change: 0.00124
Iteration: 381, Log-Lik: -9415.150, Max-Change: 0.00123
Iteration: 382, Log-Lik: -9415.144, Max-Change: 0.00121
Iteration: 383, Log-Lik: -9415.143, Max-Change: 0.00121
Iteration: 384, Log-Lik: -9415.142, Max-Change: 0.00121
Iteration: 385, Log-Lik: -9415.137, Max-Change: 0.00119
Iteration: 386, Log-Lik: -9415.136, Max-Change: 0.00119
Iteration: 387, Log-Lik: -9415.135, Max-Change: 0.00119
Iteration: 388, Log-Lik: -9415.130, Max-Change: 0.00117
Iteration: 389, Log-Lik: -9415.130, Max-Change: 0.00116
Iteration: 390, Log-Lik: -9415.129, Max-Change: 0.00116
Iteration: 391, Log-Lik: -9415.124, Max-Change: 0.00114
Iteration: 392, Log-Lik: -9415.123, Max-Change: 0.00114
Iteration: 393, Log-Lik: -9415.122, Max-Change: 0.00113
Iteration: 394, Log-Lik: -9415.118, Max-Change: 0.00112
Iteration: 395, Log-Lik: -9415.117, Max-Change: 0.00111
Iteration: 396, Log-Lik: -9415.116, Max-Change: 0.00111
Iteration: 397, Log-Lik: -9415.112, Max-Change: 0.00109
Iteration: 398, Log-Lik: -9415.111, Max-Change: 0.00109
Iteration: 399, Log-Lik: -9415.110, Max-Change: 0.00108
Iteration: 400, Log-Lik: -9415.106, Max-Change: 0.00106
Iteration: 401, Log-Lik: -9415.106, Max-Change: 0.00106
Iteration: 402, Log-Lik: -9415.105, Max-Change: 0.00106
Iteration: 403, Log-Lik: -9415.101, Max-Change: 0.00104
Iteration: 404, Log-Lik: -9415.100, Max-Change: 0.00103
Iteration: 405, Log-Lik: -9415.100, Max-Change: 0.00103
Iteration: 406, Log-Lik: -9415.096, Max-Change: 0.00101
Iteration: 407, Log-Lik: -9415.095, Max-Change: 0.00101
Iteration: 408, Log-Lik: -9415.095, Max-Change: 0.00100
Iteration: 409, Log-Lik: -9415.091, Max-Change: 0.00098
anova(mod1,mod2)
#> AIC SABIC HQ BIC logLik X2 df p
#> mod1 19105.91 19184.13 19215.46 19387.31 -9488.955
#> mod2 19073.92 19190.03 19236.53 19491.63 -9441.963 93.985 31 0
anova(mod2, mod3) #negative AIC, 2 factors probably best
#> AIC SABIC HQ BIC logLik X2 df p
#> mod2 19073.92 19190.03 19236.53 19491.63 -9441.963
#> mod3 19080.18 19232.96 19294.13 19629.80 -9415.090 53.744 30 0.005
# same as above, but using the QMCEM method for generally better accuracy in mod3
mod3 <- mirt(data, 3, method = 'QMCEM', TOL = .001, optimizer = 'NR')
#>
Iteration: 1, Log-Lik: -10713.240, Max-Change: 2.06007
Iteration: 2, Log-Lik: -9590.755, Max-Change: 0.39362
Iteration: 3, Log-Lik: -9480.999, Max-Change: 0.26003
Iteration: 4, Log-Lik: -9448.491, Max-Change: 0.17920
Iteration: 5, Log-Lik: -9435.600, Max-Change: 0.12685
Iteration: 6, Log-Lik: -9429.583, Max-Change: 0.09154
Iteration: 7, Log-Lik: -9426.428, Max-Change: 0.06709
Iteration: 8, Log-Lik: -9424.610, Max-Change: 0.04983
Iteration: 9, Log-Lik: -9423.474, Max-Change: 0.03747
Iteration: 10, Log-Lik: -9421.426, Max-Change: 0.02045
Iteration: 11, Log-Lik: -9421.210, Max-Change: 0.01976
Iteration: 12, Log-Lik: -9421.032, Max-Change: 0.01901
Iteration: 13, Log-Lik: -9420.346, Max-Change: 0.01348
Iteration: 14, Log-Lik: -9420.299, Max-Change: 0.01321
Iteration: 15, Log-Lik: -9420.256, Max-Change: 0.01289
Iteration: 16, Log-Lik: -9420.045, Max-Change: 0.01081
Iteration: 17, Log-Lik: -9420.019, Max-Change: 0.01056
Iteration: 18, Log-Lik: -9419.994, Max-Change: 0.01035
Iteration: 19, Log-Lik: -9419.851, Max-Change: 0.00913
Iteration: 20, Log-Lik: -9419.829, Max-Change: 0.00910
Iteration: 21, Log-Lik: -9419.807, Max-Change: 0.00906
Iteration: 22, Log-Lik: -9419.676, Max-Change: 0.00861
Iteration: 23, Log-Lik: -9419.654, Max-Change: 0.00854
Iteration: 24, Log-Lik: -9419.633, Max-Change: 0.00847
Iteration: 25, Log-Lik: -9419.502, Max-Change: 0.00790
Iteration: 26, Log-Lik: -9419.480, Max-Change: 0.00787
Iteration: 27, Log-Lik: -9419.458, Max-Change: 0.00783
Iteration: 28, Log-Lik: -9419.325, Max-Change: 0.00728
Iteration: 29, Log-Lik: -9419.302, Max-Change: 0.00723
Iteration: 30, Log-Lik: -9419.279, Max-Change: 0.00716
Iteration: 31, Log-Lik: -9419.138, Max-Change: 0.00643
Iteration: 32, Log-Lik: -9419.113, Max-Change: 0.00638
Iteration: 33, Log-Lik: -9419.088, Max-Change: 0.00631
Iteration: 34, Log-Lik: -9418.933, Max-Change: 0.00621
Iteration: 35, Log-Lik: -9418.906, Max-Change: 0.00622
Iteration: 36, Log-Lik: -9418.877, Max-Change: 0.00624
Iteration: 37, Log-Lik: -9418.699, Max-Change: 0.00645
Iteration: 38, Log-Lik: -9418.666, Max-Change: 0.00648
Iteration: 39, Log-Lik: -9418.633, Max-Change: 0.00652
Iteration: 40, Log-Lik: -9418.422, Max-Change: 0.00694
Iteration: 41, Log-Lik: -9418.382, Max-Change: 0.00698
Iteration: 42, Log-Lik: -9418.342, Max-Change: 0.00705
Iteration: 43, Log-Lik: -9418.090, Max-Change: 0.00760
Iteration: 44, Log-Lik: -9418.043, Max-Change: 0.00763
Iteration: 45, Log-Lik: -9417.997, Max-Change: 0.00768
Iteration: 46, Log-Lik: -9417.708, Max-Change: 0.00805
Iteration: 47, Log-Lik: -9417.658, Max-Change: 0.00804
Iteration: 48, Log-Lik: -9417.608, Max-Change: 0.00803
Iteration: 49, Log-Lik: -9417.313, Max-Change: 0.00800
Iteration: 50, Log-Lik: -9417.266, Max-Change: 0.00791
Iteration: 51, Log-Lik: -9417.221, Max-Change: 0.00783
Iteration: 52, Log-Lik: -9416.963, Max-Change: 0.00800
Iteration: 53, Log-Lik: -9416.926, Max-Change: 0.00821
Iteration: 54, Log-Lik: -9416.891, Max-Change: 0.00820
Iteration: 55, Log-Lik: -9416.700, Max-Change: 0.00746
Iteration: 56, Log-Lik: -9416.675, Max-Change: 0.00781
Iteration: 57, Log-Lik: -9416.651, Max-Change: 0.00774
Iteration: 58, Log-Lik: -9416.521, Max-Change: 0.00632
Iteration: 59, Log-Lik: -9416.504, Max-Change: 0.00661
Iteration: 60, Log-Lik: -9416.487, Max-Change: 0.00653
Iteration: 61, Log-Lik: -9416.395, Max-Change: 0.00528
Iteration: 62, Log-Lik: -9416.382, Max-Change: 0.00536
Iteration: 63, Log-Lik: -9416.370, Max-Change: 0.00529
Iteration: 64, Log-Lik: -9416.299, Max-Change: 0.00437
Iteration: 65, Log-Lik: -9416.288, Max-Change: 0.00433
Iteration: 66, Log-Lik: -9416.278, Max-Change: 0.00428
Iteration: 67, Log-Lik: -9416.219, Max-Change: 0.00367
Iteration: 68, Log-Lik: -9416.210, Max-Change: 0.00366
Iteration: 69, Log-Lik: -9416.201, Max-Change: 0.00365
Iteration: 70, Log-Lik: -9416.151, Max-Change: 0.00353
Iteration: 71, Log-Lik: -9416.143, Max-Change: 0.00352
Iteration: 72, Log-Lik: -9416.135, Max-Change: 0.00351
Iteration: 73, Log-Lik: -9416.092, Max-Change: 0.00338
Iteration: 74, Log-Lik: -9416.086, Max-Change: 0.00337
Iteration: 75, Log-Lik: -9416.079, Max-Change: 0.00335
Iteration: 76, Log-Lik: -9416.042, Max-Change: 0.00322
Iteration: 77, Log-Lik: -9416.037, Max-Change: 0.00320
Iteration: 78, Log-Lik: -9416.031, Max-Change: 0.00318
Iteration: 79, Log-Lik: -9416.000, Max-Change: 0.00305
Iteration: 80, Log-Lik: -9415.995, Max-Change: 0.00303
Iteration: 81, Log-Lik: -9415.990, Max-Change: 0.00301
Iteration: 82, Log-Lik: -9415.964, Max-Change: 0.00287
Iteration: 83, Log-Lik: -9415.960, Max-Change: 0.00285
Iteration: 84, Log-Lik: -9415.956, Max-Change: 0.00283
Iteration: 85, Log-Lik: -9415.934, Max-Change: 0.00270
Iteration: 86, Log-Lik: -9415.931, Max-Change: 0.00268
Iteration: 87, Log-Lik: -9415.928, Max-Change: 0.00266
Iteration: 88, Log-Lik: -9415.909, Max-Change: 0.00254
Iteration: 89, Log-Lik: -9415.906, Max-Change: 0.00252
Iteration: 90, Log-Lik: -9415.904, Max-Change: 0.00250
Iteration: 91, Log-Lik: -9415.888, Max-Change: 0.00238
Iteration: 92, Log-Lik: -9415.886, Max-Change: 0.00236
Iteration: 93, Log-Lik: -9415.884, Max-Change: 0.00234
Iteration: 94, Log-Lik: -9415.871, Max-Change: 0.00223
Iteration: 95, Log-Lik: -9415.869, Max-Change: 0.00221
Iteration: 96, Log-Lik: -9415.867, Max-Change: 0.00219
Iteration: 97, Log-Lik: -9415.856, Max-Change: 0.00208
Iteration: 98, Log-Lik: -9415.854, Max-Change: 0.00207
Iteration: 99, Log-Lik: -9415.853, Max-Change: 0.00205
Iteration: 100, Log-Lik: -9415.844, Max-Change: 0.00195
Iteration: 101, Log-Lik: -9415.843, Max-Change: 0.00193
Iteration: 102, Log-Lik: -9415.841, Max-Change: 0.00191
Iteration: 103, Log-Lik: -9415.834, Max-Change: 0.00182
Iteration: 104, Log-Lik: -9415.833, Max-Change: 0.00180
Iteration: 105, Log-Lik: -9415.832, Max-Change: 0.00179
Iteration: 106, Log-Lik: -9415.825, Max-Change: 0.00170
Iteration: 107, Log-Lik: -9415.824, Max-Change: 0.00168
Iteration: 108, Log-Lik: -9415.823, Max-Change: 0.00167
Iteration: 109, Log-Lik: -9415.818, Max-Change: 0.00158
Iteration: 110, Log-Lik: -9415.817, Max-Change: 0.00157
Iteration: 111, Log-Lik: -9415.817, Max-Change: 0.00156
Iteration: 112, Log-Lik: -9415.812, Max-Change: 0.00147
Iteration: 113, Log-Lik: -9415.811, Max-Change: 0.00146
Iteration: 114, Log-Lik: -9415.811, Max-Change: 0.00145
Iteration: 115, Log-Lik: -9415.807, Max-Change: 0.00137
Iteration: 116, Log-Lik: -9415.807, Max-Change: 0.00136
Iteration: 117, Log-Lik: -9415.806, Max-Change: 0.00135
Iteration: 118, Log-Lik: -9415.803, Max-Change: 0.00128
Iteration: 119, Log-Lik: -9415.802, Max-Change: 0.00127
Iteration: 120, Log-Lik: -9415.802, Max-Change: 0.00125
Iteration: 121, Log-Lik: -9415.799, Max-Change: 0.00119
Iteration: 122, Log-Lik: -9415.799, Max-Change: 0.00118
Iteration: 123, Log-Lik: -9415.799, Max-Change: 0.00117
Iteration: 124, Log-Lik: -9415.796, Max-Change: 0.00110
Iteration: 125, Log-Lik: -9415.796, Max-Change: 0.00109
Iteration: 126, Log-Lik: -9415.796, Max-Change: 0.00108
Iteration: 127, Log-Lik: -9415.794, Max-Change: 0.00103
Iteration: 128, Log-Lik: -9415.794, Max-Change: 0.00102
Iteration: 129, Log-Lik: -9415.793, Max-Change: 0.00101
Iteration: 130, Log-Lik: -9415.792, Max-Change: 0.00095
anova(mod2, mod3)
#> AIC SABIC HQ BIC logLik X2 df p
#> mod2 19073.92 19190.03 19236.53 19491.63 -9441.963
#> mod3 19081.58 19234.36 19295.54 19631.20 -9415.792 52.342 30 0.007
# with fixed guessing parameters
mod1g <- mirt(data, 1, guess = .1)
#>
Iteration: 1, Log-Lik: -9675.656, Max-Change: 1.64000
Iteration: 2, Log-Lik: -9492.451, Max-Change: 1.00116
Iteration: 3, Log-Lik: -9473.154, Max-Change: 0.21779
Iteration: 4, Log-Lik: -9467.592, Max-Change: 0.14237
Iteration: 5, Log-Lik: -9464.833, Max-Change: 0.08381
Iteration: 6, Log-Lik: -9463.303, Max-Change: 0.05844
Iteration: 7, Log-Lik: -9461.487, Max-Change: 0.02865
Iteration: 8, Log-Lik: -9461.247, Max-Change: 0.02380
Iteration: 9, Log-Lik: -9461.087, Max-Change: 0.01951
Iteration: 10, Log-Lik: -9460.790, Max-Change: 0.01025
Iteration: 11, Log-Lik: -9460.760, Max-Change: 0.00739
Iteration: 12, Log-Lik: -9460.742, Max-Change: 0.00457
Iteration: 13, Log-Lik: -9460.724, Max-Change: 0.00451
Iteration: 14, Log-Lik: -9460.716, Max-Change: 0.00308
Iteration: 15, Log-Lik: -9460.711, Max-Change: 0.00235
Iteration: 16, Log-Lik: -9460.702, Max-Change: 0.00250
Iteration: 17, Log-Lik: -9460.700, Max-Change: 0.00163
Iteration: 18, Log-Lik: -9460.699, Max-Change: 0.00162
Iteration: 19, Log-Lik: -9460.697, Max-Change: 0.00100
Iteration: 20, Log-Lik: -9460.697, Max-Change: 0.00031
Iteration: 21, Log-Lik: -9460.696, Max-Change: 0.00023
Iteration: 22, Log-Lik: -9460.696, Max-Change: 0.00022
Iteration: 23, Log-Lik: -9460.696, Max-Change: 0.00020
Iteration: 24, Log-Lik: -9460.696, Max-Change: 0.00019
Iteration: 25, Log-Lik: -9460.696, Max-Change: 0.00071
Iteration: 26, Log-Lik: -9460.696, Max-Change: 0.00055
Iteration: 27, Log-Lik: -9460.696, Max-Change: 0.00054
Iteration: 28, Log-Lik: -9460.696, Max-Change: 0.00019
Iteration: 29, Log-Lik: -9460.696, Max-Change: 0.00039
Iteration: 30, Log-Lik: -9460.696, Max-Change: 0.00012
Iteration: 31, Log-Lik: -9460.696, Max-Change: 0.00009
coef(mod1g)
#> $Item.1
#> a1 d g u
#> par 1.211 -1.737 0.1 1
#>
#> $Item.2
#> a1 d g u
#> par 1.78 0.147 0.1 1
#>
#> $Item.3
#> a1 d g u
#> par 1.91 -2.2 0.1 1
#>
#> $Item.4
#> a1 d g u
#> par 0.833 -0.944 0.1 1
#>
#> $Item.5
#> a1 d g u
#> par 1.089 0.399 0.1 1
#>
#> $Item.6
#> a1 d g u
#> par 3.265 -5.212 0.1 1
#>
#> $Item.7
#> a1 d g u
#> par 1.02 1.224 0.1 1
#>
#> $Item.8
#> a1 d g u
#> par 1.639 -2.977 0.1 1
#>
#> $Item.9
#> a1 d g u
#> par 0.49 2.007 0.1 1
#>
#> $Item.10
#> a1 d g u
#> par 1.257 -0.756 0.1 1
#>
#> $Item.11
#> a1 d g u
#> par 1.68 5.18 0.1 1
#>
#> $Item.12
#> a1 d g u
#> par 0.191 -0.625 0.1 1
#>
#> $Item.13
#> a1 d g u
#> par 1.147 0.654 0.1 1
#>
#> $Item.14
#> a1 d g u
#> par 1.099 1.008 0.1 1
#>
#> $Item.15
#> a1 d g u
#> par 1.337 1.79 0.1 1
#>
#> $Item.16
#> a1 d g u
#> par 0.923 -0.744 0.1 1
#>
#> $Item.17
#> a1 d g u
#> par 1.519 4.077 0.1 1
#>
#> $Item.18
#> a1 d g u
#> par 2.585 -1.749 0.1 1
#>
#> $Item.19
#> a1 d g u
#> par 0.91 -0.002 0.1 1
#>
#> $Item.20
#> a1 d g u
#> par 1.485 2.438 0.1 1
#>
#> $Item.21
#> a1 d g u
#> par 0.616 2.407 0.1 1
#>
#> $Item.22
#> a1 d g u
#> par 1.429 3.291 0.1 1
#>
#> $Item.23
#> a1 d g u
#> par 0.96 -1.393 0.1 1
#>
#> $Item.24
#> a1 d g u
#> par 1.282 1.099 0.1 1
#>
#> $Item.25
#> a1 d g u
#> par 1.028 -1 0.1 1
#>
#> $Item.26
#> a1 d g u
#> par 2.059 -0.658 0.1 1
#>
#> $Item.27
#> a1 d g u
#> par 1.839 2.564 0.1 1
#>
#> $Item.28
#> a1 d g u
#> par 1.222 -0.095 0.1 1
#>
#> $Item.29
#> a1 d g u
#> par 1.281 -1.357 0.1 1
#>
#> $Item.30
#> a1 d g u
#> par 0.444 -0.521 0.1 1
#>
#> $Item.31
#> a1 d g u
#> par 2.476 2.697 0.1 1
#>
#> $Item.32
#> a1 d g u
#> par 0.461 -2.742 0.1 1
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#>
###########
# graded rating scale example
# make some data
set.seed(1234)
a <- matrix(rep(1, 10))
d <- matrix(c(1,0.5,-.5,-1), 10, 4, byrow = TRUE)
c <- seq(-1, 1, length.out=10)
data <- simdata(a, d + c, 2000, itemtype = rep('graded',10))
itemstats(data)
#> $overall
#> N mean_total.score sd_total.score ave.r sd.r alpha SEM.alpha
#> 2000 20.196 8.33 0.203 0.027 0.719 4.419
#>
#> $itemstats
#> N mean sd total.r total.r_if_rm alpha_if_rm
#> Item_1 2000 1.284 1.510 0.512 0.359 0.700
#> Item_2 2000 1.427 1.544 0.529 0.375 0.697
#> Item_3 2000 1.592 1.584 0.545 0.389 0.695
#> Item_4 2000 1.774 1.586 0.538 0.381 0.696
#> Item_5 2000 1.910 1.607 0.539 0.380 0.696
#> Item_6 2000 2.124 1.606 0.533 0.373 0.697
#> Item_7 2000 2.284 1.598 0.520 0.359 0.700
#> Item_8 2000 2.420 1.583 0.578 0.430 0.688
#> Item_9 2000 2.606 1.543 0.530 0.377 0.697
#> Item_10 2000 2.776 1.491 0.495 0.342 0.702
#>
#> $proportions
#> 0 1 2 3 4
#> Item_1 0.500 0.096 0.182 0.065 0.158
#> Item_2 0.450 0.108 0.197 0.059 0.187
#> Item_3 0.407 0.108 0.182 0.092 0.212
#> Item_4 0.346 0.111 0.212 0.085 0.246
#> Item_5 0.319 0.102 0.211 0.086 0.281
#> Item_6 0.269 0.097 0.205 0.099 0.330
#> Item_7 0.244 0.073 0.211 0.101 0.372
#> Item_8 0.216 0.074 0.195 0.106 0.410
#> Item_9 0.175 0.072 0.196 0.083 0.473
#> Item_10 0.150 0.059 0.174 0.102 0.516
#>
mod1 <- mirt(data, 1)
#>
Iteration: 1, Log-Lik: -27605.030, Max-Change: 0.15290
Iteration: 2, Log-Lik: -27583.637, Max-Change: 0.08050
Iteration: 3, Log-Lik: -27578.624, Max-Change: 0.05002
Iteration: 4, Log-Lik: -27576.935, Max-Change: 0.02227
Iteration: 5, Log-Lik: -27576.312, Max-Change: 0.01248
Iteration: 6, Log-Lik: -27576.123, Max-Change: 0.00712
Iteration: 7, Log-Lik: -27576.046, Max-Change: 0.00272
Iteration: 8, Log-Lik: -27576.035, Max-Change: 0.00156
Iteration: 9, Log-Lik: -27576.030, Max-Change: 0.00078
Iteration: 10, Log-Lik: -27576.028, Max-Change: 0.00044
Iteration: 11, Log-Lik: -27576.028, Max-Change: 0.00016
Iteration: 12, Log-Lik: -27576.028, Max-Change: 0.00029
Iteration: 13, Log-Lik: -27576.028, Max-Change: 0.00031
Iteration: 14, Log-Lik: -27576.027, Max-Change: 0.00006
mod2 <- mirt(data, 1, itemtype = 'grsm')
#>
Iteration: 1, Log-Lik: -29266.482, Max-Change: 2.06018
Iteration: 2, Log-Lik: -27606.775, Max-Change: 0.12306
Iteration: 3, Log-Lik: -27597.848, Max-Change: 0.03037
Iteration: 4, Log-Lik: -27596.914, Max-Change: 0.01114
Iteration: 5, Log-Lik: -27596.870, Max-Change: 0.00076
Iteration: 6, Log-Lik: -27596.866, Max-Change: 0.00052
Iteration: 7, Log-Lik: -27596.863, Max-Change: 0.00016
Iteration: 8, Log-Lik: -27596.863, Max-Change: 0.00036
Iteration: 9, Log-Lik: -27596.863, Max-Change: 0.00011
Iteration: 10, Log-Lik: -27596.863, Max-Change: 0.00008
coef(mod2)
#> $Item_1
#> a1 b1 b2 b3 b4 c
#> par 0.959 0.001 -0.507 -1.541 -2.032 0
#>
#> $Item_2
#> a1 b1 b2 b3 b4 c
#> par 0.987 0.001 -0.507 -1.541 -2.032 0.235
#>
#> $Item_3
#> a1 b1 b2 b3 b4 c
#> par 0.994 0.001 -0.507 -1.541 -2.032 0.457
#>
#> $Item_4
#> a1 b1 b2 b3 b4 c
#> par 1.027 0.001 -0.507 -1.541 -2.032 0.728
#>
#> $Item_5
#> a1 b1 b2 b3 b4 c
#> par 0.995 0.001 -0.507 -1.541 -2.032 0.895
#>
#> $Item_6
#> a1 b1 b2 b3 b4 c
#> par 0.987 0.001 -0.507 -1.541 -2.032 1.179
#>
#> $Item_7
#> a1 b1 b2 b3 b4 c
#> par 0.957 0.001 -0.507 -1.541 -2.032 1.404
#>
#> $Item_8
#> a1 b1 b2 b3 b4 c
#> par 1.04 0.001 -0.507 -1.541 -2.032 1.578
#>
#> $Item_9
#> a1 b1 b2 b3 b4 c
#> par 0.964 0.001 -0.507 -1.541 -2.032 1.878
#>
#> $Item_10
#> a1 b1 b2 b3 b4 c
#> par 0.947 0.001 -0.507 -1.541 -2.032 2.136
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1
#>
anova(mod2, mod1) #not sig, mod2 should be preferred
#> AIC SABIC HQ BIC logLik X2 df p
#> mod2 55239.72 55295.47 55287.03 55368.55 -27596.86
#> mod1 55252.05 55373.25 55354.88 55532.10 -27576.03 41.671 27 0.035
itemplot(mod2, 1)
itemplot(mod2, 5)
itemplot(mod2, 10)
###########
# 2PL nominal response model example (Suh and Bolt, 2010)
data(SAT12)
SAT12[SAT12 == 8] <- NA #set 8 as a missing value
head(SAT12)
#> Item.1 Item.2 Item.3 Item.4 Item.5 Item.6 Item.7 Item.8 Item.9 Item.10
#> 1 1 4 5 2 3 1 2 1 3 1
#> 2 3 4 2 NA 3 3 2 NA 3 1
#> 3 1 4 5 4 3 2 2 3 3 2
#> 4 2 4 4 2 3 3 2 4 3 2
#> 5 2 4 5 2 3 2 2 1 1 2
#> 6 1 4 3 1 3 2 2 3 3 1
#> Item.11 Item.12 Item.13 Item.14 Item.15 Item.16 Item.17 Item.18 Item.19
#> 1 2 4 2 1 5 3 4 4 1
#> 2 2 NA 2 1 5 2 4 1 1
#> 3 2 1 3 1 5 5 4 1 3
#> 4 2 4 2 1 5 2 4 1 3
#> 5 2 4 2 1 5 4 4 5 1
#> 6 2 3 2 1 5 5 4 4 1
#> Item.20 Item.21 Item.22 Item.23 Item.24 Item.25 Item.26 Item.27 Item.28
#> 1 4 3 3 4 1 3 5 1 3
#> 2 4 3 3 NA 1 NA 4 1 4
#> 3 4 3 3 1 1 3 4 1 3
#> 4 4 3 1 5 2 5 4 1 3
#> 5 4 3 3 3 1 1 5 1 3
#> 6 4 3 3 4 1 1 4 1 4
#> Item.29 Item.30 Item.31 Item.32
#> 1 1 5 4 5
#> 2 5 NA 4 NA
#> 3 4 4 4 1
#> 4 4 2 4 2
#> 5 1 2 4 1
#> 6 2 3 4 3
# correct answer key
key <- c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)
scoredSAT12 <- key2binary(SAT12, key)
mod0 <- mirt(scoredSAT12, 1)
#>
Iteration: 1, Log-Lik: -9613.786, Max-Change: 0.80344
Iteration: 2, Log-Lik: -9468.739, Max-Change: 0.52487
Iteration: 3, Log-Lik: -9458.099, Max-Change: 0.23219
Iteration: 4, Log-Lik: -9456.607, Max-Change: 0.11785
Iteration: 5, Log-Lik: -9456.201, Max-Change: 0.04589
Iteration: 6, Log-Lik: -9456.025, Max-Change: 0.02606
Iteration: 7, Log-Lik: -9455.927, Max-Change: 0.01620
Iteration: 8, Log-Lik: -9455.891, Max-Change: 0.00925
Iteration: 9, Log-Lik: -9455.874, Max-Change: 0.00465
Iteration: 10, Log-Lik: -9455.861, Max-Change: 0.00390
Iteration: 11, Log-Lik: -9455.857, Max-Change: 0.00267
Iteration: 12, Log-Lik: -9455.854, Max-Change: 0.00191
Iteration: 13, Log-Lik: -9455.851, Max-Change: 0.00214
Iteration: 14, Log-Lik: -9455.850, Max-Change: 0.00163
Iteration: 15, Log-Lik: -9455.850, Max-Change: 0.00071
Iteration: 16, Log-Lik: -9455.849, Max-Change: 0.00036
Iteration: 17, Log-Lik: -9455.849, Max-Change: 0.00033
Iteration: 18, Log-Lik: -9455.849, Max-Change: 0.00029
Iteration: 19, Log-Lik: -9455.849, Max-Change: 0.00075
Iteration: 20, Log-Lik: -9455.849, Max-Change: 0.00007
# for first 5 items use 2PLNRM and nominal
scoredSAT12[,1:5] <- as.matrix(SAT12[,1:5])
mod1 <- mirt(scoredSAT12, 1, c(rep('nominal',5),rep('2PL', 27)))
#>
Iteration: 1, Log-Lik: -13260.607, Max-Change: 3.74948
Iteration: 2, Log-Lik: -11857.044, Max-Change: 3.70653
Iteration: 3, Log-Lik: -11688.923, Max-Change: 2.83639
Iteration: 4, Log-Lik: -11640.311, Max-Change: 1.97611
Iteration: 5, Log-Lik: -11621.311, Max-Change: 1.05067
Iteration: 6, Log-Lik: -11614.142, Max-Change: 0.85011
Iteration: 7, Log-Lik: -11610.708, Max-Change: 0.40399
Iteration: 8, Log-Lik: -11608.938, Max-Change: 0.98591
Iteration: 9, Log-Lik: -11607.717, Max-Change: 0.30236
Iteration: 10, Log-Lik: -11607.162, Max-Change: 5.01139
Iteration: 11, Log-Lik: -11604.918, Max-Change: 0.23936
Iteration: 12, Log-Lik: -11604.331, Max-Change: 1.24402
Iteration: 13, Log-Lik: -11603.909, Max-Change: 0.84659
Iteration: 14, Log-Lik: -11603.554, Max-Change: 0.56149
Iteration: 15, Log-Lik: -11603.392, Max-Change: 0.00074
Iteration: 16, Log-Lik: -11603.392, Max-Change: 0.00074
Iteration: 17, Log-Lik: -11603.390, Max-Change: 6.41921
Iteration: 18, Log-Lik: -11602.678, Max-Change: 0.15371
Iteration: 19, Log-Lik: -11602.668, Max-Change: 1.09968
Iteration: 20, Log-Lik: -11602.392, Max-Change: 0.05449
Iteration: 21, Log-Lik: -11602.339, Max-Change: 6.76908
Iteration: 22, Log-Lik: -11602.031, Max-Change: 0.11257
Iteration: 23, Log-Lik: -11601.914, Max-Change: 0.00027
Iteration: 24, Log-Lik: -11601.911, Max-Change: 0.00008
mod2 <- mirt(scoredSAT12, 1, c(rep('2PLNRM',5),rep('2PL', 27)), key=key)
#>
Iteration: 1, Log-Lik: -12010.931, Max-Change: 3.39278
Iteration: 2, Log-Lik: -11636.213, Max-Change: 1.60456
Iteration: 3, Log-Lik: -11604.353, Max-Change: 0.23662
Iteration: 4, Log-Lik: -11600.473, Max-Change: 0.11573
Iteration: 5, Log-Lik: -11599.708, Max-Change: 0.07663
Iteration: 6, Log-Lik: -11599.489, Max-Change: 0.03183
Iteration: 7, Log-Lik: -11599.413, Max-Change: 0.02481
Iteration: 8, Log-Lik: -11599.377, Max-Change: 0.01140
Iteration: 9, Log-Lik: -11599.358, Max-Change: 0.00739
Iteration: 10, Log-Lik: -11599.346, Max-Change: 0.00406
Iteration: 11, Log-Lik: -11599.340, Max-Change: 0.00221
Iteration: 12, Log-Lik: -11599.339, Max-Change: 0.00181
Iteration: 13, Log-Lik: -11599.336, Max-Change: 0.00057
Iteration: 14, Log-Lik: -11599.336, Max-Change: 0.00043
Iteration: 15, Log-Lik: -11599.336, Max-Change: 0.00042
Iteration: 16, Log-Lik: -11599.336, Max-Change: 0.00039
Iteration: 17, Log-Lik: -11599.336, Max-Change: 0.00190
Iteration: 18, Log-Lik: -11599.335, Max-Change: 0.00034
Iteration: 19, Log-Lik: -11599.335, Max-Change: 0.00030
Iteration: 20, Log-Lik: -11599.335, Max-Change: 0.00142
Iteration: 21, Log-Lik: -11599.335, Max-Change: 0.00054
Iteration: 22, Log-Lik: -11599.335, Max-Change: 0.00027
Iteration: 23, Log-Lik: -11599.335, Max-Change: 0.00104
Iteration: 24, Log-Lik: -11599.335, Max-Change: 0.00063
Iteration: 25, Log-Lik: -11599.335, Max-Change: 0.00024
Iteration: 26, Log-Lik: -11599.335, Max-Change: 0.00081
Iteration: 27, Log-Lik: -11599.335, Max-Change: 0.00057
Iteration: 28, Log-Lik: -11599.335, Max-Change: 0.00020
Iteration: 29, Log-Lik: -11599.335, Max-Change: 0.00066
Iteration: 30, Log-Lik: -11599.335, Max-Change: 0.00047
Iteration: 31, Log-Lik: -11599.335, Max-Change: 0.00017
Iteration: 32, Log-Lik: -11599.335, Max-Change: 0.00069
Iteration: 33, Log-Lik: -11599.335, Max-Change: 0.00040
Iteration: 34, Log-Lik: -11599.335, Max-Change: 0.00014
Iteration: 35, Log-Lik: -11599.335, Max-Change: 0.00070
Iteration: 36, Log-Lik: -11599.335, Max-Change: 0.00035
Iteration: 37, Log-Lik: -11599.335, Max-Change: 0.00014
Iteration: 38, Log-Lik: -11599.335, Max-Change: 0.00069
Iteration: 39, Log-Lik: -11599.335, Max-Change: 0.00031
Iteration: 40, Log-Lik: -11599.335, Max-Change: 0.00014
Iteration: 41, Log-Lik: -11599.335, Max-Change: 0.00069
Iteration: 42, Log-Lik: -11599.335, Max-Change: 0.00028
Iteration: 43, Log-Lik: -11599.335, Max-Change: 0.00014
Iteration: 44, Log-Lik: -11599.335, Max-Change: 0.00067
Iteration: 45, Log-Lik: -11599.335, Max-Change: 0.00027
Iteration: 46, Log-Lik: -11599.335, Max-Change: 0.00013
Iteration: 47, Log-Lik: -11599.335, Max-Change: 0.00066
Iteration: 48, Log-Lik: -11599.335, Max-Change: 0.00025
Iteration: 49, Log-Lik: -11599.335, Max-Change: 0.00013
Iteration: 50, Log-Lik: -11599.335, Max-Change: 0.00065
Iteration: 51, Log-Lik: -11599.335, Max-Change: 0.00024
Iteration: 52, Log-Lik: -11599.335, Max-Change: 0.00013
Iteration: 53, Log-Lik: -11599.335, Max-Change: 0.00063
Iteration: 54, Log-Lik: -11599.335, Max-Change: 0.00023
Iteration: 55, Log-Lik: -11599.335, Max-Change: 0.00012
Iteration: 56, Log-Lik: -11599.335, Max-Change: 0.00062
Iteration: 57, Log-Lik: -11599.335, Max-Change: 0.00022
Iteration: 58, Log-Lik: -11599.335, Max-Change: 0.00012
Iteration: 59, Log-Lik: -11599.335, Max-Change: 0.00060
Iteration: 60, Log-Lik: -11599.335, Max-Change: 0.00021
Iteration: 61, Log-Lik: -11599.335, Max-Change: 0.00012
Iteration: 62, Log-Lik: -11599.335, Max-Change: 0.00059
Iteration: 63, Log-Lik: -11599.335, Max-Change: 0.00021
Iteration: 64, Log-Lik: -11599.335, Max-Change: 0.00012
Iteration: 65, Log-Lik: -11599.335, Max-Change: 0.00058
Iteration: 66, Log-Lik: -11599.335, Max-Change: 0.00020
Iteration: 67, Log-Lik: -11599.335, Max-Change: 0.00011
Iteration: 68, Log-Lik: -11599.335, Max-Change: 0.00056
Iteration: 69, Log-Lik: -11599.335, Max-Change: 0.00019
Iteration: 70, Log-Lik: -11599.335, Max-Change: 0.00011
Iteration: 71, Log-Lik: -11599.335, Max-Change: 0.00055
Iteration: 72, Log-Lik: -11599.335, Max-Change: 0.00019
Iteration: 73, Log-Lik: -11599.335, Max-Change: 0.00011
Iteration: 74, Log-Lik: -11599.335, Max-Change: 0.00054
Iteration: 75, Log-Lik: -11599.335, Max-Change: 0.00018
Iteration: 76, Log-Lik: -11599.335, Max-Change: 0.00011
Iteration: 77, Log-Lik: -11599.335, Max-Change: 0.00052
Iteration: 78, Log-Lik: -11599.335, Max-Change: 0.00018
Iteration: 79, Log-Lik: -11599.335, Max-Change: 0.00010
Iteration: 80, Log-Lik: -11599.335, Max-Change: 0.00051
Iteration: 81, Log-Lik: -11599.335, Max-Change: 0.00017
Iteration: 82, Log-Lik: -11599.335, Max-Change: 0.00010
Iteration: 83, Log-Lik: -11599.335, Max-Change: 0.00050
Iteration: 84, Log-Lik: -11599.335, Max-Change: 0.00017
Iteration: 85, Log-Lik: -11599.335, Max-Change: 0.00010
coef(mod0)$Item.1
#> a1 d g u
#> par 0.8107167 -1.042366 0 1
coef(mod1)$Item.1
#> a1 ak0 ak1 ak2 ak3 ak4 d0 d1 d2
#> par -0.8772035 0 0.5286601 1.116593 1.129494 4 0 -0.1909232 0.01878861
#> d3 d4
#> par -0.1258261 -5.65218
coef(mod2)$Item.1
#> a1 d g u ak0 ak1 ak2 ak3 d0 d1
#> par 0.8102548 -1.04233 0 1 0 -0.5653287 -0.5712706 -3.025613 0 0.2117761
#> d2 d3
#> par 0.06919723 -5.309272
itemplot(mod0, 1)
itemplot(mod1, 1)
itemplot(mod2, 1)
# compare added information from distractors
Theta <- matrix(seq(-4,4,.01))
par(mfrow = c(2,3))
for(i in 1:5){
info <- iteminfo(extract.item(mod0,i), Theta)
info2 <- iteminfo(extract.item(mod2,i), Theta)
plot(Theta, info2, type = 'l', main = paste('Information for item', i), ylab = 'Information')
lines(Theta, info, col = 'red')
}
par(mfrow = c(1,1))
# test information
plot(Theta, testinfo(mod2, Theta), type = 'l', main = 'Test information', ylab = 'Information')
lines(Theta, testinfo(mod0, Theta), col = 'red')
###########
# using the MH-RM algorithm
data(LSAT7)
fulldata <- expand.table(LSAT7)
(mod1 <- mirt(fulldata, 1, method = 'MHRM'))
#>
Stage 1 = 1, CDLL = -3833.3, AR(2.68) = [0.49], Max-Change = 0.0343
Stage 1 = 2, CDLL = -3804.2, AR(2.68) = [0.49], Max-Change = 0.0321
Stage 1 = 3, CDLL = -3856.8, AR(2.68) = [0.49], Max-Change = 0.0244
Stage 1 = 4, CDLL = -3838.4, AR(2.68) = [0.46], Max-Change = 0.0454
Stage 1 = 5, CDLL = -3825.2, AR(2.68) = [0.46], Max-Change = 0.0518
Stage 1 = 6, CDLL = -3849.7, AR(2.68) = [0.47], Max-Change = 0.0217
Stage 1 = 7, CDLL = -3789.4, AR(2.68) = [0.46], Max-Change = 0.0328
Stage 1 = 8, CDLL = -3831.7, AR(2.68) = [0.52], Max-Change = 0.0227
Stage 1 = 9, CDLL = -3820.7, AR(2.68) = [0.50], Max-Change = 0.0287
Stage 1 = 10, CDLL = -3809.1, AR(2.68) = [0.48], Max-Change = 0.0194
Stage 1 = 11, CDLL = -3812.1, AR(2.68) = [0.48], Max-Change = 0.0210
Stage 1 = 12, CDLL = -3802.4, AR(2.68) = [0.47], Max-Change = 0.0517
Stage 1 = 13, CDLL = -3830.3, AR(2.68) = [0.48], Max-Change = 0.0631
Stage 1 = 14, CDLL = -3808.4, AR(2.68) = [0.46], Max-Change = 0.0216
Stage 1 = 15, CDLL = -3823.2, AR(2.68) = [0.47], Max-Change = 0.0277
Stage 1 = 16, CDLL = -3796.4, AR(2.68) = [0.46], Max-Change = 0.0191
Stage 1 = 17, CDLL = -3779.2, AR(2.68) = [0.47], Max-Change = 0.0253
Stage 1 = 18, CDLL = -3809.6, AR(2.68) = [0.48], Max-Change = 0.0380
Stage 1 = 19, CDLL = -3802.1, AR(2.68) = [0.47], Max-Change = 0.0219
Stage 1 = 20, CDLL = -3763.0, AR(2.68) = [0.44], Max-Change = 0.0382
Stage 1 = 21, CDLL = -3800.7, AR(2.68) = [0.46], Max-Change = 0.0325
Stage 1 = 22, CDLL = -3785.4, AR(2.68) = [0.47], Max-Change = 0.0429
Stage 1 = 23, CDLL = -3785.1, AR(2.68) = [0.50], Max-Change = 0.0375
Stage 1 = 24, CDLL = -3812.0, AR(2.68) = [0.45], Max-Change = 0.0238
Stage 1 = 25, CDLL = -3766.9, AR(2.68) = [0.46], Max-Change = 0.0391
Stage 1 = 26, CDLL = -3788.1, AR(2.68) = [0.48], Max-Change = 0.0400
Stage 1 = 27, CDLL = -3810.0, AR(2.68) = [0.50], Max-Change = 0.0139
Stage 1 = 28, CDLL = -3785.2, AR(2.68) = [0.48], Max-Change = 0.0325
Stage 1 = 29, CDLL = -3781.2, AR(2.68) = [0.45], Max-Change = 0.0143
Stage 1 = 30, CDLL = -3793.5, AR(2.68) = [0.49], Max-Change = 0.0271
Stage 1 = 31, CDLL = -3813.2, AR(2.68) = [0.48], Max-Change = 0.0202
Stage 1 = 32, CDLL = -3787.8, AR(2.68) = [0.48], Max-Change = 0.0155
Stage 1 = 33, CDLL = -3744.5, AR(2.68) = [0.47], Max-Change = 0.0353
Stage 1 = 34, CDLL = -3734.4, AR(2.68) = [0.45], Max-Change = 0.0603
Stage 1 = 35, CDLL = -3753.5, AR(2.68) = [0.46], Max-Change = 0.0193
Stage 1 = 36, CDLL = -3765.4, AR(2.68) = [0.47], Max-Change = 0.0270
Stage 1 = 37, CDLL = -3773.4, AR(2.68) = [0.49], Max-Change = 0.0234
Stage 1 = 38, CDLL = -3771.2, AR(2.68) = [0.47], Max-Change = 0.0329
Stage 1 = 39, CDLL = -3831.1, AR(2.68) = [0.47], Max-Change = 0.0450
Stage 1 = 40, CDLL = -3765.9, AR(2.68) = [0.46], Max-Change = 0.0438
Stage 1 = 41, CDLL = -3788.8, AR(2.68) = [0.47], Max-Change = 0.0420
Stage 1 = 42, CDLL = -3765.0, AR(2.68) = [0.47], Max-Change = 0.0558
Stage 1 = 43, CDLL = -3766.3, AR(2.68) = [0.46], Max-Change = 0.0300
Stage 1 = 44, CDLL = -3784.7, AR(2.68) = [0.49], Max-Change = 0.0203
Stage 1 = 45, CDLL = -3756.6, AR(2.68) = [0.45], Max-Change = 0.0384
Stage 1 = 46, CDLL = -3797.4, AR(2.68) = [0.47], Max-Change = 0.0183
Stage 1 = 47, CDLL = -3817.9, AR(2.68) = [0.50], Max-Change = 0.0178
Stage 1 = 48, CDLL = -3797.7, AR(2.68) = [0.45], Max-Change = 0.0142
Stage 1 = 49, CDLL = -3791.9, AR(2.68) = [0.47], Max-Change = 0.0165
Stage 1 = 50, CDLL = -3796.4, AR(2.68) = [0.45], Max-Change = 0.0152
Stage 1 = 51, CDLL = -3829.6, AR(2.68) = [0.47], Max-Change = 0.0430
Stage 1 = 52, CDLL = -3809.8, AR(2.68) = [0.47], Max-Change = 0.0577
Stage 1 = 53, CDLL = -3819.8, AR(2.68) = [0.45], Max-Change = 0.0273
Stage 1 = 54, CDLL = -3768.9, AR(2.68) = [0.47], Max-Change = 0.0351
Stage 1 = 55, CDLL = -3786.0, AR(2.68) = [0.49], Max-Change = 0.0191
Stage 1 = 56, CDLL = -3783.0, AR(2.68) = [0.47], Max-Change = 0.0106
Stage 1 = 57, CDLL = -3797.0, AR(2.68) = [0.44], Max-Change = 0.0242
Stage 1 = 58, CDLL = -3750.4, AR(2.68) = [0.49], Max-Change = 0.0290
Stage 1 = 59, CDLL = -3775.1, AR(2.68) = [0.46], Max-Change = 0.0189
Stage 1 = 60, CDLL = -3799.4, AR(2.68) = [0.48], Max-Change = 0.0211
Stage 1 = 61, CDLL = -3809.3, AR(2.68) = [0.49], Max-Change = 0.0176
Stage 1 = 62, CDLL = -3746.6, AR(2.68) = [0.45], Max-Change = 0.0322
Stage 1 = 63, CDLL = -3775.6, AR(2.68) = [0.47], Max-Change = 0.0263
Stage 1 = 64, CDLL = -3761.6, AR(2.68) = [0.49], Max-Change = 0.0259
Stage 1 = 65, CDLL = -3785.6, AR(2.68) = [0.45], Max-Change = 0.0295
Stage 1 = 66, CDLL = -3758.2, AR(2.68) = [0.47], Max-Change = 0.0401
Stage 1 = 67, CDLL = -3766.3, AR(2.68) = [0.44], Max-Change = 0.0123
Stage 1 = 68, CDLL = -3785.3, AR(2.68) = [0.49], Max-Change = 0.0411
Stage 1 = 69, CDLL = -3776.5, AR(2.68) = [0.49], Max-Change = 0.0175
Stage 1 = 70, CDLL = -3764.1, AR(2.68) = [0.46], Max-Change = 0.0356
Stage 1 = 71, CDLL = -3788.2, AR(2.68) = [0.48], Max-Change = 0.0190
Stage 1 = 72, CDLL = -3762.8, AR(2.68) = [0.45], Max-Change = 0.0254
Stage 1 = 73, CDLL = -3801.3, AR(2.68) = [0.46], Max-Change = 0.0190
Stage 1 = 74, CDLL = -3741.1, AR(2.68) = [0.47], Max-Change = 0.0235
Stage 1 = 75, CDLL = -3766.4, AR(2.68) = [0.45], Max-Change = 0.0216
Stage 1 = 76, CDLL = -3734.5, AR(2.68) = [0.44], Max-Change = 0.0183
Stage 1 = 77, CDLL = -3804.8, AR(2.68) = [0.47], Max-Change = 0.0151
Stage 1 = 78, CDLL = -3775.6, AR(2.68) = [0.46], Max-Change = 0.0392
Stage 1 = 79, CDLL = -3733.6, AR(2.68) = [0.46], Max-Change = 0.0207
Stage 1 = 80, CDLL = -3759.9, AR(2.68) = [0.45], Max-Change = 0.0135
Stage 1 = 81, CDLL = -3802.4, AR(2.68) = [0.47], Max-Change = 0.0314
Stage 1 = 82, CDLL = -3767.2, AR(2.68) = [0.46], Max-Change = 0.0380
Stage 1 = 83, CDLL = -3738.2, AR(2.68) = [0.44], Max-Change = 0.0442
Stage 1 = 84, CDLL = -3743.6, AR(2.68) = [0.48], Max-Change = 0.0163
Stage 1 = 85, CDLL = -3767.3, AR(2.68) = [0.46], Max-Change = 0.0227
Stage 1 = 86, CDLL = -3739.4, AR(2.68) = [0.44], Max-Change = 0.0268
Stage 1 = 87, CDLL = -3764.5, AR(2.68) = [0.49], Max-Change = 0.0140
Stage 1 = 88, CDLL = -3755.2, AR(2.68) = [0.46], Max-Change = 0.0211
Stage 1 = 89, CDLL = -3758.1, AR(2.68) = [0.48], Max-Change = 0.0146
Stage 1 = 90, CDLL = -3756.8, AR(2.68) = [0.44], Max-Change = 0.0419
Stage 1 = 91, CDLL = -3782.0, AR(2.68) = [0.46], Max-Change = 0.0299
Stage 1 = 92, CDLL = -3750.3, AR(2.68) = [0.46], Max-Change = 0.0168
Stage 1 = 93, CDLL = -3761.2, AR(2.68) = [0.45], Max-Change = 0.0297
Stage 1 = 94, CDLL = -3748.0, AR(2.68) = [0.46], Max-Change = 0.0207
Stage 1 = 95, CDLL = -3791.3, AR(2.68) = [0.47], Max-Change = 0.0229
Stage 1 = 96, CDLL = -3772.6, AR(2.68) = [0.47], Max-Change = 0.0329
Stage 1 = 97, CDLL = -3824.9, AR(2.68) = [0.45], Max-Change = 0.0384
Stage 1 = 98, CDLL = -3765.4, AR(2.68) = [0.44], Max-Change = 0.0203
Stage 1 = 99, CDLL = -3752.2, AR(2.68) = [0.42], Max-Change = 0.0273
Stage 1 = 100, CDLL = -3763.9, AR(2.68) = [0.45], Max-Change = 0.0129
Stage 1 = 101, CDLL = -3763.1, AR(2.68) = [0.45], Max-Change = 0.0143
Stage 1 = 102, CDLL = -3778.9, AR(2.68) = [0.48], Max-Change = 0.0248
Stage 1 = 103, CDLL = -3806.2, AR(2.68) = [0.48], Max-Change = 0.0268
Stage 1 = 104, CDLL = -3775.3, AR(2.68) = [0.45], Max-Change = 0.0267
Stage 1 = 105, CDLL = -3757.6, AR(2.68) = [0.45], Max-Change = 0.0342
Stage 1 = 106, CDLL = -3774.2, AR(2.68) = [0.46], Max-Change = 0.0256
Stage 1 = 107, CDLL = -3763.7, AR(2.68) = [0.48], Max-Change = 0.0346
Stage 1 = 108, CDLL = -3755.0, AR(2.68) = [0.48], Max-Change = 0.0357
Stage 1 = 109, CDLL = -3753.1, AR(2.68) = [0.48], Max-Change = 0.0225
Stage 1 = 110, CDLL = -3761.3, AR(2.68) = [0.44], Max-Change = 0.0236
Stage 1 = 111, CDLL = -3724.3, AR(2.68) = [0.46], Max-Change = 0.0390
Stage 1 = 112, CDLL = -3782.1, AR(2.68) = [0.47], Max-Change = 0.0243
Stage 1 = 113, CDLL = -3742.2, AR(2.68) = [0.49], Max-Change = 0.0328
Stage 1 = 114, CDLL = -3763.8, AR(2.68) = [0.47], Max-Change = 0.0294
Stage 1 = 115, CDLL = -3769.0, AR(2.68) = [0.44], Max-Change = 0.0478
Stage 1 = 116, CDLL = -3727.1, AR(2.68) = [0.46], Max-Change = 0.0269
Stage 1 = 117, CDLL = -3754.7, AR(2.68) = [0.48], Max-Change = 0.0292
Stage 1 = 118, CDLL = -3774.4, AR(2.68) = [0.47], Max-Change = 0.0329
Stage 1 = 119, CDLL = -3781.7, AR(2.68) = [0.47], Max-Change = 0.0127
Stage 1 = 120, CDLL = -3770.6, AR(2.68) = [0.45], Max-Change = 0.0280
Stage 1 = 121, CDLL = -3778.7, AR(2.68) = [0.48], Max-Change = 0.0355
Stage 1 = 122, CDLL = -3786.3, AR(2.68) = [0.46], Max-Change = 0.0357
Stage 1 = 123, CDLL = -3746.6, AR(2.68) = [0.45], Max-Change = 0.0183
Stage 1 = 124, CDLL = -3736.3, AR(2.68) = [0.45], Max-Change = 0.0201
Stage 1 = 125, CDLL = -3773.6, AR(2.68) = [0.49], Max-Change = 0.0258
Stage 1 = 126, CDLL = -3765.3, AR(2.68) = [0.45], Max-Change = 0.0241
Stage 1 = 127, CDLL = -3774.4, AR(2.68) = [0.47], Max-Change = 0.0265
Stage 1 = 128, CDLL = -3727.8, AR(2.68) = [0.45], Max-Change = 0.0413
Stage 1 = 129, CDLL = -3713.2, AR(2.68) = [0.47], Max-Change = 0.0309
Stage 1 = 130, CDLL = -3707.5, AR(2.68) = [0.46], Max-Change = 0.0368
Stage 1 = 131, CDLL = -3719.3, AR(2.68) = [0.47], Max-Change = 0.0182
Stage 1 = 132, CDLL = -3738.7, AR(2.68) = [0.45], Max-Change = 0.0521
Stage 1 = 133, CDLL = -3729.5, AR(2.68) = [0.47], Max-Change = 0.0192
Stage 1 = 134, CDLL = -3713.2, AR(2.68) = [0.45], Max-Change = 0.0279
Stage 1 = 135, CDLL = -3769.9, AR(2.68) = [0.48], Max-Change = 0.0287
Stage 1 = 136, CDLL = -3739.5, AR(2.68) = [0.44], Max-Change = 0.0111
Stage 1 = 137, CDLL = -3743.4, AR(2.68) = [0.46], Max-Change = 0.0109
Stage 1 = 138, CDLL = -3710.5, AR(2.68) = [0.45], Max-Change = 0.0181
Stage 1 = 139, CDLL = -3713.8, AR(2.68) = [0.44], Max-Change = 0.0334
Stage 1 = 140, CDLL = -3770.8, AR(2.68) = [0.46], Max-Change = 0.0324
Stage 1 = 141, CDLL = -3778.2, AR(2.68) = [0.48], Max-Change = 0.0434
Stage 1 = 142, CDLL = -3769.0, AR(2.68) = [0.47], Max-Change = 0.0336
Stage 1 = 143, CDLL = -3739.5, AR(2.68) = [0.45], Max-Change = 0.0361
Stage 1 = 144, CDLL = -3741.4, AR(2.68) = [0.47], Max-Change = 0.0365
Stage 1 = 145, CDLL = -3776.6, AR(2.68) = [0.45], Max-Change = 0.0401
Stage 1 = 146, CDLL = -3765.2, AR(2.68) = [0.44], Max-Change = 0.0390
Stage 1 = 147, CDLL = -3760.9, AR(2.68) = [0.48], Max-Change = 0.0134
Stage 1 = 148, CDLL = -3790.4, AR(2.68) = [0.46], Max-Change = 0.0310
Stage 1 = 149, CDLL = -3792.6, AR(2.68) = [0.47], Max-Change = 0.0252
Stage 1 = 150, CDLL = -3780.3, AR(4.07) = [0.40], Max-Change = 0.0230
Stage 2 = 1, CDLL = -3777.1, AR(4.07) = [0.38], Max-Change = 0.0128
Stage 2 = 2, CDLL = -3757.8, AR(4.07) = [0.41], Max-Change = 0.0381
Stage 2 = 3, CDLL = -3788.9, AR(4.07) = [0.39], Max-Change = 0.0210
Stage 2 = 4, CDLL = -3774.1, AR(4.07) = [0.41], Max-Change = 0.0256
Stage 2 = 5, CDLL = -3752.6, AR(4.07) = [0.37], Max-Change = 0.0320
Stage 2 = 6, CDLL = -3768.7, AR(4.07) = [0.38], Max-Change = 0.0227
Stage 2 = 7, CDLL = -3765.5, AR(4.07) = [0.40], Max-Change = 0.0332
Stage 2 = 8, CDLL = -3751.2, AR(4.07) = [0.39], Max-Change = 0.0103
Stage 2 = 9, CDLL = -3763.4, AR(4.07) = [0.39], Max-Change = 0.0267
Stage 2 = 10, CDLL = -3768.6, AR(4.07) = [0.40], Max-Change = 0.0244
Stage 2 = 11, CDLL = -3724.7, AR(4.07) = [0.41], Max-Change = 0.0244
Stage 2 = 12, CDLL = -3723.0, AR(4.07) = [0.39], Max-Change = 0.0336
Stage 2 = 13, CDLL = -3744.9, AR(4.07) = [0.39], Max-Change = 0.0209
Stage 2 = 14, CDLL = -3754.4, AR(4.07) = [0.38], Max-Change = 0.0287
Stage 2 = 15, CDLL = -3734.6, AR(4.07) = [0.39], Max-Change = 0.0210
Stage 2 = 16, CDLL = -3756.5, AR(4.07) = [0.40], Max-Change = 0.0163
Stage 2 = 17, CDLL = -3801.6, AR(4.07) = [0.38], Max-Change = 0.0394
Stage 2 = 18, CDLL = -3765.6, AR(4.07) = [0.39], Max-Change = 0.0194
Stage 2 = 19, CDLL = -3732.1, AR(4.07) = [0.40], Max-Change = 0.0141
Stage 2 = 20, CDLL = -3768.1, AR(4.07) = [0.39], Max-Change = 0.0347
Stage 2 = 21, CDLL = -3779.8, AR(4.07) = [0.42], Max-Change = 0.0188
Stage 2 = 22, CDLL = -3783.8, AR(4.07) = [0.37], Max-Change = 0.0249
Stage 2 = 23, CDLL = -3807.3, AR(4.07) = [0.40], Max-Change = 0.0504
Stage 2 = 24, CDLL = -3767.7, AR(4.07) = [0.38], Max-Change = 0.0254
Stage 2 = 25, CDLL = -3763.7, AR(4.07) = [0.40], Max-Change = 0.0192
Stage 2 = 26, CDLL = -3770.7, AR(4.07) = [0.39], Max-Change = 0.0197
Stage 2 = 27, CDLL = -3785.8, AR(4.07) = [0.41], Max-Change = 0.0477
Stage 2 = 28, CDLL = -3783.5, AR(4.07) = [0.39], Max-Change = 0.0258
Stage 2 = 29, CDLL = -3770.1, AR(4.07) = [0.38], Max-Change = 0.0296
Stage 2 = 30, CDLL = -3765.3, AR(4.07) = [0.43], Max-Change = 0.0425
Stage 2 = 31, CDLL = -3754.7, AR(4.07) = [0.38], Max-Change = 0.0353
Stage 2 = 32, CDLL = -3738.8, AR(4.07) = [0.40], Max-Change = 0.0328
Stage 2 = 33, CDLL = -3783.6, AR(4.07) = [0.39], Max-Change = 0.0186
Stage 2 = 34, CDLL = -3782.7, AR(4.07) = [0.39], Max-Change = 0.0190
Stage 2 = 35, CDLL = -3803.3, AR(4.07) = [0.40], Max-Change = 0.0243
Stage 2 = 36, CDLL = -3806.7, AR(4.07) = [0.39], Max-Change = 0.0284
Stage 2 = 37, CDLL = -3757.5, AR(4.07) = [0.40], Max-Change = 0.0441
Stage 2 = 38, CDLL = -3779.1, AR(4.07) = [0.42], Max-Change = 0.0193
Stage 2 = 39, CDLL = -3758.4, AR(4.07) = [0.42], Max-Change = 0.0185
Stage 2 = 40, CDLL = -3791.2, AR(4.07) = [0.41], Max-Change = 0.0279
Stage 2 = 41, CDLL = -3759.9, AR(4.07) = [0.40], Max-Change = 0.0206
Stage 2 = 42, CDLL = -3768.6, AR(4.07) = [0.41], Max-Change = 0.0270
Stage 2 = 43, CDLL = -3807.4, AR(4.07) = [0.41], Max-Change = 0.0225
Stage 2 = 44, CDLL = -3782.4, AR(4.07) = [0.38], Max-Change = 0.0261
Stage 2 = 45, CDLL = -3766.6, AR(4.07) = [0.41], Max-Change = 0.0200
Stage 2 = 46, CDLL = -3771.6, AR(4.07) = [0.40], Max-Change = 0.0242
Stage 2 = 47, CDLL = -3807.9, AR(4.07) = [0.39], Max-Change = 0.0229
Stage 2 = 48, CDLL = -3774.0, AR(4.07) = [0.38], Max-Change = 0.0176
Stage 2 = 49, CDLL = -3797.4, AR(4.07) = [0.41], Max-Change = 0.0300
Stage 2 = 50, CDLL = -3787.3, AR(4.07) = [0.41], Max-Change = 0.0435
Stage 2 = 51, CDLL = -3798.5, AR(4.07) = [0.40], Max-Change = 0.0193
Stage 2 = 52, CDLL = -3737.7, AR(4.07) = [0.42], Max-Change = 0.0254
Stage 2 = 53, CDLL = -3788.5, AR(4.07) = [0.39], Max-Change = 0.0431
Stage 2 = 54, CDLL = -3779.4, AR(4.07) = [0.39], Max-Change = 0.0187
Stage 2 = 55, CDLL = -3808.0, AR(4.07) = [0.39], Max-Change = 0.0259
Stage 2 = 56, CDLL = -3805.4, AR(4.07) = [0.38], Max-Change = 0.0235
Stage 2 = 57, CDLL = -3811.6, AR(4.07) = [0.41], Max-Change = 0.0274
Stage 2 = 58, CDLL = -3789.5, AR(4.07) = [0.41], Max-Change = 0.0291
Stage 2 = 59, CDLL = -3810.7, AR(4.07) = [0.41], Max-Change = 0.0226
Stage 2 = 60, CDLL = -3764.1, AR(4.07) = [0.41], Max-Change = 0.0347
Stage 2 = 61, CDLL = -3773.3, AR(4.07) = [0.42], Max-Change = 0.0352
Stage 2 = 62, CDLL = -3768.1, AR(4.07) = [0.40], Max-Change = 0.0129
Stage 2 = 63, CDLL = -3815.9, AR(4.07) = [0.41], Max-Change = 0.0599
Stage 2 = 64, CDLL = -3822.5, AR(4.07) = [0.40], Max-Change = 0.0234
Stage 2 = 65, CDLL = -3734.5, AR(4.07) = [0.43], Max-Change = 0.0325
Stage 2 = 66, CDLL = -3780.4, AR(4.07) = [0.41], Max-Change = 0.0117
Stage 2 = 67, CDLL = -3746.6, AR(4.07) = [0.41], Max-Change = 0.0211
Stage 2 = 68, CDLL = -3800.7, AR(4.07) = [0.41], Max-Change = 0.0094
Stage 2 = 69, CDLL = -3743.0, AR(4.07) = [0.43], Max-Change = 0.0331
Stage 2 = 70, CDLL = -3736.9, AR(4.07) = [0.40], Max-Change = 0.0236
Stage 2 = 71, CDLL = -3740.0, AR(4.07) = [0.38], Max-Change = 0.0391
Stage 2 = 72, CDLL = -3725.1, AR(4.07) = [0.43], Max-Change = 0.0287
Stage 2 = 73, CDLL = -3769.4, AR(4.07) = [0.40], Max-Change = 0.0359
Stage 2 = 74, CDLL = -3794.0, AR(4.07) = [0.42], Max-Change = 0.0266
Stage 2 = 75, CDLL = -3793.8, AR(4.07) = [0.40], Max-Change = 0.0286
Stage 2 = 76, CDLL = -3774.9, AR(4.07) = [0.37], Max-Change = 0.0188
Stage 2 = 77, CDLL = -3730.3, AR(4.07) = [0.41], Max-Change = 0.0268
Stage 2 = 78, CDLL = -3769.7, AR(4.07) = [0.40], Max-Change = 0.0187
Stage 2 = 79, CDLL = -3796.4, AR(4.07) = [0.41], Max-Change = 0.0217
Stage 2 = 80, CDLL = -3779.3, AR(4.07) = [0.39], Max-Change = 0.0414
Stage 2 = 81, CDLL = -3770.7, AR(4.07) = [0.38], Max-Change = 0.0215
Stage 2 = 82, CDLL = -3788.1, AR(4.07) = [0.39], Max-Change = 0.0299
Stage 2 = 83, CDLL = -3779.4, AR(4.07) = [0.41], Max-Change = 0.0270
Stage 2 = 84, CDLL = -3717.7, AR(4.07) = [0.39], Max-Change = 0.0305
Stage 2 = 85, CDLL = -3708.7, AR(4.07) = [0.39], Max-Change = 0.0661
Stage 2 = 86, CDLL = -3754.0, AR(4.07) = [0.41], Max-Change = 0.0131
Stage 2 = 87, CDLL = -3742.8, AR(4.07) = [0.37], Max-Change = 0.0423
Stage 2 = 88, CDLL = -3734.7, AR(4.07) = [0.38], Max-Change = 0.0174
Stage 2 = 89, CDLL = -3765.9, AR(4.07) = [0.39], Max-Change = 0.0311
Stage 2 = 90, CDLL = -3724.8, AR(4.07) = [0.36], Max-Change = 0.0227
Stage 2 = 91, CDLL = -3743.1, AR(4.07) = [0.39], Max-Change = 0.0335
Stage 2 = 92, CDLL = -3745.1, AR(4.07) = [0.40], Max-Change = 0.0233
Stage 2 = 93, CDLL = -3752.0, AR(4.07) = [0.44], Max-Change = 0.0172
Stage 2 = 94, CDLL = -3756.2, AR(4.07) = [0.39], Max-Change = 0.0584
Stage 2 = 95, CDLL = -3766.7, AR(4.07) = [0.41], Max-Change = 0.0442
Stage 2 = 96, CDLL = -3745.4, AR(4.07) = [0.40], Max-Change = 0.0101
Stage 2 = 97, CDLL = -3767.8, AR(4.07) = [0.39], Max-Change = 0.0284
Stage 2 = 98, CDLL = -3795.8, AR(4.07) = [0.39], Max-Change = 0.0279
Stage 2 = 99, CDLL = -3754.4, AR(4.07) = [0.41], Max-Change = 0.0353
Stage 2 = 100, CDLL = -3766.2, AR(4.07) = [0.42], Max-Change = 0.0325
Stage 3 = 1, CDLL = -3823.8, AR(4.07) = [0.41], gam = 0.0000, Max-Change = 0.0000
Stage 3 = 2, CDLL = -3775.3, AR(4.07) = [0.42], gam = 0.1778, Max-Change = 0.0136
Stage 3 = 3, CDLL = -3776.0, AR(4.07) = [0.40], gam = 0.1057, Max-Change = 0.0187
Stage 3 = 4, CDLL = -3756.9, AR(4.07) = [0.41], gam = 0.0780, Max-Change = 0.0054
Stage 3 = 5, CDLL = -3763.3, AR(4.07) = [0.40], gam = 0.0629, Max-Change = 0.0068
Stage 3 = 6, CDLL = -3767.0, AR(4.07) = [0.42], gam = 0.0532, Max-Change = 0.0054
Stage 3 = 7, CDLL = -3778.9, AR(4.07) = [0.39], gam = 0.0464, Max-Change = 0.0051
Stage 3 = 8, CDLL = -3765.0, AR(4.07) = [0.43], gam = 0.0413, Max-Change = 0.0079
Stage 3 = 9, CDLL = -3790.8, AR(4.07) = [0.42], gam = 0.0374, Max-Change = 0.0091
Stage 3 = 10, CDLL = -3777.9, AR(4.07) = [0.43], gam = 0.0342, Max-Change = 0.0035
Stage 3 = 11, CDLL = -3757.8, AR(4.07) = [0.40], gam = 0.0316, Max-Change = 0.0049
Stage 3 = 12, CDLL = -3747.3, AR(4.07) = [0.39], gam = 0.0294, Max-Change = 0.0015
Stage 3 = 13, CDLL = -3783.9, AR(4.07) = [0.41], gam = 0.0276, Max-Change = 0.0042
Stage 3 = 14, CDLL = -3760.3, AR(4.07) = [0.41], gam = 0.0260, Max-Change = 0.0040
Stage 3 = 15, CDLL = -3734.2, AR(4.07) = [0.41], gam = 0.0246, Max-Change = 0.0085
Stage 3 = 16, CDLL = -3777.1, AR(4.07) = [0.41], gam = 0.0233, Max-Change = 0.0034
Stage 3 = 17, CDLL = -3750.2, AR(4.07) = [0.42], gam = 0.0222, Max-Change = 0.0031
Stage 3 = 18, CDLL = -3785.3, AR(4.07) = [0.41], gam = 0.0212, Max-Change = 0.0021
Stage 3 = 19, CDLL = -3771.8, AR(4.07) = [0.40], gam = 0.0203, Max-Change = 0.0027
Stage 3 = 20, CDLL = -3767.6, AR(4.07) = [0.37], gam = 0.0195, Max-Change = 0.0016
Stage 3 = 21, CDLL = -3753.3, AR(4.07) = [0.42], gam = 0.0188, Max-Change = 0.0026
Stage 3 = 22, CDLL = -3748.1, AR(4.07) = [0.40], gam = 0.0181, Max-Change = 0.0033
Stage 3 = 23, CDLL = -3740.7, AR(4.07) = [0.40], gam = 0.0175, Max-Change = 0.0036
Stage 3 = 24, CDLL = -3729.5, AR(4.07) = [0.37], gam = 0.0169, Max-Change = 0.0023
Stage 3 = 25, CDLL = -3771.1, AR(4.07) = [0.41], gam = 0.0164, Max-Change = 0.0019
Stage 3 = 26, CDLL = -3772.2, AR(4.07) = [0.43], gam = 0.0159, Max-Change = 0.0020
Stage 3 = 27, CDLL = -3742.7, AR(4.07) = [0.40], gam = 0.0154, Max-Change = 0.0024
Stage 3 = 28, CDLL = -3736.1, AR(4.07) = [0.41], gam = 0.0150, Max-Change = 0.0012
Stage 3 = 29, CDLL = -3771.7, AR(4.07) = [0.42], gam = 0.0146, Max-Change = 0.0021
Stage 3 = 30, CDLL = -3757.6, AR(4.07) = [0.39], gam = 0.0142, Max-Change = 0.0013
Stage 3 = 31, CDLL = -3767.4, AR(4.07) = [0.39], gam = 0.0139, Max-Change = 0.0034
Stage 3 = 32, CDLL = -3792.0, AR(4.07) = [0.41], gam = 0.0135, Max-Change = 0.0010
Stage 3 = 33, CDLL = -3761.3, AR(4.07) = [0.41], gam = 0.0132, Max-Change = 0.0017
Stage 3 = 34, CDLL = -3720.3, AR(4.07) = [0.40], gam = 0.0129, Max-Change = 0.0029
Stage 3 = 35, CDLL = -3760.0, AR(4.07) = [0.40], gam = 0.0126, Max-Change = 0.0019
Stage 3 = 36, CDLL = -3786.2, AR(4.07) = [0.40], gam = 0.0124, Max-Change = 0.0015
Stage 3 = 37, CDLL = -3787.9, AR(4.07) = [0.39], gam = 0.0121, Max-Change = 0.0030
Stage 3 = 38, CDLL = -3757.0, AR(4.07) = [0.38], gam = 0.0119, Max-Change = 0.0017
Stage 3 = 39, CDLL = -3751.0, AR(4.07) = [0.40], gam = 0.0116, Max-Change = 0.0006
Stage 3 = 40, CDLL = -3765.0, AR(4.07) = [0.39], gam = 0.0114, Max-Change = 0.0007
Stage 3 = 41, CDLL = -3759.6, AR(4.07) = [0.37], gam = 0.0112, Max-Change = 0.0013
Stage 3 = 42, CDLL = -3779.0, AR(4.07) = [0.37], gam = 0.0110, Max-Change = 0.0008
Stage 3 = 43, CDLL = -3784.7, AR(4.07) = [0.39], gam = 0.0108, Max-Change = 0.0011
Stage 3 = 44, CDLL = -3766.9, AR(4.07) = [0.40], gam = 0.0106, Max-Change = 0.0010
Stage 3 = 45, CDLL = -3776.8, AR(4.07) = [0.39], gam = 0.0104, Max-Change = 0.0014
Stage 3 = 46, CDLL = -3738.1, AR(4.07) = [0.41], gam = 0.0102, Max-Change = 0.0023
Stage 3 = 47, CDLL = -3739.4, AR(4.07) = [0.38], gam = 0.0101, Max-Change = 0.0025
Stage 3 = 48, CDLL = -3731.5, AR(4.07) = [0.38], gam = 0.0099, Max-Change = 0.0013
Stage 3 = 49, CDLL = -3729.7, AR(4.07) = [0.39], gam = 0.0098, Max-Change = 0.0014
Stage 3 = 50, CDLL = -3783.6, AR(4.07) = [0.41], gam = 0.0096, Max-Change = 0.0018
Stage 3 = 51, CDLL = -3766.0, AR(4.07) = [0.38], gam = 0.0095, Max-Change = 0.0012
Stage 3 = 52, CDLL = -3761.5, AR(4.07) = [0.41], gam = 0.0093, Max-Change = 0.0008
Stage 3 = 53, CDLL = -3761.2, AR(4.07) = [0.39], gam = 0.0092, Max-Change = 0.0009
Stage 3 = 54, CDLL = -3731.9, AR(4.07) = [0.42], gam = 0.0091, Max-Change = 0.0019
Stage 3 = 55, CDLL = -3722.5, AR(4.07) = [0.41], gam = 0.0089, Max-Change = 0.0030
Stage 3 = 56, CDLL = -3738.2, AR(4.07) = [0.39], gam = 0.0088, Max-Change = 0.0014
Stage 3 = 57, CDLL = -3754.7, AR(4.07) = [0.39], gam = 0.0087, Max-Change = 0.0004
Stage 3 = 58, CDLL = -3723.0, AR(4.07) = [0.41], gam = 0.0086, Max-Change = 0.0010
Stage 3 = 59, CDLL = -3739.4, AR(4.07) = [0.40], gam = 0.0085, Max-Change = 0.0009
Stage 3 = 60, CDLL = -3794.1, AR(4.07) = [0.39], gam = 0.0084, Max-Change = 0.0023
Stage 3 = 61, CDLL = -3769.9, AR(4.07) = [0.40], gam = 0.0082, Max-Change = 0.0013
Stage 3 = 62, CDLL = -3795.6, AR(4.07) = [0.39], gam = 0.0081, Max-Change = 0.0007
Stage 3 = 63, CDLL = -3780.4, AR(4.07) = [0.41], gam = 0.0080, Max-Change = 0.0006
Stage 3 = 64, CDLL = -3788.7, AR(4.07) = [0.40], gam = 0.0080, Max-Change = 0.0015
Stage 3 = 65, CDLL = -3801.5, AR(4.07) = [0.39], gam = 0.0079, Max-Change = 0.0006
Stage 3 = 66, CDLL = -3723.5, AR(4.07) = [0.40], gam = 0.0078, Max-Change = 0.0023
Stage 3 = 67, CDLL = -3766.9, AR(4.07) = [0.43], gam = 0.0077, Max-Change = 0.0007
Stage 3 = 68, CDLL = -3743.6, AR(4.07) = [0.41], gam = 0.0076, Max-Change = 0.0003
Stage 3 = 69, CDLL = -3779.0, AR(4.07) = [0.40], gam = 0.0075, Max-Change = 0.0014
Stage 3 = 70, CDLL = -3778.1, AR(4.07) = [0.40], gam = 0.0074, Max-Change = 0.0012
Stage 3 = 71, CDLL = -3772.4, AR(4.07) = [0.37], gam = 0.0073, Max-Change = 0.0009
Stage 3 = 72, CDLL = -3747.9, AR(4.07) = [0.41], gam = 0.0073, Max-Change = 0.0008
Stage 3 = 73, CDLL = -3779.6, AR(4.07) = [0.39], gam = 0.0072, Max-Change = 0.0006
#>
#> Calculating log-likelihood...
#>
#> Call:
#> mirt(data = fulldata, model = 1, method = "MHRM")
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 0.001 tolerance after 73 MHRM iterations.
#> mirt version: 1.44.3
#> M-step optimizer: NR1
#> Latent density type: Gaussian
#> Average MH acceptance ratio(s): 0.4
#>
#> Log-likelihood = -2659.472, SE = 0.018
#> Estimated parameters: 10
#> AIC = 5338.944
#> BIC = 5388.022; SABIC = 5356.261
#> G2 (21) = 32.89, p = 0.0475
#> RMSEA = 0.024, CFI = NaN, TLI = NaN
# Confirmatory models
# simulate data
a <- matrix(c(
1.5,NA,
0.5,NA,
1.0,NA,
1.0,0.5,
NA,1.5,
NA,0.5,
NA,1.0,
NA,1.0),ncol=2,byrow=TRUE)
d <- matrix(c(
-1.0,NA,NA,
-1.5,NA,NA,
1.5,NA,NA,
0.0,NA,NA,
3.0,2.0,-0.5,
2.5,1.0,-1,
2.0,0.0,NA,
1.0,NA,NA),ncol=3,byrow=TRUE)
sigma <- diag(2)
sigma[1,2] <- sigma[2,1] <- .4
items <- c(rep('2PL',4), rep('graded',3), '2PL')
dataset <- simdata(a,d,2000,items,sigma)
# analyses
# CIFA for 2 factor crossed structure
model.1 <- '
F1 = 1-4
F2 = 4-8
COV = F1*F2'
# compute model, and use parallel computation of the log-likelihood
if(interactive()) mirtCluster()
mod1 <- mirt(dataset, model.1, method = 'MHRM')
#>
Stage 1 = 1, CDLL = -17059.4, AR(0.77) = [0.49], Max-Change = 0.0353
Stage 1 = 2, CDLL = -17078.8, AR(0.77) = [0.47], Max-Change = 0.0297
Stage 1 = 3, CDLL = -17054.3, AR(0.77) = [0.49], Max-Change = 0.0175
Stage 1 = 4, CDLL = -17047.6, AR(0.77) = [0.49], Max-Change = 0.0285
Stage 1 = 5, CDLL = -16983.7, AR(0.77) = [0.50], Max-Change = 0.0349
Stage 1 = 6, CDLL = -16979.0, AR(0.77) = [0.50], Max-Change = 0.0324
Stage 1 = 7, CDLL = -16926.1, AR(0.77) = [0.49], Max-Change = 0.0255
Stage 1 = 8, CDLL = -16973.2, AR(0.77) = [0.50], Max-Change = 0.0210
Stage 1 = 9, CDLL = -16940.7, AR(0.77) = [0.48], Max-Change = 0.0321
Stage 1 = 10, CDLL = -16977.3, AR(0.77) = [0.48], Max-Change = 0.0269
Stage 1 = 11, CDLL = -17006.5, AR(0.77) = [0.51], Max-Change = 0.0250
Stage 1 = 12, CDLL = -16982.9, AR(0.77) = [0.48], Max-Change = 0.0204
Stage 1 = 13, CDLL = -16891.5, AR(0.77) = [0.49], Max-Change = 0.0280
Stage 1 = 14, CDLL = -16923.4, AR(0.77) = [0.47], Max-Change = 0.0252
Stage 1 = 15, CDLL = -16927.3, AR(0.77) = [0.50], Max-Change = 0.0169
Stage 1 = 16, CDLL = -16887.9, AR(0.77) = [0.47], Max-Change = 0.0363
Stage 1 = 17, CDLL = -16851.3, AR(0.77) = [0.48], Max-Change = 0.0308
Stage 1 = 18, CDLL = -16893.0, AR(0.77) = [0.47], Max-Change = 0.0254
Stage 1 = 19, CDLL = -16799.5, AR(0.77) = [0.50], Max-Change = 0.0259
Stage 1 = 20, CDLL = -16786.3, AR(0.77) = [0.48], Max-Change = 0.0185
Stage 1 = 21, CDLL = -16851.8, AR(0.77) = [0.49], Max-Change = 0.0172
Stage 1 = 22, CDLL = -16810.6, AR(0.77) = [0.48], Max-Change = 0.0221
Stage 1 = 23, CDLL = -16788.4, AR(0.77) = [0.46], Max-Change = 0.0230
Stage 1 = 24, CDLL = -16769.9, AR(0.77) = [0.48], Max-Change = 0.0283
Stage 1 = 25, CDLL = -16726.3, AR(0.77) = [0.48], Max-Change = 0.0209
Stage 1 = 26, CDLL = -16787.8, AR(0.77) = [0.48], Max-Change = 0.0271
Stage 1 = 27, CDLL = -16836.4, AR(0.77) = [0.50], Max-Change = 0.0141
Stage 1 = 28, CDLL = -16721.3, AR(0.77) = [0.50], Max-Change = 0.0247
Stage 1 = 29, CDLL = -16765.6, AR(0.77) = [0.47], Max-Change = 0.0146
Stage 1 = 30, CDLL = -16782.0, AR(0.77) = [0.48], Max-Change = 0.0126
Stage 1 = 31, CDLL = -16832.0, AR(0.77) = [0.48], Max-Change = 0.0282
Stage 1 = 32, CDLL = -16869.3, AR(0.77) = [0.49], Max-Change = 0.0124
Stage 1 = 33, CDLL = -16792.1, AR(0.77) = [0.48], Max-Change = 0.0136
Stage 1 = 34, CDLL = -16692.6, AR(0.77) = [0.48], Max-Change = 0.0407
Stage 1 = 35, CDLL = -16747.9, AR(0.77) = [0.50], Max-Change = 0.0132
Stage 1 = 36, CDLL = -16721.9, AR(0.77) = [0.48], Max-Change = 0.0167
Stage 1 = 37, CDLL = -16703.9, AR(0.77) = [0.47], Max-Change = 0.0267
Stage 1 = 38, CDLL = -16699.7, AR(0.77) = [0.47], Max-Change = 0.0289
Stage 1 = 39, CDLL = -16750.8, AR(0.77) = [0.46], Max-Change = 0.0163
Stage 1 = 40, CDLL = -16693.4, AR(0.77) = [0.46], Max-Change = 0.0121
Stage 1 = 41, CDLL = -16726.9, AR(0.77) = [0.48], Max-Change = 0.0121
Stage 1 = 42, CDLL = -16720.5, AR(0.77) = [0.47], Max-Change = 0.0181
Stage 1 = 43, CDLL = -16777.2, AR(0.77) = [0.49], Max-Change = 0.0219
Stage 1 = 44, CDLL = -16854.4, AR(0.77) = [0.47], Max-Change = 0.0277
Stage 1 = 45, CDLL = -16782.5, AR(0.77) = [0.48], Max-Change = 0.0213
Stage 1 = 46, CDLL = -16829.9, AR(0.77) = [0.47], Max-Change = 0.0295
Stage 1 = 47, CDLL = -16745.8, AR(0.77) = [0.45], Max-Change = 0.0187
Stage 1 = 48, CDLL = -16773.3, AR(0.77) = [0.48], Max-Change = 0.0171
Stage 1 = 49, CDLL = -16765.8, AR(0.77) = [0.47], Max-Change = 0.0181
Stage 1 = 50, CDLL = -16718.5, AR(0.77) = [0.48], Max-Change = 0.0217
Stage 1 = 51, CDLL = -16824.7, AR(0.77) = [0.48], Max-Change = 0.0242
Stage 1 = 52, CDLL = -16734.8, AR(0.77) = [0.46], Max-Change = 0.0089
Stage 1 = 53, CDLL = -16726.1, AR(0.77) = [0.47], Max-Change = 0.0132
Stage 1 = 54, CDLL = -16726.6, AR(0.77) = [0.44], Max-Change = 0.0082
Stage 1 = 55, CDLL = -16737.1, AR(0.77) = [0.47], Max-Change = 0.0152
Stage 1 = 56, CDLL = -16710.7, AR(0.77) = [0.45], Max-Change = 0.0143
Stage 1 = 57, CDLL = -16713.0, AR(0.77) = [0.47], Max-Change = 0.0076
Stage 1 = 58, CDLL = -16724.4, AR(0.77) = [0.48], Max-Change = 0.0186
Stage 1 = 59, CDLL = -16812.3, AR(0.77) = [0.47], Max-Change = 0.0204
Stage 1 = 60, CDLL = -16827.2, AR(0.77) = [0.47], Max-Change = 0.0286
Stage 1 = 61, CDLL = -16721.9, AR(0.77) = [0.47], Max-Change = 0.0179
Stage 1 = 62, CDLL = -16740.7, AR(0.77) = [0.46], Max-Change = 0.0149
Stage 1 = 63, CDLL = -16775.7, AR(0.77) = [0.46], Max-Change = 0.0103
Stage 1 = 64, CDLL = -16702.4, AR(0.77) = [0.46], Max-Change = 0.0187
Stage 1 = 65, CDLL = -16800.7, AR(0.77) = [0.46], Max-Change = 0.0158
Stage 1 = 66, CDLL = -16681.5, AR(0.77) = [0.46], Max-Change = 0.0174
Stage 1 = 67, CDLL = -16751.4, AR(0.77) = [0.46], Max-Change = 0.0210
Stage 1 = 68, CDLL = -16720.5, AR(0.77) = [0.50], Max-Change = 0.0153
Stage 1 = 69, CDLL = -16724.7, AR(0.77) = [0.47], Max-Change = 0.0141
Stage 1 = 70, CDLL = -16659.9, AR(0.77) = [0.46], Max-Change = 0.0152
Stage 1 = 71, CDLL = -16688.4, AR(0.77) = [0.48], Max-Change = 0.0139
Stage 1 = 72, CDLL = -16699.5, AR(0.77) = [0.47], Max-Change = 0.0212
Stage 1 = 73, CDLL = -16766.8, AR(0.77) = [0.48], Max-Change = 0.0161
Stage 1 = 74, CDLL = -16690.7, AR(0.77) = [0.47], Max-Change = 0.0162
Stage 1 = 75, CDLL = -16691.2, AR(0.77) = [0.48], Max-Change = 0.0151
Stage 1 = 76, CDLL = -16694.8, AR(0.77) = [0.47], Max-Change = 0.0178
Stage 1 = 77, CDLL = -16746.3, AR(0.77) = [0.46], Max-Change = 0.0126
Stage 1 = 78, CDLL = -16747.3, AR(0.77) = [0.47], Max-Change = 0.0200
Stage 1 = 79, CDLL = -16717.6, AR(0.77) = [0.47], Max-Change = 0.0176
Stage 1 = 80, CDLL = -16660.9, AR(0.77) = [0.47], Max-Change = 0.0282
Stage 1 = 81, CDLL = -16722.2, AR(0.77) = [0.49], Max-Change = 0.0166
Stage 1 = 82, CDLL = -16686.4, AR(0.77) = [0.46], Max-Change = 0.0196
Stage 1 = 83, CDLL = -16748.3, AR(0.77) = [0.47], Max-Change = 0.0191
Stage 1 = 84, CDLL = -16709.5, AR(0.77) = [0.46], Max-Change = 0.0270
Stage 1 = 85, CDLL = -16720.4, AR(0.77) = [0.47], Max-Change = 0.0214
Stage 1 = 86, CDLL = -16718.1, AR(0.77) = [0.46], Max-Change = 0.0196
Stage 1 = 87, CDLL = -16670.7, AR(0.77) = [0.45], Max-Change = 0.0182
Stage 1 = 88, CDLL = -16712.0, AR(0.77) = [0.47], Max-Change = 0.0120
Stage 1 = 89, CDLL = -16728.5, AR(0.77) = [0.46], Max-Change = 0.0228
Stage 1 = 90, CDLL = -16794.3, AR(0.77) = [0.47], Max-Change = 0.0227
Stage 1 = 91, CDLL = -16730.0, AR(0.77) = [0.46], Max-Change = 0.0221
Stage 1 = 92, CDLL = -16779.4, AR(0.77) = [0.47], Max-Change = 0.0369
Stage 1 = 93, CDLL = -16746.5, AR(0.77) = [0.46], Max-Change = 0.0225
Stage 1 = 94, CDLL = -16714.7, AR(0.77) = [0.48], Max-Change = 0.0297
Stage 1 = 95, CDLL = -16693.0, AR(0.77) = [0.46], Max-Change = 0.0202
Stage 1 = 96, CDLL = -16657.4, AR(0.77) = [0.46], Max-Change = 0.0246
Stage 1 = 97, CDLL = -16670.0, AR(0.77) = [0.45], Max-Change = 0.0154
Stage 1 = 98, CDLL = -16645.7, AR(0.77) = [0.46], Max-Change = 0.0311
Stage 1 = 99, CDLL = -16729.0, AR(0.77) = [0.47], Max-Change = 0.0169
Stage 1 = 100, CDLL = -16674.7, AR(0.77) = [0.46], Max-Change = 0.0121
Stage 1 = 101, CDLL = -16733.5, AR(0.77) = [0.48], Max-Change = 0.0178
Stage 1 = 102, CDLL = -16608.7, AR(0.77) = [0.46], Max-Change = 0.0218
Stage 1 = 103, CDLL = -16700.6, AR(0.77) = [0.46], Max-Change = 0.0219
Stage 1 = 104, CDLL = -16661.6, AR(0.77) = [0.46], Max-Change = 0.0172
Stage 1 = 105, CDLL = -16651.6, AR(0.77) = [0.46], Max-Change = 0.0222
Stage 1 = 106, CDLL = -16579.3, AR(0.77) = [0.45], Max-Change = 0.0261
Stage 1 = 107, CDLL = -16607.3, AR(0.77) = [0.45], Max-Change = 0.0327
Stage 1 = 108, CDLL = -16608.0, AR(0.77) = [0.48], Max-Change = 0.0243
Stage 1 = 109, CDLL = -16691.1, AR(0.77) = [0.46], Max-Change = 0.0299
Stage 1 = 110, CDLL = -16705.8, AR(0.77) = [0.45], Max-Change = 0.0117
Stage 1 = 111, CDLL = -16617.1, AR(0.77) = [0.46], Max-Change = 0.0210
Stage 1 = 112, CDLL = -16606.6, AR(0.77) = [0.47], Max-Change = 0.0216
Stage 1 = 113, CDLL = -16682.8, AR(0.77) = [0.45], Max-Change = 0.0148
Stage 1 = 114, CDLL = -16650.7, AR(0.77) = [0.46], Max-Change = 0.0162
Stage 1 = 115, CDLL = -16713.5, AR(0.77) = [0.46], Max-Change = 0.0118
Stage 1 = 116, CDLL = -16756.0, AR(0.77) = [0.46], Max-Change = 0.0257
Stage 1 = 117, CDLL = -16604.4, AR(0.77) = [0.48], Max-Change = 0.0192
Stage 1 = 118, CDLL = -16649.5, AR(0.77) = [0.45], Max-Change = 0.0155
Stage 1 = 119, CDLL = -16652.9, AR(0.77) = [0.47], Max-Change = 0.0144
Stage 1 = 120, CDLL = -16624.7, AR(0.77) = [0.48], Max-Change = 0.0139
Stage 1 = 121, CDLL = -16673.0, AR(0.77) = [0.46], Max-Change = 0.0282
Stage 1 = 122, CDLL = -16702.9, AR(0.77) = [0.48], Max-Change = 0.0157
Stage 1 = 123, CDLL = -16691.9, AR(0.77) = [0.48], Max-Change = 0.0119
Stage 1 = 124, CDLL = -16665.6, AR(0.77) = [0.47], Max-Change = 0.0175
Stage 1 = 125, CDLL = -16666.5, AR(0.77) = [0.46], Max-Change = 0.0222
Stage 1 = 126, CDLL = -16622.9, AR(0.77) = [0.45], Max-Change = 0.0141
Stage 1 = 127, CDLL = -16689.8, AR(0.77) = [0.45], Max-Change = 0.0154
Stage 1 = 128, CDLL = -16633.6, AR(0.77) = [0.46], Max-Change = 0.0162
Stage 1 = 129, CDLL = -16738.1, AR(0.77) = [0.46], Max-Change = 0.0216
Stage 1 = 130, CDLL = -16713.5, AR(0.77) = [0.45], Max-Change = 0.0158
Stage 1 = 131, CDLL = -16740.1, AR(0.77) = [0.48], Max-Change = 0.0186
Stage 1 = 132, CDLL = -16805.4, AR(0.77) = [0.48], Max-Change = 0.0416
Stage 1 = 133, CDLL = -16732.9, AR(0.77) = [0.47], Max-Change = 0.0095
Stage 1 = 134, CDLL = -16729.6, AR(0.77) = [0.47], Max-Change = 0.0196
Stage 1 = 135, CDLL = -16741.1, AR(0.77) = [0.46], Max-Change = 0.0250
Stage 1 = 136, CDLL = -16691.5, AR(0.77) = [0.48], Max-Change = 0.0201
Stage 1 = 137, CDLL = -16669.7, AR(0.77) = [0.46], Max-Change = 0.0179
Stage 1 = 138, CDLL = -16650.0, AR(0.77) = [0.44], Max-Change = 0.0382
Stage 1 = 139, CDLL = -16693.1, AR(0.77) = [0.48], Max-Change = 0.0178
Stage 1 = 140, CDLL = -16692.6, AR(0.77) = [0.48], Max-Change = 0.0179
Stage 1 = 141, CDLL = -16689.1, AR(0.77) = [0.46], Max-Change = 0.0406
Stage 1 = 142, CDLL = -16696.7, AR(0.77) = [0.47], Max-Change = 0.0150
Stage 1 = 143, CDLL = -16730.1, AR(0.77) = [0.48], Max-Change = 0.0133
Stage 1 = 144, CDLL = -16709.3, AR(0.77) = [0.43], Max-Change = 0.0245
Stage 1 = 145, CDLL = -16641.9, AR(0.77) = [0.47], Max-Change = 0.0260
Stage 1 = 146, CDLL = -16666.8, AR(0.77) = [0.46], Max-Change = 0.0205
Stage 1 = 147, CDLL = -16576.6, AR(0.77) = [0.45], Max-Change = 0.0333
Stage 1 = 148, CDLL = -16574.3, AR(0.77) = [0.47], Max-Change = 0.0203
Stage 1 = 149, CDLL = -16689.1, AR(0.77) = [0.47], Max-Change = 0.0321
Stage 1 = 150, CDLL = -16723.1, AR(1.14) = [0.38], Max-Change = 0.0194
Stage 2 = 1, CDLL = -16694.5, AR(1.14) = [0.40], Max-Change = 0.0162
Stage 2 = 2, CDLL = -16689.1, AR(1.14) = [0.38], Max-Change = 0.0227
Stage 2 = 3, CDLL = -16678.0, AR(1.14) = [0.39], Max-Change = 0.0255
Stage 2 = 4, CDLL = -16655.6, AR(1.14) = [0.38], Max-Change = 0.0238
Stage 2 = 5, CDLL = -16637.0, AR(1.14) = [0.39], Max-Change = 0.0154
Stage 2 = 6, CDLL = -16627.7, AR(1.14) = [0.41], Max-Change = 0.0277
Stage 2 = 7, CDLL = -16681.2, AR(1.14) = [0.41], Max-Change = 0.0338
Stage 2 = 8, CDLL = -16603.7, AR(1.14) = [0.38], Max-Change = 0.0178
Stage 2 = 9, CDLL = -16636.2, AR(1.14) = [0.39], Max-Change = 0.0137
Stage 2 = 10, CDLL = -16618.3, AR(1.14) = [0.38], Max-Change = 0.0175
Stage 2 = 11, CDLL = -16666.8, AR(1.14) = [0.38], Max-Change = 0.0306
Stage 2 = 12, CDLL = -16692.7, AR(1.14) = [0.38], Max-Change = 0.0112
Stage 2 = 13, CDLL = -16660.5, AR(1.14) = [0.39], Max-Change = 0.0157
Stage 2 = 14, CDLL = -16662.4, AR(1.14) = [0.39], Max-Change = 0.0224
Stage 2 = 15, CDLL = -16665.9, AR(1.14) = [0.40], Max-Change = 0.0134
Stage 2 = 16, CDLL = -16755.4, AR(1.14) = [0.39], Max-Change = 0.0180
Stage 2 = 17, CDLL = -16617.0, AR(1.14) = [0.39], Max-Change = 0.0337
Stage 2 = 18, CDLL = -16661.5, AR(1.14) = [0.39], Max-Change = 0.0228
Stage 2 = 19, CDLL = -16735.4, AR(1.14) = [0.39], Max-Change = 0.0167
Stage 2 = 20, CDLL = -16684.7, AR(1.14) = [0.38], Max-Change = 0.0171
Stage 2 = 21, CDLL = -16713.6, AR(1.14) = [0.41], Max-Change = 0.0219
Stage 2 = 22, CDLL = -16707.6, AR(1.14) = [0.39], Max-Change = 0.0234
Stage 2 = 23, CDLL = -16734.7, AR(1.14) = [0.39], Max-Change = 0.0183
Stage 2 = 24, CDLL = -16693.7, AR(1.14) = [0.38], Max-Change = 0.0198
Stage 2 = 25, CDLL = -16735.4, AR(1.14) = [0.39], Max-Change = 0.0145
Stage 2 = 26, CDLL = -16658.8, AR(1.14) = [0.40], Max-Change = 0.0128
Stage 2 = 27, CDLL = -16690.0, AR(1.14) = [0.40], Max-Change = 0.0124
Stage 2 = 28, CDLL = -16687.1, AR(1.14) = [0.40], Max-Change = 0.0139
Stage 2 = 29, CDLL = -16661.1, AR(1.14) = [0.39], Max-Change = 0.0169
Stage 2 = 30, CDLL = -16625.5, AR(1.14) = [0.39], Max-Change = 0.0131
Stage 2 = 31, CDLL = -16678.7, AR(1.14) = [0.40], Max-Change = 0.0200
Stage 2 = 32, CDLL = -16649.5, AR(1.14) = [0.38], Max-Change = 0.0172
Stage 2 = 33, CDLL = -16671.0, AR(1.14) = [0.37], Max-Change = 0.0194
Stage 2 = 34, CDLL = -16651.4, AR(1.14) = [0.37], Max-Change = 0.0125
Stage 2 = 35, CDLL = -16701.8, AR(1.14) = [0.40], Max-Change = 0.0109
Stage 2 = 36, CDLL = -16651.0, AR(1.14) = [0.42], Max-Change = 0.0216
Stage 2 = 37, CDLL = -16620.6, AR(1.14) = [0.38], Max-Change = 0.0184
Stage 2 = 38, CDLL = -16661.5, AR(1.14) = [0.41], Max-Change = 0.0217
Stage 2 = 39, CDLL = -16653.6, AR(1.14) = [0.39], Max-Change = 0.0198
Stage 2 = 40, CDLL = -16620.5, AR(1.14) = [0.39], Max-Change = 0.0152
Stage 2 = 41, CDLL = -16592.1, AR(1.14) = [0.37], Max-Change = 0.0240
Stage 2 = 42, CDLL = -16599.9, AR(1.14) = [0.38], Max-Change = 0.0312
Stage 2 = 43, CDLL = -16620.1, AR(1.14) = [0.37], Max-Change = 0.0222
Stage 2 = 44, CDLL = -16646.9, AR(1.14) = [0.41], Max-Change = 0.0144
Stage 2 = 45, CDLL = -16566.3, AR(1.14) = [0.38], Max-Change = 0.0211
Stage 2 = 46, CDLL = -16635.8, AR(1.14) = [0.38], Max-Change = 0.0184
Stage 2 = 47, CDLL = -16555.6, AR(1.14) = [0.38], Max-Change = 0.0148
Stage 2 = 48, CDLL = -16642.9, AR(1.14) = [0.38], Max-Change = 0.0275
Stage 2 = 49, CDLL = -16573.2, AR(1.14) = [0.39], Max-Change = 0.0288
Stage 2 = 50, CDLL = -16570.1, AR(1.14) = [0.38], Max-Change = 0.0243
Stage 2 = 51, CDLL = -16618.2, AR(1.14) = [0.39], Max-Change = 0.0297
Stage 2 = 52, CDLL = -16637.5, AR(1.14) = [0.40], Max-Change = 0.0182
Stage 2 = 53, CDLL = -16567.0, AR(1.14) = [0.39], Max-Change = 0.0234
Stage 2 = 54, CDLL = -16630.7, AR(1.14) = [0.37], Max-Change = 0.0222
Stage 2 = 55, CDLL = -16620.3, AR(1.14) = [0.38], Max-Change = 0.0224
Stage 2 = 56, CDLL = -16589.7, AR(1.14) = [0.39], Max-Change = 0.0108
Stage 2 = 57, CDLL = -16579.0, AR(1.14) = [0.37], Max-Change = 0.0256
Stage 2 = 58, CDLL = -16566.1, AR(1.14) = [0.40], Max-Change = 0.0220
Stage 2 = 59, CDLL = -16545.3, AR(1.14) = [0.37], Max-Change = 0.0121
Stage 2 = 60, CDLL = -16614.6, AR(1.14) = [0.39], Max-Change = 0.0171
Stage 2 = 61, CDLL = -16627.5, AR(1.14) = [0.38], Max-Change = 0.0185
Stage 2 = 62, CDLL = -16692.3, AR(1.14) = [0.35], Max-Change = 0.0222
Stage 2 = 63, CDLL = -16662.8, AR(1.14) = [0.39], Max-Change = 0.0169
Stage 2 = 64, CDLL = -16681.7, AR(1.14) = [0.39], Max-Change = 0.0185
Stage 2 = 65, CDLL = -16649.5, AR(1.14) = [0.38], Max-Change = 0.0151
Stage 2 = 66, CDLL = -16584.1, AR(1.14) = [0.40], Max-Change = 0.0265
Stage 2 = 67, CDLL = -16638.0, AR(1.14) = [0.39], Max-Change = 0.0176
Stage 2 = 68, CDLL = -16661.4, AR(1.14) = [0.40], Max-Change = 0.0196
Stage 2 = 69, CDLL = -16706.5, AR(1.14) = [0.40], Max-Change = 0.0352
Stage 2 = 70, CDLL = -16703.1, AR(1.14) = [0.40], Max-Change = 0.0351
Stage 2 = 71, CDLL = -16695.4, AR(1.14) = [0.38], Max-Change = 0.0277
Stage 2 = 72, CDLL = -16729.4, AR(1.14) = [0.40], Max-Change = 0.0267
Stage 2 = 73, CDLL = -16591.6, AR(1.14) = [0.39], Max-Change = 0.0295
Stage 2 = 74, CDLL = -16688.9, AR(1.14) = [0.38], Max-Change = 0.0144
Stage 2 = 75, CDLL = -16659.3, AR(1.14) = [0.39], Max-Change = 0.0158
Stage 2 = 76, CDLL = -16716.4, AR(1.14) = [0.39], Max-Change = 0.0126
Stage 2 = 77, CDLL = -16618.8, AR(1.14) = [0.37], Max-Change = 0.0289
Stage 2 = 78, CDLL = -16595.8, AR(1.14) = [0.39], Max-Change = 0.0357
Stage 2 = 79, CDLL = -16611.1, AR(1.14) = [0.37], Max-Change = 0.0160
Stage 2 = 80, CDLL = -16644.5, AR(1.14) = [0.41], Max-Change = 0.0232
Stage 2 = 81, CDLL = -16642.2, AR(1.14) = [0.38], Max-Change = 0.0216
Stage 2 = 82, CDLL = -16627.6, AR(1.14) = [0.40], Max-Change = 0.0305
Stage 2 = 83, CDLL = -16644.7, AR(1.14) = [0.38], Max-Change = 0.0152
Stage 2 = 84, CDLL = -16704.5, AR(1.14) = [0.38], Max-Change = 0.0200
Stage 2 = 85, CDLL = -16653.3, AR(1.14) = [0.38], Max-Change = 0.0141
Stage 2 = 86, CDLL = -16701.6, AR(1.14) = [0.37], Max-Change = 0.0248
Stage 2 = 87, CDLL = -16658.4, AR(1.14) = [0.39], Max-Change = 0.0113
Stage 2 = 88, CDLL = -16723.3, AR(1.14) = [0.39], Max-Change = 0.0354
Stage 2 = 89, CDLL = -16795.6, AR(1.14) = [0.39], Max-Change = 0.0255
Stage 2 = 90, CDLL = -16696.7, AR(1.14) = [0.39], Max-Change = 0.0222
Stage 2 = 91, CDLL = -16620.5, AR(1.14) = [0.38], Max-Change = 0.0200
Stage 2 = 92, CDLL = -16675.2, AR(1.14) = [0.40], Max-Change = 0.0290
Stage 2 = 93, CDLL = -16691.1, AR(1.14) = [0.40], Max-Change = 0.0151
Stage 2 = 94, CDLL = -16664.1, AR(1.14) = [0.40], Max-Change = 0.0204
Stage 2 = 95, CDLL = -16586.8, AR(1.14) = [0.40], Max-Change = 0.0165
Stage 2 = 96, CDLL = -16635.4, AR(1.14) = [0.39], Max-Change = 0.0108
Stage 2 = 97, CDLL = -16696.3, AR(1.14) = [0.39], Max-Change = 0.0150
Stage 2 = 98, CDLL = -16684.1, AR(1.14) = [0.40], Max-Change = 0.0179
Stage 2 = 99, CDLL = -16570.3, AR(1.14) = [0.39], Max-Change = 0.0199
Stage 2 = 100, CDLL = -16552.7, AR(1.14) = [0.38], Max-Change = 0.0162
Stage 3 = 1, CDLL = -16577.1, AR(1.14) = [0.39], gam = 0.0000, Max-Change = 0.0000
Stage 3 = 2, CDLL = -16694.9, AR(1.14) = [0.40], gam = 0.1778, Max-Change = 0.0223
Stage 3 = 3, CDLL = -16570.1, AR(1.14) = [0.40], gam = 0.1057, Max-Change = 0.0065
Stage 3 = 4, CDLL = -16671.9, AR(1.14) = [0.39], gam = 0.0780, Max-Change = 0.0059
Stage 3 = 5, CDLL = -16670.8, AR(1.14) = [0.40], gam = 0.0629, Max-Change = 0.0047
Stage 3 = 6, CDLL = -16719.7, AR(1.14) = [0.38], gam = 0.0532, Max-Change = 0.0060
Stage 3 = 7, CDLL = -16680.7, AR(1.14) = [0.40], gam = 0.0464, Max-Change = 0.0031
Stage 3 = 8, CDLL = -16633.5, AR(1.14) = [0.39], gam = 0.0413, Max-Change = 0.0042
Stage 3 = 9, CDLL = -16596.0, AR(1.14) = [0.38], gam = 0.0374, Max-Change = 0.0036
Stage 3 = 10, CDLL = -16660.2, AR(1.14) = [0.40], gam = 0.0342, Max-Change = 0.0034
Stage 3 = 11, CDLL = -16739.0, AR(1.14) = [0.39], gam = 0.0316, Max-Change = 0.0055
Stage 3 = 12, CDLL = -16651.8, AR(1.14) = [0.37], gam = 0.0294, Max-Change = 0.0032
Stage 3 = 13, CDLL = -16590.8, AR(1.14) = [0.38], gam = 0.0276, Max-Change = 0.0038
Stage 3 = 14, CDLL = -16685.0, AR(1.14) = [0.37], gam = 0.0260, Max-Change = 0.0030
Stage 3 = 15, CDLL = -16654.6, AR(1.14) = [0.37], gam = 0.0246, Max-Change = 0.0022
Stage 3 = 16, CDLL = -16705.6, AR(1.14) = [0.38], gam = 0.0233, Max-Change = 0.0021
Stage 3 = 17, CDLL = -16622.3, AR(1.14) = [0.39], gam = 0.0222, Max-Change = 0.0018
Stage 3 = 18, CDLL = -16656.3, AR(1.14) = [0.39], gam = 0.0212, Max-Change = 0.0031
Stage 3 = 19, CDLL = -16630.2, AR(1.14) = [0.39], gam = 0.0203, Max-Change = 0.0018
Stage 3 = 20, CDLL = -16644.8, AR(1.14) = [0.40], gam = 0.0195, Max-Change = 0.0012
Stage 3 = 21, CDLL = -16561.6, AR(1.14) = [0.39], gam = 0.0188, Max-Change = 0.0012
Stage 3 = 22, CDLL = -16580.3, AR(1.14) = [0.37], gam = 0.0181, Max-Change = 0.0017
Stage 3 = 23, CDLL = -16582.6, AR(1.14) = [0.39], gam = 0.0175, Max-Change = 0.0013
Stage 3 = 24, CDLL = -16702.5, AR(1.14) = [0.40], gam = 0.0169, Max-Change = 0.0008
Stage 3 = 25, CDLL = -16713.8, AR(1.14) = [0.38], gam = 0.0164, Max-Change = 0.0019
Stage 3 = 26, CDLL = -16668.4, AR(1.14) = [0.39], gam = 0.0159, Max-Change = 0.0010
Stage 3 = 27, CDLL = -16599.2, AR(1.14) = [0.38], gam = 0.0154, Max-Change = 0.0018
Stage 3 = 28, CDLL = -16593.2, AR(1.14) = [0.41], gam = 0.0150, Max-Change = 0.0018
Stage 3 = 29, CDLL = -16595.8, AR(1.14) = [0.39], gam = 0.0146, Max-Change = 0.0020
Stage 3 = 30, CDLL = -16559.0, AR(1.14) = [0.39], gam = 0.0142, Max-Change = 0.0018
Stage 3 = 31, CDLL = -16606.1, AR(1.14) = [0.38], gam = 0.0139, Max-Change = 0.0018
Stage 3 = 32, CDLL = -16681.8, AR(1.14) = [0.40], gam = 0.0135, Max-Change = 0.0024
Stage 3 = 33, CDLL = -16700.2, AR(1.14) = [0.40], gam = 0.0132, Max-Change = 0.0018
Stage 3 = 34, CDLL = -16625.9, AR(1.14) = [0.39], gam = 0.0129, Max-Change = 0.0009
Stage 3 = 35, CDLL = -16704.5, AR(1.14) = [0.38], gam = 0.0126, Max-Change = 0.0008
Stage 3 = 36, CDLL = -16642.3, AR(1.14) = [0.37], gam = 0.0124, Max-Change = 0.0015
Stage 3 = 37, CDLL = -16618.9, AR(1.14) = [0.39], gam = 0.0121, Max-Change = 0.0013
Stage 3 = 38, CDLL = -16711.5, AR(1.14) = [0.42], gam = 0.0119, Max-Change = 0.0015
Stage 3 = 39, CDLL = -16651.9, AR(1.14) = [0.38], gam = 0.0116, Max-Change = 0.0011
Stage 3 = 40, CDLL = -16628.1, AR(1.14) = [0.38], gam = 0.0114, Max-Change = 0.0010
Stage 3 = 41, CDLL = -16669.0, AR(1.14) = [0.38], gam = 0.0112, Max-Change = 0.0027
Stage 3 = 42, CDLL = -16665.7, AR(1.14) = [0.38], gam = 0.0110, Max-Change = 0.0009
Stage 3 = 43, CDLL = -16667.2, AR(1.14) = [0.40], gam = 0.0108, Max-Change = 0.0012
Stage 3 = 44, CDLL = -16590.8, AR(1.14) = [0.39], gam = 0.0106, Max-Change = 0.0013
Stage 3 = 45, CDLL = -16604.2, AR(1.14) = [0.39], gam = 0.0104, Max-Change = 0.0010
Stage 3 = 46, CDLL = -16733.1, AR(1.14) = [0.38], gam = 0.0102, Max-Change = 0.0015
Stage 3 = 47, CDLL = -16655.8, AR(1.14) = [0.38], gam = 0.0101, Max-Change = 0.0009
Stage 3 = 48, CDLL = -16702.2, AR(1.14) = [0.39], gam = 0.0099, Max-Change = 0.0007
Stage 3 = 49, CDLL = -16670.9, AR(1.14) = [0.41], gam = 0.0098, Max-Change = 0.0013
Stage 3 = 50, CDLL = -16650.5, AR(1.14) = [0.38], gam = 0.0096, Max-Change = 0.0020
Stage 3 = 51, CDLL = -16715.9, AR(1.14) = [0.38], gam = 0.0095, Max-Change = 0.0016
Stage 3 = 52, CDLL = -16658.5, AR(1.14) = [0.38], gam = 0.0093, Max-Change = 0.0012
Stage 3 = 53, CDLL = -16681.3, AR(1.14) = [0.36], gam = 0.0092, Max-Change = 0.0008
Stage 3 = 54, CDLL = -16600.1, AR(1.14) = [0.39], gam = 0.0091, Max-Change = 0.0005
Stage 3 = 55, CDLL = -16611.7, AR(1.14) = [0.38], gam = 0.0089, Max-Change = 0.0008
#>
#> Calculating log-likelihood...
coef(mod1)
#> $Item_1
#> a1 a2 d g u
#> par 1.798 0 -0.991 0 1
#>
#> $Item_2
#> a1 a2 d g u
#> par 0.488 0 -1.527 0 1
#>
#> $Item_3
#> a1 a2 d g u
#> par 0.9 0 1.519 0 1
#>
#> $Item_4
#> a1 a2 d g u
#> par 1.042 0.557 0.088 0 1
#>
#> $Item_5
#> a1 a2 d1 d2 d3
#> par 0 1.462 2.856 1.91 -0.523
#>
#> $Item_6
#> a1 a2 d1 d2 d3
#> par 0 0.635 2.494 1.007 -1.047
#>
#> $Item_7
#> a1 a2 d1 d2
#> par 0 1.018 2 -0.025
#>
#> $Item_8
#> a1 a2 d g u
#> par 0 0.959 0.957 0 1
#>
#> $GroupPars
#> MEAN_1 MEAN_2 COV_11 COV_21 COV_22
#> par 0 0 1 0.318 1
#>
summary(mod1)
#> F1 F2 h2
#> Item_1 0.726 0.527
#> Item_2 0.276 0.076
#> Item_3 0.468 0.219
#> Item_4 0.503 0.269 0.325
#> Item_5 0.651 0.424
#> Item_6 0.350 0.122
#> Item_7 0.513 0.264
#> Item_8 0.491 0.241
#>
#> SS loadings: 1.075 1.124
#> Proportion Var: 0.134 0.14
#>
#> Factor correlations:
#>
#> F1 F2
#> F1 1.000
#> F2 0.318 1
residuals(mod1)
#> LD matrix (lower triangle) and standardized residual correlations (upper triangle)
#>
#> Upper triangle summary:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.040 -0.018 0.004 0.005 0.034 0.059
#>
#> Item_1 Item_2 Item_3 Item_4 Item_5 Item_6 Item_7 Item_8
#> Item_1 -0.002 -0.009 0.003 0.006 0.059 -0.007 -0.028
#> Item_2 0.006 0.014 -0.017 0.046 0.050 0.019 0.010
#> Item_3 0.158 0.412 0.006 0.034 0.027 0.034 -0.019
#> Item_4 0.020 0.609 0.068 -0.035 0.040 0.045 -0.039
#> Item_5 0.064 4.239 2.274 2.466 -0.032 -0.040 0.038
#> Item_6 7.035 5.086 1.415 3.234 6.022 -0.034 -0.016
#> Item_7 0.105 0.746 2.307 4.093 6.393 4.612 -0.014
#> Item_8 1.531 0.220 0.689 3.029 2.913 0.488 0.400
#####
# bifactor
model.3 <- '
G = 1-8
F1 = 1-4
F2 = 5-8'
mod3 <- mirt(dataset,model.3, method = 'MHRM')
#>
Stage 1 = 1, CDLL = -19647.0, AR(1.00) = [0.36], Max-Change = 0.1193
Stage 1 = 2, CDLL = -19640.5, AR(1.00) = [0.34], Max-Change = 0.0933
Stage 1 = 3, CDLL = -19637.9, AR(1.00) = [0.36], Max-Change = 0.0742
Stage 1 = 4, CDLL = -19635.4, AR(1.00) = [0.34], Max-Change = 0.0508
Stage 1 = 5, CDLL = -19703.3, AR(1.00) = [0.34], Max-Change = 0.0523
Stage 1 = 6, CDLL = -19640.5, AR(1.00) = [0.34], Max-Change = 0.0528
Stage 1 = 7, CDLL = -19688.1, AR(1.00) = [0.36], Max-Change = 0.0400
Stage 1 = 8, CDLL = -19627.4, AR(1.00) = [0.35], Max-Change = 0.0417
Stage 1 = 9, CDLL = -19668.7, AR(1.00) = [0.35], Max-Change = 0.0340
Stage 1 = 10, CDLL = -19717.8, AR(1.00) = [0.38], Max-Change = 0.0264
Stage 1 = 11, CDLL = -19676.2, AR(1.00) = [0.36], Max-Change = 0.0213
Stage 1 = 12, CDLL = -19636.0, AR(1.00) = [0.36], Max-Change = 0.0350
Stage 1 = 13, CDLL = -19605.4, AR(1.00) = [0.36], Max-Change = 0.0216
Stage 1 = 14, CDLL = -19649.6, AR(1.00) = [0.36], Max-Change = 0.0240
Stage 1 = 15, CDLL = -19654.7, AR(1.00) = [0.36], Max-Change = 0.0270
Stage 1 = 16, CDLL = -19648.3, AR(1.00) = [0.35], Max-Change = 0.0220
Stage 1 = 17, CDLL = -19667.7, AR(1.00) = [0.36], Max-Change = 0.0262
Stage 1 = 18, CDLL = -19818.9, AR(1.00) = [0.34], Max-Change = 0.0247
Stage 1 = 19, CDLL = -19888.8, AR(1.00) = [0.37], Max-Change = 0.0275
Stage 1 = 20, CDLL = -19726.6, AR(1.00) = [0.38], Max-Change = 0.0261
Stage 1 = 21, CDLL = -19711.4, AR(1.00) = [0.37], Max-Change = 0.0194
Stage 1 = 22, CDLL = -19654.5, AR(1.00) = [0.36], Max-Change = 0.0284
Stage 1 = 23, CDLL = -19643.0, AR(1.00) = [0.35], Max-Change = 0.0234
Stage 1 = 24, CDLL = -19639.5, AR(1.00) = [0.35], Max-Change = 0.0139
Stage 1 = 25, CDLL = -19641.0, AR(1.00) = [0.37], Max-Change = 0.0312
Stage 1 = 26, CDLL = -19589.7, AR(1.00) = [0.36], Max-Change = 0.0204
Stage 1 = 27, CDLL = -19614.5, AR(1.00) = [0.35], Max-Change = 0.0295
Stage 1 = 28, CDLL = -19666.3, AR(1.00) = [0.37], Max-Change = 0.0169
Stage 1 = 29, CDLL = -19601.1, AR(1.00) = [0.38], Max-Change = 0.0214
Stage 1 = 30, CDLL = -19604.8, AR(1.00) = [0.38], Max-Change = 0.0225
Stage 1 = 31, CDLL = -19605.4, AR(1.00) = [0.36], Max-Change = 0.0168
Stage 1 = 32, CDLL = -19705.1, AR(1.00) = [0.35], Max-Change = 0.0211
Stage 1 = 33, CDLL = -19636.5, AR(1.00) = [0.34], Max-Change = 0.0192
Stage 1 = 34, CDLL = -19671.1, AR(1.00) = [0.35], Max-Change = 0.0272
Stage 1 = 35, CDLL = -19700.2, AR(1.00) = [0.37], Max-Change = 0.0184
Stage 1 = 36, CDLL = -19674.6, AR(1.00) = [0.35], Max-Change = 0.0189
Stage 1 = 37, CDLL = -19733.9, AR(1.00) = [0.36], Max-Change = 0.0165
Stage 1 = 38, CDLL = -19664.2, AR(1.00) = [0.37], Max-Change = 0.0149
Stage 1 = 39, CDLL = -19653.8, AR(1.00) = [0.35], Max-Change = 0.0211
Stage 1 = 40, CDLL = -19564.3, AR(1.00) = [0.35], Max-Change = 0.0257
Stage 1 = 41, CDLL = -19579.7, AR(1.00) = [0.35], Max-Change = 0.0276
Stage 1 = 42, CDLL = -19661.2, AR(1.00) = [0.34], Max-Change = 0.0185
Stage 1 = 43, CDLL = -19678.7, AR(1.00) = [0.36], Max-Change = 0.0222
Stage 1 = 44, CDLL = -19636.7, AR(1.00) = [0.35], Max-Change = 0.0424
Stage 1 = 45, CDLL = -19633.4, AR(1.00) = [0.33], Max-Change = 0.0164
Stage 1 = 46, CDLL = -19658.6, AR(1.00) = [0.35], Max-Change = 0.0202
Stage 1 = 47, CDLL = -19639.1, AR(1.00) = [0.35], Max-Change = 0.0165
Stage 1 = 48, CDLL = -19653.2, AR(1.00) = [0.36], Max-Change = 0.0283
Stage 1 = 49, CDLL = -19683.7, AR(1.00) = [0.36], Max-Change = 0.0166
Stage 1 = 50, CDLL = -19664.5, AR(1.00) = [0.37], Max-Change = 0.0172
Stage 1 = 51, CDLL = -19600.6, AR(1.00) = [0.33], Max-Change = 0.0147
Stage 1 = 52, CDLL = -19551.1, AR(1.00) = [0.36], Max-Change = 0.0172
Stage 1 = 53, CDLL = -19630.4, AR(1.00) = [0.35], Max-Change = 0.0247
Stage 1 = 54, CDLL = -19599.9, AR(1.00) = [0.36], Max-Change = 0.0206
Stage 1 = 55, CDLL = -19592.4, AR(1.00) = [0.35], Max-Change = 0.0188
Stage 1 = 56, CDLL = -19579.6, AR(1.00) = [0.35], Max-Change = 0.0143
Stage 1 = 57, CDLL = -19592.4, AR(1.00) = [0.34], Max-Change = 0.0206
Stage 1 = 58, CDLL = -19558.9, AR(1.00) = [0.36], Max-Change = 0.0345
Stage 1 = 59, CDLL = -19611.9, AR(1.00) = [0.36], Max-Change = 0.0170
Stage 1 = 60, CDLL = -19582.4, AR(1.00) = [0.33], Max-Change = 0.0178
Stage 1 = 61, CDLL = -19640.5, AR(1.00) = [0.36], Max-Change = 0.0207
Stage 1 = 62, CDLL = -19580.8, AR(1.00) = [0.36], Max-Change = 0.0140
Stage 1 = 63, CDLL = -19565.4, AR(1.00) = [0.34], Max-Change = 0.0228
Stage 1 = 64, CDLL = -19576.9, AR(1.00) = [0.34], Max-Change = 0.0221
Stage 1 = 65, CDLL = -19572.2, AR(1.00) = [0.35], Max-Change = 0.0208
Stage 1 = 66, CDLL = -19552.8, AR(1.00) = [0.35], Max-Change = 0.0199
Stage 1 = 67, CDLL = -19413.6, AR(1.00) = [0.35], Max-Change = 0.0193
Stage 1 = 68, CDLL = -19452.0, AR(1.00) = [0.36], Max-Change = 0.0195
Stage 1 = 69, CDLL = -19530.8, AR(1.00) = [0.36], Max-Change = 0.0242
Stage 1 = 70, CDLL = -19584.2, AR(1.00) = [0.34], Max-Change = 0.0224
Stage 1 = 71, CDLL = -19543.8, AR(1.00) = [0.33], Max-Change = 0.0146
Stage 1 = 72, CDLL = -19546.7, AR(1.00) = [0.34], Max-Change = 0.0218
Stage 1 = 73, CDLL = -19495.1, AR(1.00) = [0.35], Max-Change = 0.0299
Stage 1 = 74, CDLL = -19526.3, AR(1.00) = [0.35], Max-Change = 0.0335
Stage 1 = 75, CDLL = -19573.4, AR(1.00) = [0.37], Max-Change = 0.0223
Stage 1 = 76, CDLL = -19531.1, AR(1.00) = [0.34], Max-Change = 0.0232
Stage 1 = 77, CDLL = -19514.1, AR(1.00) = [0.35], Max-Change = 0.0204
Stage 1 = 78, CDLL = -19642.9, AR(1.00) = [0.37], Max-Change = 0.0239
Stage 1 = 79, CDLL = -19516.3, AR(1.00) = [0.35], Max-Change = 0.0184
Stage 1 = 80, CDLL = -19539.4, AR(1.00) = [0.35], Max-Change = 0.0242
Stage 1 = 81, CDLL = -19597.6, AR(1.00) = [0.34], Max-Change = 0.0129
Stage 1 = 82, CDLL = -19566.1, AR(1.00) = [0.33], Max-Change = 0.0252
Stage 1 = 83, CDLL = -19524.4, AR(1.00) = [0.34], Max-Change = 0.0173
Stage 1 = 84, CDLL = -19517.0, AR(1.00) = [0.34], Max-Change = 0.0205
Stage 1 = 85, CDLL = -19520.9, AR(1.00) = [0.37], Max-Change = 0.0172
Stage 1 = 86, CDLL = -19560.5, AR(1.00) = [0.32], Max-Change = 0.0183
Stage 1 = 87, CDLL = -19615.9, AR(1.00) = [0.35], Max-Change = 0.0207
Stage 1 = 88, CDLL = -19654.7, AR(1.00) = [0.34], Max-Change = 0.0238
Stage 1 = 89, CDLL = -19614.2, AR(1.00) = [0.34], Max-Change = 0.0104
Stage 1 = 90, CDLL = -19588.2, AR(1.00) = [0.34], Max-Change = 0.0360
Stage 1 = 91, CDLL = -19544.5, AR(1.00) = [0.35], Max-Change = 0.0195
Stage 1 = 92, CDLL = -19496.4, AR(1.00) = [0.34], Max-Change = 0.0124
Stage 1 = 93, CDLL = -19508.2, AR(1.00) = [0.33], Max-Change = 0.0160
Stage 1 = 94, CDLL = -19500.9, AR(1.00) = [0.35], Max-Change = 0.0278
Stage 1 = 95, CDLL = -19498.7, AR(1.00) = [0.34], Max-Change = 0.0191
Stage 1 = 96, CDLL = -19521.8, AR(1.00) = [0.35], Max-Change = 0.0171
Stage 1 = 97, CDLL = -19576.5, AR(1.00) = [0.34], Max-Change = 0.0234
Stage 1 = 98, CDLL = -19586.7, AR(1.00) = [0.36], Max-Change = 0.0313
Stage 1 = 99, CDLL = -19540.4, AR(1.00) = [0.34], Max-Change = 0.0287
Stage 1 = 100, CDLL = -19496.2, AR(1.00) = [0.35], Max-Change = 0.0205
Stage 1 = 101, CDLL = -19413.5, AR(1.00) = [0.34], Max-Change = 0.0174
Stage 1 = 102, CDLL = -19475.5, AR(1.00) = [0.35], Max-Change = 0.0203
Stage 1 = 103, CDLL = -19468.6, AR(1.00) = [0.33], Max-Change = 0.0161
Stage 1 = 104, CDLL = -19533.0, AR(1.00) = [0.36], Max-Change = 0.0160
Stage 1 = 105, CDLL = -19496.5, AR(1.00) = [0.33], Max-Change = 0.0177
Stage 1 = 106, CDLL = -19500.3, AR(1.00) = [0.34], Max-Change = 0.0163
Stage 1 = 107, CDLL = -19431.8, AR(1.00) = [0.35], Max-Change = 0.0140
Stage 1 = 108, CDLL = -19413.8, AR(1.00) = [0.34], Max-Change = 0.0208
Stage 1 = 109, CDLL = -19430.8, AR(1.00) = [0.36], Max-Change = 0.0180
Stage 1 = 110, CDLL = -19439.1, AR(1.00) = [0.33], Max-Change = 0.0175
Stage 1 = 111, CDLL = -19518.8, AR(1.00) = [0.34], Max-Change = 0.0376
Stage 1 = 112, CDLL = -19503.0, AR(1.00) = [0.35], Max-Change = 0.0205
Stage 1 = 113, CDLL = -19555.8, AR(1.00) = [0.34], Max-Change = 0.0199
Stage 1 = 114, CDLL = -19495.2, AR(1.00) = [0.34], Max-Change = 0.0190
Stage 1 = 115, CDLL = -19400.2, AR(1.00) = [0.34], Max-Change = 0.0184
Stage 1 = 116, CDLL = -19392.6, AR(1.00) = [0.34], Max-Change = 0.0215
Stage 1 = 117, CDLL = -19502.6, AR(1.00) = [0.35], Max-Change = 0.0137
Stage 1 = 118, CDLL = -19453.4, AR(1.00) = [0.34], Max-Change = 0.0186
Stage 1 = 119, CDLL = -19493.4, AR(1.00) = [0.34], Max-Change = 0.0385
Stage 1 = 120, CDLL = -19549.1, AR(1.00) = [0.34], Max-Change = 0.0221
Stage 1 = 121, CDLL = -19529.7, AR(1.00) = [0.34], Max-Change = 0.0263
Stage 1 = 122, CDLL = -19532.9, AR(1.00) = [0.35], Max-Change = 0.0295
Stage 1 = 123, CDLL = -19603.6, AR(1.00) = [0.34], Max-Change = 0.0171
Stage 1 = 124, CDLL = -19541.4, AR(1.00) = [0.36], Max-Change = 0.0141
Stage 1 = 125, CDLL = -19406.2, AR(1.00) = [0.34], Max-Change = 0.0200
Stage 1 = 126, CDLL = -19451.9, AR(1.00) = [0.32], Max-Change = 0.0166
Stage 1 = 127, CDLL = -19463.4, AR(1.00) = [0.34], Max-Change = 0.0154
Stage 1 = 128, CDLL = -19497.6, AR(1.00) = [0.33], Max-Change = 0.0175
Stage 1 = 129, CDLL = -19540.1, AR(1.00) = [0.34], Max-Change = 0.0147
Stage 1 = 130, CDLL = -19530.7, AR(1.00) = [0.32], Max-Change = 0.0252
Stage 1 = 131, CDLL = -19524.9, AR(1.00) = [0.33], Max-Change = 0.0185
Stage 1 = 132, CDLL = -19532.0, AR(1.00) = [0.35], Max-Change = 0.0250
Stage 1 = 133, CDLL = -19414.9, AR(1.00) = [0.35], Max-Change = 0.0155
Stage 1 = 134, CDLL = -19437.5, AR(1.00) = [0.34], Max-Change = 0.0175
Stage 1 = 135, CDLL = -19496.8, AR(1.00) = [0.34], Max-Change = 0.0152
Stage 1 = 136, CDLL = -19518.5, AR(1.00) = [0.35], Max-Change = 0.0186
Stage 1 = 137, CDLL = -19484.3, AR(1.00) = [0.35], Max-Change = 0.0123
Stage 1 = 138, CDLL = -19554.9, AR(1.00) = [0.34], Max-Change = 0.0147
Stage 1 = 139, CDLL = -19519.1, AR(1.00) = [0.35], Max-Change = 0.0285
Stage 1 = 140, CDLL = -19518.8, AR(1.00) = [0.35], Max-Change = 0.0413
Stage 1 = 141, CDLL = -19410.6, AR(1.00) = [0.35], Max-Change = 0.0179
Stage 1 = 142, CDLL = -19398.1, AR(1.00) = [0.34], Max-Change = 0.0205
Stage 1 = 143, CDLL = -19404.4, AR(1.00) = [0.34], Max-Change = 0.0170
Stage 1 = 144, CDLL = -19400.9, AR(1.00) = [0.32], Max-Change = 0.0212
Stage 1 = 145, CDLL = -19446.2, AR(1.00) = [0.34], Max-Change = 0.0110
Stage 1 = 146, CDLL = -19423.8, AR(1.00) = [0.34], Max-Change = 0.0117
Stage 1 = 147, CDLL = -19445.3, AR(1.00) = [0.35], Max-Change = 0.0207
Stage 1 = 148, CDLL = -19403.2, AR(1.00) = [0.34], Max-Change = 0.0250
Stage 1 = 149, CDLL = -19514.0, AR(1.00) = [0.35], Max-Change = 0.0211
Stage 1 = 150, CDLL = -19525.8, AR(0.76) = [0.40], Max-Change = 0.0258
Stage 2 = 1, CDLL = -19504.1, AR(0.76) = [0.39], Max-Change = 0.0226
Stage 2 = 2, CDLL = -19493.9, AR(0.76) = [0.41], Max-Change = 0.0228
Stage 2 = 3, CDLL = -19518.3, AR(0.76) = [0.41], Max-Change = 0.0219
Stage 2 = 4, CDLL = -19415.0, AR(0.76) = [0.41], Max-Change = 0.0195
Stage 2 = 5, CDLL = -19502.8, AR(0.76) = [0.41], Max-Change = 0.0237
Stage 2 = 6, CDLL = -19575.6, AR(0.76) = [0.40], Max-Change = 0.0171
Stage 2 = 7, CDLL = -19515.5, AR(0.76) = [0.39], Max-Change = 0.0114
Stage 2 = 8, CDLL = -19450.9, AR(0.76) = [0.40], Max-Change = 0.0190
Stage 2 = 9, CDLL = -19546.2, AR(0.76) = [0.39], Max-Change = 0.0175
Stage 2 = 10, CDLL = -19534.8, AR(0.76) = [0.39], Max-Change = 0.0215
Stage 2 = 11, CDLL = -19562.8, AR(0.76) = [0.41], Max-Change = 0.0205
Stage 2 = 12, CDLL = -19415.6, AR(0.76) = [0.38], Max-Change = 0.0229
Stage 2 = 13, CDLL = -19459.1, AR(0.76) = [0.40], Max-Change = 0.0190
Stage 2 = 14, CDLL = -19395.8, AR(0.76) = [0.39], Max-Change = 0.0206
Stage 2 = 15, CDLL = -19400.8, AR(0.76) = [0.40], Max-Change = 0.0207
Stage 2 = 16, CDLL = -19530.2, AR(0.76) = [0.41], Max-Change = 0.0240
Stage 2 = 17, CDLL = -19421.0, AR(0.76) = [0.40], Max-Change = 0.0262
Stage 2 = 18, CDLL = -19455.9, AR(0.76) = [0.39], Max-Change = 0.0181
Stage 2 = 19, CDLL = -19502.3, AR(0.76) = [0.41], Max-Change = 0.0288
Stage 2 = 20, CDLL = -19473.0, AR(0.76) = [0.39], Max-Change = 0.0170
Stage 2 = 21, CDLL = -19443.1, AR(0.76) = [0.39], Max-Change = 0.0421
Stage 2 = 22, CDLL = -19479.7, AR(0.76) = [0.41], Max-Change = 0.0346
Stage 2 = 23, CDLL = -19457.9, AR(0.76) = [0.39], Max-Change = 0.0192
Stage 2 = 24, CDLL = -19550.3, AR(0.76) = [0.42], Max-Change = 0.0153
Stage 2 = 25, CDLL = -19545.4, AR(0.76) = [0.41], Max-Change = 0.0332
Stage 2 = 26, CDLL = -19474.7, AR(0.76) = [0.39], Max-Change = 0.0222
Stage 2 = 27, CDLL = -19394.5, AR(0.76) = [0.40], Max-Change = 0.0380
Stage 2 = 28, CDLL = -19554.7, AR(0.76) = [0.41], Max-Change = 0.0240
Stage 2 = 29, CDLL = -19531.2, AR(0.76) = [0.39], Max-Change = 0.0228
Stage 2 = 30, CDLL = -19386.9, AR(0.76) = [0.40], Max-Change = 0.0266
Stage 2 = 31, CDLL = -19456.6, AR(0.76) = [0.39], Max-Change = 0.0253
Stage 2 = 32, CDLL = -19487.4, AR(0.76) = [0.39], Max-Change = 0.0184
Stage 2 = 33, CDLL = -19524.8, AR(0.76) = [0.37], Max-Change = 0.0213
Stage 2 = 34, CDLL = -19609.9, AR(0.76) = [0.41], Max-Change = 0.0192
Stage 2 = 35, CDLL = -19520.4, AR(0.76) = [0.41], Max-Change = 0.0250
Stage 2 = 36, CDLL = -19564.2, AR(0.76) = [0.42], Max-Change = 0.0255
Stage 2 = 37, CDLL = -19599.6, AR(0.76) = [0.41], Max-Change = 0.0186
Stage 2 = 38, CDLL = -19556.6, AR(0.76) = [0.41], Max-Change = 0.0209
Stage 2 = 39, CDLL = -19569.2, AR(0.76) = [0.40], Max-Change = 0.0234
Stage 2 = 40, CDLL = -19505.0, AR(0.76) = [0.41], Max-Change = 0.0123
Stage 2 = 41, CDLL = -19527.4, AR(0.76) = [0.40], Max-Change = 0.0238
Stage 2 = 42, CDLL = -19554.7, AR(0.76) = [0.42], Max-Change = 0.0147
Stage 2 = 43, CDLL = -19557.3, AR(0.76) = [0.39], Max-Change = 0.0184
Stage 2 = 44, CDLL = -19485.9, AR(0.76) = [0.40], Max-Change = 0.0203
Stage 2 = 45, CDLL = -19584.3, AR(0.76) = [0.40], Max-Change = 0.0224
Stage 2 = 46, CDLL = -19587.4, AR(0.76) = [0.41], Max-Change = 0.0254
Stage 2 = 47, CDLL = -19588.7, AR(0.76) = [0.41], Max-Change = 0.0217
Stage 2 = 48, CDLL = -19583.0, AR(0.76) = [0.41], Max-Change = 0.0200
Stage 2 = 49, CDLL = -19535.6, AR(0.76) = [0.41], Max-Change = 0.0193
Stage 2 = 50, CDLL = -19474.0, AR(0.76) = [0.39], Max-Change = 0.0139
Stage 2 = 51, CDLL = -19481.2, AR(0.76) = [0.39], Max-Change = 0.0208
Stage 2 = 52, CDLL = -19556.9, AR(0.76) = [0.39], Max-Change = 0.0201
Stage 2 = 53, CDLL = -19564.6, AR(0.76) = [0.38], Max-Change = 0.0183
Stage 2 = 54, CDLL = -19560.3, AR(0.76) = [0.42], Max-Change = 0.0173
Stage 2 = 55, CDLL = -19485.6, AR(0.76) = [0.37], Max-Change = 0.0186
Stage 2 = 56, CDLL = -19624.3, AR(0.76) = [0.39], Max-Change = 0.0185
Stage 2 = 57, CDLL = -19490.2, AR(0.76) = [0.40], Max-Change = 0.0156
Stage 2 = 58, CDLL = -19526.6, AR(0.76) = [0.40], Max-Change = 0.0230
Stage 2 = 59, CDLL = -19453.6, AR(0.76) = [0.41], Max-Change = 0.0235
Stage 2 = 60, CDLL = -19556.4, AR(0.76) = [0.40], Max-Change = 0.0277
Stage 2 = 61, CDLL = -19579.3, AR(0.76) = [0.41], Max-Change = 0.0326
Stage 2 = 62, CDLL = -19573.0, AR(0.76) = [0.39], Max-Change = 0.0270
Stage 2 = 63, CDLL = -19542.5, AR(0.76) = [0.42], Max-Change = 0.0219
Stage 2 = 64, CDLL = -19579.1, AR(0.76) = [0.40], Max-Change = 0.0220
Stage 2 = 65, CDLL = -19608.4, AR(0.76) = [0.41], Max-Change = 0.0192
Stage 2 = 66, CDLL = -19608.1, AR(0.76) = [0.40], Max-Change = 0.0282
Stage 2 = 67, CDLL = -19648.1, AR(0.76) = [0.41], Max-Change = 0.0164
Stage 2 = 68, CDLL = -19626.9, AR(0.76) = [0.39], Max-Change = 0.0205
Stage 2 = 69, CDLL = -19579.8, AR(0.76) = [0.40], Max-Change = 0.0183
Stage 2 = 70, CDLL = -19609.5, AR(0.76) = [0.39], Max-Change = 0.0187
Stage 2 = 71, CDLL = -19593.8, AR(0.76) = [0.40], Max-Change = 0.0171
Stage 2 = 72, CDLL = -19482.4, AR(0.76) = [0.40], Max-Change = 0.0288
Stage 2 = 73, CDLL = -19517.2, AR(0.76) = [0.38], Max-Change = 0.0447
Stage 2 = 74, CDLL = -19505.9, AR(0.76) = [0.39], Max-Change = 0.0316
Stage 2 = 75, CDLL = -19564.2, AR(0.76) = [0.40], Max-Change = 0.0187
Stage 2 = 76, CDLL = -19542.7, AR(0.76) = [0.41], Max-Change = 0.0256
Stage 2 = 77, CDLL = -19494.8, AR(0.76) = [0.40], Max-Change = 0.0257
Stage 2 = 78, CDLL = -19530.9, AR(0.76) = [0.38], Max-Change = 0.0190
Stage 2 = 79, CDLL = -19526.0, AR(0.76) = [0.40], Max-Change = 0.0158
Stage 2 = 80, CDLL = -19520.5, AR(0.76) = [0.40], Max-Change = 0.0188
Stage 2 = 81, CDLL = -19589.5, AR(0.76) = [0.40], Max-Change = 0.0127
Stage 2 = 82, CDLL = -19482.7, AR(0.76) = [0.39], Max-Change = 0.0182
Stage 2 = 83, CDLL = -19527.9, AR(0.76) = [0.41], Max-Change = 0.0192
Stage 2 = 84, CDLL = -19555.2, AR(0.76) = [0.39], Max-Change = 0.0255
Stage 2 = 85, CDLL = -19624.7, AR(0.76) = [0.41], Max-Change = 0.0197
Stage 2 = 86, CDLL = -19556.1, AR(0.76) = [0.41], Max-Change = 0.0193
Stage 2 = 87, CDLL = -19486.7, AR(0.76) = [0.39], Max-Change = 0.0186
Stage 2 = 88, CDLL = -19507.6, AR(0.76) = [0.41], Max-Change = 0.0260
Stage 2 = 89, CDLL = -19523.2, AR(0.76) = [0.42], Max-Change = 0.0241
Stage 2 = 90, CDLL = -19587.2, AR(0.76) = [0.41], Max-Change = 0.0244
Stage 2 = 91, CDLL = -19594.8, AR(0.76) = [0.42], Max-Change = 0.0153
Stage 2 = 92, CDLL = -19541.8, AR(0.76) = [0.39], Max-Change = 0.0275
Stage 2 = 93, CDLL = -19490.8, AR(0.76) = [0.40], Max-Change = 0.0190
Stage 2 = 94, CDLL = -19537.9, AR(0.76) = [0.42], Max-Change = 0.0123
Stage 2 = 95, CDLL = -19611.7, AR(0.76) = [0.39], Max-Change = 0.0203
Stage 2 = 96, CDLL = -19494.2, AR(0.76) = [0.41], Max-Change = 0.0186
Stage 2 = 97, CDLL = -19438.0, AR(0.76) = [0.38], Max-Change = 0.0207
Stage 2 = 98, CDLL = -19438.2, AR(0.76) = [0.40], Max-Change = 0.0238
Stage 2 = 99, CDLL = -19344.9, AR(0.76) = [0.40], Max-Change = 0.0244
Stage 2 = 100, CDLL = -19381.9, AR(0.76) = [0.39], Max-Change = 0.0191
Stage 3 = 1, CDLL = -19427.9, AR(0.76) = [0.37], gam = 0.0000, Max-Change = 0.0000
Stage 3 = 2, CDLL = -19492.5, AR(0.76) = [0.39], gam = 0.1778, Max-Change = 0.0231
Stage 3 = 3, CDLL = -19492.7, AR(0.76) = [0.41], gam = 0.1057, Max-Change = 0.0086
Stage 3 = 4, CDLL = -19424.6, AR(0.76) = [0.40], gam = 0.0780, Max-Change = 0.0110
Stage 3 = 5, CDLL = -19420.1, AR(0.76) = [0.38], gam = 0.0629, Max-Change = 0.0088
Stage 3 = 6, CDLL = -19512.3, AR(0.76) = [0.39], gam = 0.0532, Max-Change = 0.0069
Stage 3 = 7, CDLL = -19456.9, AR(0.76) = [0.39], gam = 0.0464, Max-Change = 0.0056
Stage 3 = 8, CDLL = -19483.0, AR(0.76) = [0.40], gam = 0.0413, Max-Change = 0.0040
Stage 3 = 9, CDLL = -19560.0, AR(0.76) = [0.41], gam = 0.0374, Max-Change = 0.0037
Stage 3 = 10, CDLL = -19539.9, AR(0.76) = [0.39], gam = 0.0342, Max-Change = 0.0025
Stage 3 = 11, CDLL = -19548.2, AR(0.76) = [0.38], gam = 0.0316, Max-Change = 0.0044
Stage 3 = 12, CDLL = -19527.8, AR(0.76) = [0.38], gam = 0.0294, Max-Change = 0.0026
Stage 3 = 13, CDLL = -19537.3, AR(0.76) = [0.40], gam = 0.0276, Max-Change = 0.0030
Stage 3 = 14, CDLL = -19557.7, AR(0.76) = [0.40], gam = 0.0260, Max-Change = 0.0030
Stage 3 = 15, CDLL = -19555.9, AR(0.76) = [0.41], gam = 0.0246, Max-Change = 0.0029
Stage 3 = 16, CDLL = -19441.3, AR(0.76) = [0.40], gam = 0.0233, Max-Change = 0.0020
Stage 3 = 17, CDLL = -19431.3, AR(0.76) = [0.39], gam = 0.0222, Max-Change = 0.0020
Stage 3 = 18, CDLL = -19434.0, AR(0.76) = [0.40], gam = 0.0212, Max-Change = 0.0019
Stage 3 = 19, CDLL = -19478.6, AR(0.76) = [0.41], gam = 0.0203, Max-Change = 0.0028
Stage 3 = 20, CDLL = -19519.7, AR(0.76) = [0.40], gam = 0.0195, Max-Change = 0.0019
Stage 3 = 21, CDLL = -19455.2, AR(0.76) = [0.40], gam = 0.0188, Max-Change = 0.0018
Stage 3 = 22, CDLL = -19447.6, AR(0.76) = [0.38], gam = 0.0181, Max-Change = 0.0016
Stage 3 = 23, CDLL = -19501.7, AR(0.76) = [0.40], gam = 0.0175, Max-Change = 0.0012
Stage 3 = 24, CDLL = -19573.5, AR(0.76) = [0.40], gam = 0.0169, Max-Change = 0.0022
Stage 3 = 25, CDLL = -19501.5, AR(0.76) = [0.39], gam = 0.0164, Max-Change = 0.0012
Stage 3 = 26, CDLL = -19462.3, AR(0.76) = [0.40], gam = 0.0159, Max-Change = 0.0022
Stage 3 = 27, CDLL = -19462.3, AR(0.76) = [0.39], gam = 0.0154, Max-Change = 0.0018
Stage 3 = 28, CDLL = -19462.4, AR(0.76) = [0.39], gam = 0.0150, Max-Change = 0.0016
Stage 3 = 29, CDLL = -19494.5, AR(0.76) = [0.40], gam = 0.0146, Max-Change = 0.0015
Stage 3 = 30, CDLL = -19507.6, AR(0.76) = [0.40], gam = 0.0142, Max-Change = 0.0008
Stage 3 = 31, CDLL = -19460.6, AR(0.76) = [0.40], gam = 0.0139, Max-Change = 0.0016
Stage 3 = 32, CDLL = -19501.1, AR(0.76) = [0.39], gam = 0.0135, Max-Change = 0.0012
Stage 3 = 33, CDLL = -19493.3, AR(0.76) = [0.39], gam = 0.0132, Max-Change = 0.0021
Stage 3 = 34, CDLL = -19416.1, AR(0.76) = [0.41], gam = 0.0129, Max-Change = 0.0013
Stage 3 = 35, CDLL = -19424.7, AR(0.76) = [0.38], gam = 0.0126, Max-Change = 0.0011
Stage 3 = 36, CDLL = -19424.3, AR(0.76) = [0.39], gam = 0.0124, Max-Change = 0.0014
Stage 3 = 37, CDLL = -19512.4, AR(0.76) = [0.41], gam = 0.0121, Max-Change = 0.0014
Stage 3 = 38, CDLL = -19520.4, AR(0.76) = [0.41], gam = 0.0119, Max-Change = 0.0016
Stage 3 = 39, CDLL = -19540.2, AR(0.76) = [0.40], gam = 0.0116, Max-Change = 0.0013
Stage 3 = 40, CDLL = -19510.7, AR(0.76) = [0.40], gam = 0.0114, Max-Change = 0.0026
Stage 3 = 41, CDLL = -19446.6, AR(0.76) = [0.41], gam = 0.0112, Max-Change = 0.0011
Stage 3 = 42, CDLL = -19483.8, AR(0.76) = [0.39], gam = 0.0110, Max-Change = 0.0009
Stage 3 = 43, CDLL = -19443.7, AR(0.76) = [0.38], gam = 0.0108, Max-Change = 0.0008
Stage 3 = 44, CDLL = -19552.5, AR(0.76) = [0.40], gam = 0.0106, Max-Change = 0.0013
Stage 3 = 45, CDLL = -19553.2, AR(0.76) = [0.40], gam = 0.0104, Max-Change = 0.0011
Stage 3 = 46, CDLL = -19498.5, AR(0.76) = [0.39], gam = 0.0102, Max-Change = 0.0009
Stage 3 = 47, CDLL = -19498.0, AR(0.76) = [0.38], gam = 0.0101, Max-Change = 0.0010
Stage 3 = 48, CDLL = -19534.3, AR(0.76) = [0.39], gam = 0.0099, Max-Change = 0.0009
#>
#> Calculating log-likelihood...
coef(mod3)
#> $Item_1
#> a1 a2 a3 d g u
#> par 0.881 1.526 0 -0.976 0 1
#>
#> $Item_2
#> a1 a2 a3 d g u
#> par 0.309 0.356 0 -1.52 0 1
#>
#> $Item_3
#> a1 a2 a3 d g u
#> par 0.507 0.739 0 1.522 0 1
#>
#> $Item_4
#> a1 a2 a3 d g u
#> par 1.374 0.753 0 0.101 0 1
#>
#> $Item_5
#> a1 a2 a3 d1 d2 d3
#> par 0.958 0 1.054 2.832 1.897 -0.51
#>
#> $Item_6
#> a1 a2 a3 d1 d2 d3
#> par 0.563 0 0.282 2.494 1.008 -1.043
#>
#> $Item_7
#> a1 a2 a3 d1 d2
#> par 0.817 0 0.604 2.002 -0.021
#>
#> $Item_8
#> a1 a2 a3 d g u
#> par 0.488 0 1.106 1.036 0 1
#>
#> $GroupPars
#> MEAN_1 MEAN_2 MEAN_3 COV_11 COV_21 COV_31 COV_22 COV_32 COV_33
#> par 0 0 0 1 0 0 1 0 1
#>
summary(mod3)
#> G F1 F2 h2
#> Item_1 0.359 0.623 0.5173
#> Item_2 0.175 0.202 0.0714
#> Item_3 0.263 0.384 0.2169
#> Item_4 0.594 0.326 0.4587
#> Item_5 0.432 0.475 0.4120
#> Item_6 0.310 0.155 0.1204
#> Item_7 0.412 0.305 0.2628
#> Item_8 0.234 0.530 0.3352
#>
#> SS loadings: 1.089 0.682 0.623
#> Proportion Var: 0.136 0.085 0.078
#>
#> Factor correlations:
#>
#> G F1 F2
#> G 1
#> F1 0 1
#> F2 0 0 1
residuals(mod3)
#> LD matrix (lower triangle) and standardized residual correlations (upper triangle)
#>
#> Upper triangle summary:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.046 -0.030 -0.007 -0.006 0.011 0.049
#>
#> Item_1 Item_2 Item_3 Item_4 Item_5 Item_6 Item_7 Item_8
#> Item_1 0.007 -0.007 0.004 -0.007 0.049 -0.023 -0.010
#> Item_2 0.090 0.017 -0.025 -0.046 0.036 0.006 0.012
#> Item_3 0.088 0.563 -0.005 -0.034 0.014 -0.033 -0.012
#> Item_4 0.025 1.224 0.045 0.035 -0.029 -0.042 0.004
#> Item_5 0.112 4.234 2.273 2.392 0.031 -0.039 -0.036
#> Item_6 4.748 2.601 0.417 1.653 5.653 -0.034 0.011
#> Item_7 1.037 0.064 2.131 3.498 6.233 4.532 -0.015
#> Item_8 0.211 0.274 0.306 0.026 2.560 0.231 0.426
anova(mod1,mod3)
#> AIC SABIC HQ BIC logLik X2 df p
#> mod1 24903.92 24959.67 24951.22 25032.74 -12428.96
#> mod3 24904.18 24974.47 24963.82 25066.61 -12423.09 11.736 6 0.068
#####
# polynomial/combinations
data(SAT12)
data <- key2binary(SAT12,
key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
model.quad <- '
F1 = 1-32
(F1*F1) = 1-32'
model.combo <- '
F1 = 1-16
F2 = 17-32
(F1*F2) = 1-8'
(mod.quad <- mirt(data, model.quad))
#>
Iteration: 1, Log-Lik: -10104.844, Max-Change: 2.31942
Iteration: 2, Log-Lik: -9572.707, Max-Change: 0.95981
Iteration: 3, Log-Lik: -9512.399, Max-Change: 0.74584
Iteration: 4, Log-Lik: -9495.470, Max-Change: 0.57352
Iteration: 5, Log-Lik: -9487.734, Max-Change: 0.38068
Iteration: 6, Log-Lik: -9482.541, Max-Change: 0.25814
Iteration: 7, Log-Lik: -9477.848, Max-Change: 0.19174
Iteration: 8, Log-Lik: -9473.207, Max-Change: 0.16400
Iteration: 9, Log-Lik: -9468.837, Max-Change: 0.14249
Iteration: 10, Log-Lik: -9458.312, Max-Change: 0.17409
Iteration: 11, Log-Lik: -9454.940, Max-Change: 0.11553
Iteration: 12, Log-Lik: -9452.934, Max-Change: 0.11647
Iteration: 13, Log-Lik: -9447.607, Max-Change: 0.14066
Iteration: 14, Log-Lik: -9446.061, Max-Change: 0.14140
Iteration: 15, Log-Lik: -9444.751, Max-Change: 0.14105
Iteration: 16, Log-Lik: -9438.230, Max-Change: 0.18679
Iteration: 17, Log-Lik: -9436.418, Max-Change: 0.17037
Iteration: 18, Log-Lik: -9435.137, Max-Change: 0.17097
Iteration: 19, Log-Lik: -9430.716, Max-Change: 0.11338
Iteration: 20, Log-Lik: -9430.014, Max-Change: 0.14199
Iteration: 21, Log-Lik: -9429.752, Max-Change: 0.17869
Iteration: 22, Log-Lik: -9429.315, Max-Change: 0.07197
Iteration: 23, Log-Lik: -9429.206, Max-Change: 0.08170
Iteration: 24, Log-Lik: -9429.111, Max-Change: 0.08251
Iteration: 25, Log-Lik: -9428.667, Max-Change: 0.08779
Iteration: 26, Log-Lik: -9428.607, Max-Change: 0.04593
Iteration: 27, Log-Lik: -9428.552, Max-Change: 0.04486
Iteration: 28, Log-Lik: -9428.249, Max-Change: 0.05193
Iteration: 29, Log-Lik: -9428.196, Max-Change: 0.04799
Iteration: 30, Log-Lik: -9428.146, Max-Change: 0.04650
Iteration: 31, Log-Lik: -9427.856, Max-Change: 0.04026
Iteration: 32, Log-Lik: -9427.809, Max-Change: 0.04062
Iteration: 33, Log-Lik: -9427.763, Max-Change: 0.04160
Iteration: 34, Log-Lik: -9427.494, Max-Change: 0.04167
Iteration: 35, Log-Lik: -9427.450, Max-Change: 0.04122
Iteration: 36, Log-Lik: -9427.406, Max-Change: 0.04257
Iteration: 37, Log-Lik: -9427.152, Max-Change: 0.04010
Iteration: 38, Log-Lik: -9427.110, Max-Change: 0.03609
Iteration: 39, Log-Lik: -9427.068, Max-Change: 0.03550
Iteration: 40, Log-Lik: -9426.819, Max-Change: 0.03305
Iteration: 41, Log-Lik: -9426.778, Max-Change: 0.03169
Iteration: 42, Log-Lik: -9426.737, Max-Change: 0.03190
Iteration: 43, Log-Lik: -9426.497, Max-Change: 0.03230
Iteration: 44, Log-Lik: -9426.456, Max-Change: 0.02954
Iteration: 45, Log-Lik: -9426.417, Max-Change: 0.02927
Iteration: 46, Log-Lik: -9426.186, Max-Change: 0.02865
Iteration: 47, Log-Lik: -9426.147, Max-Change: 0.02639
Iteration: 48, Log-Lik: -9426.109, Max-Change: 0.02626
Iteration: 49, Log-Lik: -9425.889, Max-Change: 0.02726
Iteration: 50, Log-Lik: -9425.853, Max-Change: 0.01939
Iteration: 51, Log-Lik: -9425.820, Max-Change: 0.02660
Iteration: 52, Log-Lik: -9425.753, Max-Change: 0.02701
Iteration: 53, Log-Lik: -9425.719, Max-Change: 0.02703
Iteration: 54, Log-Lik: -9425.686, Max-Change: 0.02701
Iteration: 55, Log-Lik: -9425.497, Max-Change: 0.02757
Iteration: 56, Log-Lik: -9425.466, Max-Change: 0.01835
Iteration: 57, Log-Lik: -9425.441, Max-Change: 0.02493
Iteration: 58, Log-Lik: -9425.389, Max-Change: 0.01742
Iteration: 59, Log-Lik: -9425.365, Max-Change: 0.02595
Iteration: 60, Log-Lik: -9425.339, Max-Change: 0.01680
Iteration: 61, Log-Lik: -9425.310, Max-Change: 0.02693
Iteration: 62, Log-Lik: -9425.285, Max-Change: 0.02657
Iteration: 63, Log-Lik: -9425.260, Max-Change: 0.01701
Iteration: 64, Log-Lik: -9425.233, Max-Change: 0.02793
Iteration: 65, Log-Lik: -9425.210, Max-Change: 0.02895
Iteration: 66, Log-Lik: -9425.188, Max-Change: 0.01635
Iteration: 67, Log-Lik: -9425.167, Max-Change: 0.02819
Iteration: 68, Log-Lik: -9425.145, Max-Change: 0.01593
Iteration: 69, Log-Lik: -9425.125, Max-Change: 0.02892
Iteration: 70, Log-Lik: -9425.089, Max-Change: 0.01502
Iteration: 71, Log-Lik: -9425.069, Max-Change: 0.01603
Iteration: 72, Log-Lik: -9425.049, Max-Change: 0.02470
Iteration: 73, Log-Lik: -9425.010, Max-Change: 0.01472
Iteration: 74, Log-Lik: -9424.993, Max-Change: 0.03242
Iteration: 75, Log-Lik: -9424.975, Max-Change: 0.01408
Iteration: 76, Log-Lik: -9424.962, Max-Change: 0.03166
Iteration: 77, Log-Lik: -9424.944, Max-Change: 0.01423
Iteration: 78, Log-Lik: -9424.927, Max-Change: 0.02611
Iteration: 79, Log-Lik: -9424.899, Max-Change: 0.01301
Iteration: 80, Log-Lik: -9424.884, Max-Change: 0.01370
Iteration: 81, Log-Lik: -9424.869, Max-Change: 0.03259
Iteration: 82, Log-Lik: -9424.842, Max-Change: 0.01352
Iteration: 83, Log-Lik: -9424.828, Max-Change: 0.01402
Iteration: 84, Log-Lik: -9424.814, Max-Change: 0.02744
Iteration: 85, Log-Lik: -9424.787, Max-Change: 0.01019
Iteration: 86, Log-Lik: -9424.775, Max-Change: 0.03497
Iteration: 87, Log-Lik: -9424.761, Max-Change: 0.01274
Iteration: 88, Log-Lik: -9424.752, Max-Change: 0.01236
Iteration: 89, Log-Lik: -9424.740, Max-Change: 0.02877
Iteration: 90, Log-Lik: -9424.727, Max-Change: 0.01094
Iteration: 91, Log-Lik: -9424.718, Max-Change: 0.01207
Iteration: 92, Log-Lik: -9424.707, Max-Change: 0.02948
Iteration: 93, Log-Lik: -9424.695, Max-Change: 0.00958
Iteration: 94, Log-Lik: -9424.688, Max-Change: 0.03017
Iteration: 95, Log-Lik: -9424.676, Max-Change: 0.00950
Iteration: 96, Log-Lik: -9424.667, Max-Change: 0.03043
Iteration: 97, Log-Lik: -9424.651, Max-Change: 0.00936
Iteration: 98, Log-Lik: -9424.642, Max-Change: 0.01048
Iteration: 99, Log-Lik: -9424.632, Max-Change: 0.01144
Iteration: 100, Log-Lik: -9424.582, Max-Change: 0.03020
Iteration: 101, Log-Lik: -9424.571, Max-Change: 0.03095
Iteration: 102, Log-Lik: -9424.561, Max-Change: 0.00739
Iteration: 103, Log-Lik: -9424.557, Max-Change: 0.04433
Iteration: 104, Log-Lik: -9424.547, Max-Change: 0.00803
Iteration: 105, Log-Lik: -9424.540, Max-Change: 0.00855
Iteration: 106, Log-Lik: -9424.502, Max-Change: 0.02970
Iteration: 107, Log-Lik: -9424.492, Max-Change: 0.03563
Iteration: 108, Log-Lik: -9424.484, Max-Change: 0.00841
Iteration: 109, Log-Lik: -9424.481, Max-Change: 0.00814
Iteration: 110, Log-Lik: -9424.475, Max-Change: 0.01042
Iteration: 111, Log-Lik: -9424.469, Max-Change: 0.03429
Iteration: 112, Log-Lik: -9424.458, Max-Change: 0.00609
Iteration: 113, Log-Lik: -9424.453, Max-Change: 0.00816
Iteration: 114, Log-Lik: -9424.448, Max-Change: 0.00888
Iteration: 115, Log-Lik: -9424.419, Max-Change: 0.00246
Iteration: 116, Log-Lik: -9424.415, Max-Change: 0.03113
Iteration: 117, Log-Lik: -9424.408, Max-Change: 0.00837
Iteration: 118, Log-Lik: -9424.406, Max-Change: 0.00928
Iteration: 119, Log-Lik: -9424.402, Max-Change: 0.00263
Iteration: 120, Log-Lik: -9424.399, Max-Change: 0.03641
Iteration: 121, Log-Lik: -9424.393, Max-Change: 0.00706
Iteration: 122, Log-Lik: -9424.389, Max-Change: 0.00935
Iteration: 123, Log-Lik: -9424.385, Max-Change: 0.00238
Iteration: 124, Log-Lik: -9424.383, Max-Change: 0.01117
Iteration: 125, Log-Lik: -9424.379, Max-Change: 0.00209
Iteration: 126, Log-Lik: -9424.376, Max-Change: 0.00902
Iteration: 127, Log-Lik: -9424.372, Max-Change: 0.01228
Iteration: 128, Log-Lik: -9424.368, Max-Change: 0.03758
Iteration: 129, Log-Lik: -9424.363, Max-Change: 0.00184
Iteration: 130, Log-Lik: -9424.363, Max-Change: 0.00698
Iteration: 131, Log-Lik: -9424.360, Max-Change: 0.00183
Iteration: 132, Log-Lik: -9424.358, Max-Change: 0.00923
Iteration: 133, Log-Lik: -9424.353, Max-Change: 0.00179
Iteration: 134, Log-Lik: -9424.352, Max-Change: 0.00987
Iteration: 135, Log-Lik: -9424.348, Max-Change: 0.00172
Iteration: 136, Log-Lik: -9424.348, Max-Change: 0.01123
Iteration: 137, Log-Lik: -9424.344, Max-Change: 0.00189
Iteration: 138, Log-Lik: -9424.343, Max-Change: 0.03765
Iteration: 139, Log-Lik: -9424.337, Max-Change: 0.00162
Iteration: 140, Log-Lik: -9424.336, Max-Change: 0.00582
Iteration: 141, Log-Lik: -9424.333, Max-Change: 0.00180
Iteration: 142, Log-Lik: -9424.332, Max-Change: 0.00186
Iteration: 143, Log-Lik: -9424.331, Max-Change: 0.00939
Iteration: 144, Log-Lik: -9424.328, Max-Change: 0.00177
Iteration: 145, Log-Lik: -9424.327, Max-Change: 0.01032
Iteration: 146, Log-Lik: -9424.324, Max-Change: 0.00170
Iteration: 147, Log-Lik: -9424.323, Max-Change: 0.01276
Iteration: 148, Log-Lik: -9424.319, Max-Change: 0.00158
Iteration: 149, Log-Lik: -9424.318, Max-Change: 0.03912
Iteration: 150, Log-Lik: -9424.314, Max-Change: 0.00163
Iteration: 151, Log-Lik: -9424.313, Max-Change: 0.00162
Iteration: 152, Log-Lik: -9424.312, Max-Change: 0.00169
Iteration: 153, Log-Lik: -9424.311, Max-Change: 0.00626
Iteration: 154, Log-Lik: -9424.308, Max-Change: 0.00119
Iteration: 155, Log-Lik: -9424.308, Max-Change: 0.00131
Iteration: 156, Log-Lik: -9424.306, Max-Change: 0.01050
Iteration: 157, Log-Lik: -9424.303, Max-Change: 0.00165
Iteration: 158, Log-Lik: -9424.302, Max-Change: 0.00176
Iteration: 159, Log-Lik: -9424.301, Max-Change: 0.00102
Iteration: 160, Log-Lik: -9424.301, Max-Change: 0.01103
Iteration: 161, Log-Lik: -9424.298, Max-Change: 0.00175
Iteration: 162, Log-Lik: -9424.297, Max-Change: 0.01124
Iteration: 163, Log-Lik: -9424.295, Max-Change: 0.00169
Iteration: 164, Log-Lik: -9424.293, Max-Change: 0.00182
Iteration: 165, Log-Lik: -9424.292, Max-Change: 0.01179
Iteration: 166, Log-Lik: -9424.290, Max-Change: 0.00173
Iteration: 167, Log-Lik: -9424.289, Max-Change: 0.00089
Iteration: 168, Log-Lik: -9424.288, Max-Change: 0.00144
Iteration: 169, Log-Lik: -9424.287, Max-Change: 0.00022
Iteration: 170, Log-Lik: -9424.287, Max-Change: 0.01206
Iteration: 171, Log-Lik: -9424.285, Max-Change: 0.00170
Iteration: 172, Log-Lik: -9424.285, Max-Change: 0.00179
Iteration: 173, Log-Lik: -9424.284, Max-Change: 0.00101
Iteration: 174, Log-Lik: -9424.283, Max-Change: 0.00065
Iteration: 175, Log-Lik: -9424.283, Max-Change: 0.00116
Iteration: 176, Log-Lik: -9424.283, Max-Change: 0.04148
Iteration: 177, Log-Lik: -9424.279, Max-Change: 0.00107
Iteration: 178, Log-Lik: -9424.279, Max-Change: 0.00110
Iteration: 179, Log-Lik: -9424.278, Max-Change: 0.00024
Iteration: 180, Log-Lik: -9424.278, Max-Change: 0.00203
Iteration: 181, Log-Lik: -9424.277, Max-Change: 0.00208
Iteration: 182, Log-Lik: -9424.276, Max-Change: 0.00098
Iteration: 183, Log-Lik: -9424.276, Max-Change: 0.00667
Iteration: 184, Log-Lik: -9424.275, Max-Change: 0.00175
Iteration: 185, Log-Lik: -9424.274, Max-Change: 0.00207
Iteration: 186, Log-Lik: -9424.273, Max-Change: 0.00079
Iteration: 187, Log-Lik: -9424.273, Max-Change: 0.00127
Iteration: 188, Log-Lik: -9424.273, Max-Change: 0.00027
Iteration: 189, Log-Lik: -9424.272, Max-Change: 0.00048
Iteration: 190, Log-Lik: -9424.272, Max-Change: 0.00033
Iteration: 191, Log-Lik: -9424.272, Max-Change: 0.00061
Iteration: 192, Log-Lik: -9424.272, Max-Change: 0.00026
Iteration: 193, Log-Lik: -9424.272, Max-Change: 0.00105
Iteration: 194, Log-Lik: -9424.272, Max-Change: 0.00898
Iteration: 195, Log-Lik: -9424.270, Max-Change: 0.00100
Iteration: 196, Log-Lik: -9424.270, Max-Change: 0.00066
Iteration: 197, Log-Lik: -9424.270, Max-Change: 0.00024
Iteration: 198, Log-Lik: -9424.270, Max-Change: 0.00050
Iteration: 199, Log-Lik: -9424.269, Max-Change: 0.00030
Iteration: 200, Log-Lik: -9424.269, Max-Change: 0.00064
Iteration: 201, Log-Lik: -9424.269, Max-Change: 0.00023
Iteration: 202, Log-Lik: -9424.269, Max-Change: 0.00098
Iteration: 203, Log-Lik: -9424.269, Max-Change: 0.00242
Iteration: 204, Log-Lik: -9424.268, Max-Change: 0.00038
Iteration: 205, Log-Lik: -9424.268, Max-Change: 0.00036
Iteration: 206, Log-Lik: -9424.268, Max-Change: 0.00071
Iteration: 207, Log-Lik: -9424.268, Max-Change: 0.00026
Iteration: 208, Log-Lik: -9424.268, Max-Change: 0.00022
Iteration: 209, Log-Lik: -9424.268, Max-Change: 0.00039
Iteration: 210, Log-Lik: -9424.268, Max-Change: 0.00093
Iteration: 211, Log-Lik: -9424.268, Max-Change: 0.00035
Iteration: 212, Log-Lik: -9424.267, Max-Change: 0.00063
Iteration: 213, Log-Lik: -9424.267, Max-Change: 0.00028
Iteration: 214, Log-Lik: -9424.267, Max-Change: 0.00023
Iteration: 215, Log-Lik: -9424.267, Max-Change: 0.00044
Iteration: 216, Log-Lik: -9424.267, Max-Change: 0.00090
Iteration: 217, Log-Lik: -9424.267, Max-Change: 0.00038
Iteration: 218, Log-Lik: -9424.267, Max-Change: 0.00070
Iteration: 219, Log-Lik: -9424.267, Max-Change: 0.00030
Iteration: 220, Log-Lik: -9424.267, Max-Change: 0.00024
Iteration: 221, Log-Lik: -9424.267, Max-Change: 0.00043
Iteration: 222, Log-Lik: -9424.267, Max-Change: 0.00098
Iteration: 223, Log-Lik: -9424.267, Max-Change: 0.00038
Iteration: 224, Log-Lik: -9424.266, Max-Change: 0.00069
Iteration: 225, Log-Lik: -9424.266, Max-Change: 0.00031
Iteration: 226, Log-Lik: -9424.266, Max-Change: 0.00025
Iteration: 227, Log-Lik: -9424.266, Max-Change: 0.00046
Iteration: 228, Log-Lik: -9424.266, Max-Change: 0.00098
Iteration: 229, Log-Lik: -9424.266, Max-Change: 0.00039
Iteration: 230, Log-Lik: -9424.266, Max-Change: 0.00071
Iteration: 231, Log-Lik: -9424.266, Max-Change: 0.00031
Iteration: 232, Log-Lik: -9424.266, Max-Change: 0.00025
Iteration: 233, Log-Lik: -9424.266, Max-Change: 0.00045
Iteration: 234, Log-Lik: -9424.266, Max-Change: 0.00100
Iteration: 235, Log-Lik: -9424.266, Max-Change: 0.00038
Iteration: 236, Log-Lik: -9424.266, Max-Change: 0.00069
Iteration: 237, Log-Lik: -9424.265, Max-Change: 0.00031
Iteration: 238, Log-Lik: -9424.265, Max-Change: 0.00025
Iteration: 239, Log-Lik: -9424.265, Max-Change: 0.00046
Iteration: 240, Log-Lik: -9424.265, Max-Change: 0.00098
Iteration: 241, Log-Lik: -9424.265, Max-Change: 0.00038
Iteration: 242, Log-Lik: -9424.265, Max-Change: 0.00070
Iteration: 243, Log-Lik: -9424.265, Max-Change: 0.00030
Iteration: 244, Log-Lik: -9424.265, Max-Change: 0.00025
Iteration: 245, Log-Lik: -9424.265, Max-Change: 0.00044
Iteration: 246, Log-Lik: -9424.265, Max-Change: 0.00099
Iteration: 247, Log-Lik: -9424.265, Max-Change: 0.00038
Iteration: 248, Log-Lik: -9424.265, Max-Change: 0.00068
Iteration: 249, Log-Lik: -9424.265, Max-Change: 0.00030
Iteration: 250, Log-Lik: -9424.265, Max-Change: 0.00025
Iteration: 251, Log-Lik: -9424.265, Max-Change: 0.00045
Iteration: 252, Log-Lik: -9424.264, Max-Change: 0.00097
Iteration: 253, Log-Lik: -9424.264, Max-Change: 0.00038
Iteration: 254, Log-Lik: -9424.264, Max-Change: 0.00069
Iteration: 255, Log-Lik: -9424.264, Max-Change: 0.00030
Iteration: 256, Log-Lik: -9424.264, Max-Change: 0.00024
Iteration: 257, Log-Lik: -9424.264, Max-Change: 0.00044
Iteration: 258, Log-Lik: -9424.264, Max-Change: 0.00098
Iteration: 259, Log-Lik: -9424.264, Max-Change: 0.00037
Iteration: 260, Log-Lik: -9424.264, Max-Change: 0.00067
Iteration: 261, Log-Lik: -9424.264, Max-Change: 0.00030
Iteration: 262, Log-Lik: -9424.264, Max-Change: 0.00024
Iteration: 263, Log-Lik: -9424.264, Max-Change: 0.00045
Iteration: 264, Log-Lik: -9424.264, Max-Change: 0.00096
Iteration: 265, Log-Lik: -9424.264, Max-Change: 0.00037
Iteration: 266, Log-Lik: -9424.263, Max-Change: 0.00068
Iteration: 267, Log-Lik: -9424.263, Max-Change: 0.00029
Iteration: 268, Log-Lik: -9424.263, Max-Change: 0.00024
Iteration: 269, Log-Lik: -9424.263, Max-Change: 0.00043
Iteration: 270, Log-Lik: -9424.263, Max-Change: 0.00097
Iteration: 271, Log-Lik: -9424.263, Max-Change: 0.00037
Iteration: 272, Log-Lik: -9424.263, Max-Change: 0.00066
Iteration: 273, Log-Lik: -9424.263, Max-Change: 0.00030
Iteration: 274, Log-Lik: -9424.263, Max-Change: 0.00024
Iteration: 275, Log-Lik: -9424.263, Max-Change: 0.00044
Iteration: 276, Log-Lik: -9424.263, Max-Change: 0.00094
Iteration: 277, Log-Lik: -9424.263, Max-Change: 0.00037
Iteration: 278, Log-Lik: -9424.263, Max-Change: 0.00067
Iteration: 279, Log-Lik: -9424.263, Max-Change: 0.00029
Iteration: 280, Log-Lik: -9424.263, Max-Change: 0.00024
Iteration: 281, Log-Lik: -9424.262, Max-Change: 0.00043
Iteration: 282, Log-Lik: -9424.262, Max-Change: 0.00095
Iteration: 283, Log-Lik: -9424.262, Max-Change: 0.00036
Iteration: 284, Log-Lik: -9424.262, Max-Change: 0.00066
Iteration: 285, Log-Lik: -9424.262, Max-Change: 0.00029
Iteration: 286, Log-Lik: -9424.262, Max-Change: 0.00024
Iteration: 287, Log-Lik: -9424.262, Max-Change: 0.00044
Iteration: 288, Log-Lik: -9424.262, Max-Change: 0.00093
Iteration: 289, Log-Lik: -9424.262, Max-Change: 0.00037
Iteration: 290, Log-Lik: -9424.262, Max-Change: 0.00067
Iteration: 291, Log-Lik: -9424.262, Max-Change: 0.00029
Iteration: 292, Log-Lik: -9424.262, Max-Change: 0.00023
Iteration: 293, Log-Lik: -9424.262, Max-Change: 0.00042
Iteration: 294, Log-Lik: -9424.262, Max-Change: 0.00094
Iteration: 295, Log-Lik: -9424.262, Max-Change: 0.00036
Iteration: 296, Log-Lik: -9424.261, Max-Change: 0.00065
Iteration: 297, Log-Lik: -9424.261, Max-Change: 0.00029
Iteration: 298, Log-Lik: -9424.261, Max-Change: 0.00024
Iteration: 299, Log-Lik: -9424.261, Max-Change: 0.00043
Iteration: 300, Log-Lik: -9424.261, Max-Change: 0.00092
Iteration: 301, Log-Lik: -9424.261, Max-Change: 0.00036
Iteration: 302, Log-Lik: -9424.261, Max-Change: 0.00066
Iteration: 303, Log-Lik: -9424.261, Max-Change: 0.00028
Iteration: 304, Log-Lik: -9424.261, Max-Change: 0.00023
Iteration: 305, Log-Lik: -9424.261, Max-Change: 0.00042
Iteration: 306, Log-Lik: -9424.261, Max-Change: 0.00093
Iteration: 307, Log-Lik: -9424.261, Max-Change: 0.00036
Iteration: 308, Log-Lik: -9424.261, Max-Change: 0.00064
Iteration: 309, Log-Lik: -9424.261, Max-Change: 0.00029
Iteration: 310, Log-Lik: -9424.261, Max-Change: 0.00023
Iteration: 311, Log-Lik: -9424.261, Max-Change: 0.00043
Iteration: 312, Log-Lik: -9424.260, Max-Change: 0.00091
Iteration: 313, Log-Lik: -9424.260, Max-Change: 0.00036
Iteration: 314, Log-Lik: -9424.260, Max-Change: 0.00065
Iteration: 315, Log-Lik: -9424.260, Max-Change: 0.00028
Iteration: 316, Log-Lik: -9424.260, Max-Change: 0.00023
Iteration: 317, Log-Lik: -9424.260, Max-Change: 0.00041
Iteration: 318, Log-Lik: -9424.260, Max-Change: 0.00092
Iteration: 319, Log-Lik: -9424.260, Max-Change: 0.00035
Iteration: 320, Log-Lik: -9424.260, Max-Change: 0.00064
Iteration: 321, Log-Lik: -9424.260, Max-Change: 0.00028
Iteration: 322, Log-Lik: -9424.260, Max-Change: 0.00023
Iteration: 323, Log-Lik: -9424.260, Max-Change: 0.00042
Iteration: 324, Log-Lik: -9424.260, Max-Change: 0.00090
Iteration: 325, Log-Lik: -9424.260, Max-Change: 0.00035
Iteration: 326, Log-Lik: -9424.260, Max-Change: 0.00064
Iteration: 327, Log-Lik: -9424.259, Max-Change: 0.00028
Iteration: 328, Log-Lik: -9424.259, Max-Change: 0.00023
Iteration: 329, Log-Lik: -9424.259, Max-Change: 0.00041
Iteration: 330, Log-Lik: -9424.259, Max-Change: 0.00091
Iteration: 331, Log-Lik: -9424.259, Max-Change: 0.00035
Iteration: 332, Log-Lik: -9424.259, Max-Change: 0.00063
Iteration: 333, Log-Lik: -9424.259, Max-Change: 0.00028
Iteration: 334, Log-Lik: -9424.259, Max-Change: 0.00023
Iteration: 335, Log-Lik: -9424.259, Max-Change: 0.00042
Iteration: 336, Log-Lik: -9424.259, Max-Change: 0.00089
Iteration: 337, Log-Lik: -9424.259, Max-Change: 0.00035
Iteration: 338, Log-Lik: -9424.259, Max-Change: 0.00064
Iteration: 339, Log-Lik: -9424.259, Max-Change: 0.00028
Iteration: 340, Log-Lik: -9424.259, Max-Change: 0.00022
Iteration: 341, Log-Lik: -9424.259, Max-Change: 0.00041
Iteration: 342, Log-Lik: -9424.259, Max-Change: 0.00090
Iteration: 343, Log-Lik: -9424.259, Max-Change: 0.00035
Iteration: 344, Log-Lik: -9424.258, Max-Change: 0.00062
Iteration: 345, Log-Lik: -9424.258, Max-Change: 0.00028
Iteration: 346, Log-Lik: -9424.258, Max-Change: 0.00023
Iteration: 347, Log-Lik: -9424.258, Max-Change: 0.00041
Iteration: 348, Log-Lik: -9424.258, Max-Change: 0.00088
Iteration: 349, Log-Lik: -9424.258, Max-Change: 0.00035
Iteration: 350, Log-Lik: -9424.258, Max-Change: 0.00063
Iteration: 351, Log-Lik: -9424.258, Max-Change: 0.00027
Iteration: 352, Log-Lik: -9424.258, Max-Change: 0.00022
Iteration: 353, Log-Lik: -9424.258, Max-Change: 0.00041
Iteration: 354, Log-Lik: -9424.258, Max-Change: 0.00089
Iteration: 355, Log-Lik: -9424.258, Max-Change: 0.00034
Iteration: 356, Log-Lik: -9424.258, Max-Change: 0.00062
Iteration: 357, Log-Lik: -9424.258, Max-Change: 0.00027
Iteration: 358, Log-Lik: -9424.258, Max-Change: 0.00022
Iteration: 359, Log-Lik: -9424.258, Max-Change: 0.00041
Iteration: 360, Log-Lik: -9424.258, Max-Change: 0.00088
Iteration: 361, Log-Lik: -9424.257, Max-Change: 0.00034
Iteration: 362, Log-Lik: -9424.257, Max-Change: 0.00063
Iteration: 363, Log-Lik: -9424.257, Max-Change: 0.00027
Iteration: 364, Log-Lik: -9424.257, Max-Change: 0.00022
Iteration: 365, Log-Lik: -9424.257, Max-Change: 0.00041
Iteration: 366, Log-Lik: -9424.257, Max-Change: 0.00088
Iteration: 367, Log-Lik: -9424.257, Max-Change: 0.00034
Iteration: 368, Log-Lik: -9424.257, Max-Change: 0.00061
Iteration: 369, Log-Lik: -9424.257, Max-Change: 0.00027
Iteration: 370, Log-Lik: -9424.257, Max-Change: 0.00022
Iteration: 371, Log-Lik: -9424.257, Max-Change: 0.00041
Iteration: 372, Log-Lik: -9424.257, Max-Change: 0.00087
Iteration: 373, Log-Lik: -9424.257, Max-Change: 0.00034
Iteration: 374, Log-Lik: -9424.257, Max-Change: 0.00062
Iteration: 375, Log-Lik: -9424.257, Max-Change: 0.00027
Iteration: 376, Log-Lik: -9424.257, Max-Change: 0.00022
Iteration: 377, Log-Lik: -9424.257, Max-Change: 0.00041
Iteration: 378, Log-Lik: -9424.256, Max-Change: 0.00088
Iteration: 379, Log-Lik: -9424.256, Max-Change: 0.00034
Iteration: 380, Log-Lik: -9424.256, Max-Change: 0.00061
Iteration: 381, Log-Lik: -9424.256, Max-Change: 0.00027
Iteration: 382, Log-Lik: -9424.256, Max-Change: 0.00022
Iteration: 383, Log-Lik: -9424.256, Max-Change: 0.00041
Iteration: 384, Log-Lik: -9424.256, Max-Change: 0.00086
Iteration: 385, Log-Lik: -9424.256, Max-Change: 0.00034
Iteration: 386, Log-Lik: -9424.256, Max-Change: 0.00061
Iteration: 387, Log-Lik: -9424.256, Max-Change: 0.00026
Iteration: 388, Log-Lik: -9424.256, Max-Change: 0.00022
Iteration: 389, Log-Lik: -9424.256, Max-Change: 0.00041
Iteration: 390, Log-Lik: -9424.256, Max-Change: 0.00087
Iteration: 391, Log-Lik: -9424.256, Max-Change: 0.00033
Iteration: 392, Log-Lik: -9424.256, Max-Change: 0.00060
Iteration: 393, Log-Lik: -9424.256, Max-Change: 0.00027
Iteration: 394, Log-Lik: -9424.256, Max-Change: 0.00022
Iteration: 395, Log-Lik: -9424.256, Max-Change: 0.00041
Iteration: 396, Log-Lik: -9424.255, Max-Change: 0.00085
Iteration: 397, Log-Lik: -9424.255, Max-Change: 0.00033
Iteration: 398, Log-Lik: -9424.255, Max-Change: 0.00061
Iteration: 399, Log-Lik: -9424.255, Max-Change: 0.00026
Iteration: 400, Log-Lik: -9424.255, Max-Change: 0.00021
Iteration: 401, Log-Lik: -9424.255, Max-Change: 0.00041
Iteration: 402, Log-Lik: -9424.255, Max-Change: 0.00086
Iteration: 403, Log-Lik: -9424.255, Max-Change: 0.00033
Iteration: 404, Log-Lik: -9424.255, Max-Change: 0.00059
Iteration: 405, Log-Lik: -9424.255, Max-Change: 0.00026
Iteration: 406, Log-Lik: -9424.255, Max-Change: 0.00022
Iteration: 407, Log-Lik: -9424.255, Max-Change: 0.00041
Iteration: 408, Log-Lik: -9424.255, Max-Change: 0.00084
Iteration: 409, Log-Lik: -9424.255, Max-Change: 0.00033
Iteration: 410, Log-Lik: -9424.255, Max-Change: 0.00060
Iteration: 411, Log-Lik: -9424.255, Max-Change: 0.00026
Iteration: 412, Log-Lik: -9424.255, Max-Change: 0.00021
Iteration: 413, Log-Lik: -9424.255, Max-Change: 0.00041
Iteration: 414, Log-Lik: -9424.255, Max-Change: 0.00085
Iteration: 415, Log-Lik: -9424.254, Max-Change: 0.00033
Iteration: 416, Log-Lik: -9424.254, Max-Change: 0.00059
Iteration: 417, Log-Lik: -9424.254, Max-Change: 0.00026
Iteration: 418, Log-Lik: -9424.254, Max-Change: 0.00021
Iteration: 419, Log-Lik: -9424.254, Max-Change: 0.00041
Iteration: 420, Log-Lik: -9424.254, Max-Change: 0.00084
Iteration: 421, Log-Lik: -9424.254, Max-Change: 0.00033
Iteration: 422, Log-Lik: -9424.254, Max-Change: 0.00060
Iteration: 423, Log-Lik: -9424.254, Max-Change: 0.00026
Iteration: 424, Log-Lik: -9424.254, Max-Change: 0.00021
Iteration: 425, Log-Lik: -9424.254, Max-Change: 0.00041
Iteration: 426, Log-Lik: -9424.254, Max-Change: 0.00084
Iteration: 427, Log-Lik: -9424.254, Max-Change: 0.00032
Iteration: 428, Log-Lik: -9424.254, Max-Change: 0.00058
Iteration: 429, Log-Lik: -9424.254, Max-Change: 0.00026
Iteration: 430, Log-Lik: -9424.254, Max-Change: 0.00021
Iteration: 431, Log-Lik: -9424.254, Max-Change: 0.00041
Iteration: 432, Log-Lik: -9424.254, Max-Change: 0.00083
Iteration: 433, Log-Lik: -9424.254, Max-Change: 0.00033
Iteration: 434, Log-Lik: -9424.253, Max-Change: 0.00059
Iteration: 435, Log-Lik: -9424.253, Max-Change: 0.00026
Iteration: 436, Log-Lik: -9424.253, Max-Change: 0.00021
Iteration: 437, Log-Lik: -9424.253, Max-Change: 0.00041
Iteration: 438, Log-Lik: -9424.253, Max-Change: 0.00084
Iteration: 439, Log-Lik: -9424.253, Max-Change: 0.00032
Iteration: 440, Log-Lik: -9424.253, Max-Change: 0.00058
Iteration: 441, Log-Lik: -9424.253, Max-Change: 0.00026
Iteration: 442, Log-Lik: -9424.253, Max-Change: 0.00021
Iteration: 443, Log-Lik: -9424.253, Max-Change: 0.00041
Iteration: 444, Log-Lik: -9424.253, Max-Change: 0.00082
Iteration: 445, Log-Lik: -9424.253, Max-Change: 0.00032
Iteration: 446, Log-Lik: -9424.253, Max-Change: 0.00059
Iteration: 447, Log-Lik: -9424.253, Max-Change: 0.00025
Iteration: 448, Log-Lik: -9424.253, Max-Change: 0.00021
Iteration: 449, Log-Lik: -9424.253, Max-Change: 0.00041
Iteration: 450, Log-Lik: -9424.253, Max-Change: 0.00083
Iteration: 451, Log-Lik: -9424.253, Max-Change: 0.00032
Iteration: 452, Log-Lik: -9424.253, Max-Change: 0.00057
Iteration: 453, Log-Lik: -9424.252, Max-Change: 0.00025
Iteration: 454, Log-Lik: -9424.252, Max-Change: 0.00021
Iteration: 455, Log-Lik: -9424.252, Max-Change: 0.00041
Iteration: 456, Log-Lik: -9424.252, Max-Change: 0.00082
Iteration: 457, Log-Lik: -9424.252, Max-Change: 0.00032
Iteration: 458, Log-Lik: -9424.252, Max-Change: 0.00058
Iteration: 459, Log-Lik: -9424.252, Max-Change: 0.00025
Iteration: 460, Log-Lik: -9424.252, Max-Change: 0.00021
Iteration: 461, Log-Lik: -9424.252, Max-Change: 0.00041
Iteration: 462, Log-Lik: -9424.252, Max-Change: 0.00082
Iteration: 463, Log-Lik: -9424.252, Max-Change: 0.00032
Iteration: 464, Log-Lik: -9424.252, Max-Change: 0.00057
Iteration: 465, Log-Lik: -9424.252, Max-Change: 0.00025
Iteration: 466, Log-Lik: -9424.252, Max-Change: 0.00021
Iteration: 467, Log-Lik: -9424.252, Max-Change: 0.00041
Iteration: 468, Log-Lik: -9424.252, Max-Change: 0.00081
Iteration: 469, Log-Lik: -9424.252, Max-Change: 0.00032
Iteration: 470, Log-Lik: -9424.252, Max-Change: 0.00058
Iteration: 471, Log-Lik: -9424.252, Max-Change: 0.00025
Iteration: 472, Log-Lik: -9424.252, Max-Change: 0.00020
Iteration: 473, Log-Lik: -9424.252, Max-Change: 0.00041
Iteration: 474, Log-Lik: -9424.251, Max-Change: 0.00082
Iteration: 475, Log-Lik: -9424.251, Max-Change: 0.00031
Iteration: 476, Log-Lik: -9424.251, Max-Change: 0.00057
Iteration: 477, Log-Lik: -9424.251, Max-Change: 0.00025
Iteration: 478, Log-Lik: -9424.251, Max-Change: 0.00020
Iteration: 479, Log-Lik: -9424.251, Max-Change: 0.00041
Iteration: 480, Log-Lik: -9424.251, Max-Change: 0.00080
Iteration: 481, Log-Lik: -9424.251, Max-Change: 0.00031
Iteration: 482, Log-Lik: -9424.251, Max-Change: 0.00057
Iteration: 483, Log-Lik: -9424.251, Max-Change: 0.00025
Iteration: 484, Log-Lik: -9424.251, Max-Change: 0.00020
Iteration: 485, Log-Lik: -9424.251, Max-Change: 0.00041
Iteration: 486, Log-Lik: -9424.251, Max-Change: 0.00081
Iteration: 487, Log-Lik: -9424.251, Max-Change: 0.00031
Iteration: 488, Log-Lik: -9424.251, Max-Change: 0.00056
Iteration: 489, Log-Lik: -9424.251, Max-Change: 0.00025
Iteration: 490, Log-Lik: -9424.251, Max-Change: 0.00020
Iteration: 491, Log-Lik: -9424.251, Max-Change: 0.00042
Iteration: 492, Log-Lik: -9424.251, Max-Change: 0.00080
Iteration: 493, Log-Lik: -9424.251, Max-Change: 0.00031
Iteration: 494, Log-Lik: -9424.250, Max-Change: 0.00057
Iteration: 495, Log-Lik: -9424.250, Max-Change: 0.00025
Iteration: 496, Log-Lik: -9424.250, Max-Change: 0.00020
Iteration: 497, Log-Lik: -9424.250, Max-Change: 0.00042
Iteration: 498, Log-Lik: -9424.250, Max-Change: 0.00080
Iteration: 499, Log-Lik: -9424.250, Max-Change: 0.00031
Iteration: 500, Log-Lik: -9424.250, Max-Change: 0.00056
#> Warning: EM cycles terminated after 500 iterations.
#>
#> Call:
#> mirt(data = data, model = model.quad)
#>
#> Full-information item factor analysis with 1 factor(s).
#> FAILED TO CONVERGE within 1e-04 tolerance after 500 EM iterations.
#> mirt version: 1.44.3
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -9424.25
#> Estimated parameters: 96
#> AIC = 19040.5
#> BIC = 19462.61; SABIC = 19157.83
#>
summary(mod.quad)
#> F1 (F1*F1) h2
#> Item.1 0.24781 0.3206 0.1642
#> Item.2 0.31819 0.6617 0.5390
#> Item.3 0.18997 0.4629 0.2504
#> Item.4 0.22615 0.2802 0.1297
#> Item.5 0.27007 0.4764 0.2999
#> Item.6 0.23129 0.4340 0.2418
#> Item.7 -0.23295 0.6835 0.5215
#> Item.8 0.07142 0.3230 0.1094
#> Item.9 0.07120 0.2448 0.0650
#> Item.10 0.12985 0.4483 0.2178
#> Item.11 0.00489 0.9832 0.9667
#> Item.12 0.13130 0.0666 0.0217
#> Item.13 -0.12244 0.6412 0.4261
#> Item.14 0.42256 0.5436 0.4741
#> Item.15 -0.25904 0.8074 0.7190
#> Item.16 0.15771 0.3584 0.1533
#> Item.17 -0.30637 0.8837 0.8747
#> Item.18 0.22597 0.6542 0.4790
#> Item.19 0.17275 0.4037 0.1928
#> Item.20 0.37087 0.7925 0.7656
#> Item.21 -0.36576 0.5739 0.4631
#> Item.22 -0.27360 0.9330 0.9454
#> Item.23 0.41421 0.2192 0.2196
#> Item.24 -0.13434 0.7637 0.6012
#> Item.25 0.60732 0.2554 0.4341
#> Item.26 0.35413 0.6293 0.5214
#> Item.27 -0.05234 0.9284 0.8647
#> Item.28 0.09058 0.5130 0.2714
#> Item.29 0.26616 0.3615 0.2016
#> Item.30 0.05551 0.1696 0.0319
#> Item.31 0.25711 0.9259 0.9234
#> Item.32 0.01322 0.1086 0.0120
#>
#> SS loadings: 2.116 10.985
#> Proportion Var: 0.066 0.343
#>
#> Factor correlations:
#>
#> F1
#> F1 1
(mod.combo <- mirt(data, model.combo))
#>
Iteration: 1, Log-Lik: -9815.422, Max-Change: 0.55645
Iteration: 2, Log-Lik: -9678.421, Max-Change: 0.55710
Iteration: 3, Log-Lik: -9643.201, Max-Change: 0.22294
Iteration: 4, Log-Lik: -9629.356, Max-Change: 0.13823
Iteration: 5, Log-Lik: -9624.018, Max-Change: 0.09346
Iteration: 6, Log-Lik: -9621.772, Max-Change: 0.05784
Iteration: 7, Log-Lik: -9620.830, Max-Change: 0.04210
Iteration: 8, Log-Lik: -9620.410, Max-Change: 0.03312
Iteration: 9, Log-Lik: -9620.193, Max-Change: 0.02684
Iteration: 10, Log-Lik: -9619.955, Max-Change: 0.01173
Iteration: 11, Log-Lik: -9619.926, Max-Change: 0.00961
Iteration: 12, Log-Lik: -9619.907, Max-Change: 0.00749
Iteration: 13, Log-Lik: -9619.875, Max-Change: 0.00255
Iteration: 14, Log-Lik: -9619.874, Max-Change: 0.00194
Iteration: 15, Log-Lik: -9619.873, Max-Change: 0.00165
Iteration: 16, Log-Lik: -9619.871, Max-Change: 0.00084
Iteration: 17, Log-Lik: -9619.871, Max-Change: 0.00022
Iteration: 18, Log-Lik: -9619.871, Max-Change: 0.00011
Iteration: 19, Log-Lik: -9619.871, Max-Change: 0.00046
Iteration: 20, Log-Lik: -9619.871, Max-Change: 0.00039
Iteration: 21, Log-Lik: -9619.871, Max-Change: 0.00014
Iteration: 22, Log-Lik: -9619.871, Max-Change: 0.00010
#>
#> Call:
#> mirt(data = data, model = model.combo)
#>
#> Full-information item factor analysis with 2 factor(s).
#> Converged within 1e-04 tolerance after 22 EM iterations.
#> mirt version: 1.44.3
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 31
#> Latent density type: Gaussian
#>
#> Log-likelihood = -9619.871
#> Estimated parameters: 72
#> AIC = 19383.74
#> BIC = 19700.32; SABIC = 19471.74
#>
anova(mod.combo, mod.quad)
#> AIC SABIC HQ BIC logLik X2 df p
#> mod.combo 19383.74 19471.74 19506.98 19700.32 -9619.871
#> mod.quad 19040.50 19157.83 19204.82 19462.60 -9424.250 391.241 24 0
# non-linear item and test plots
plot(mod.quad)
plot(mod.combo, type = 'SE')
itemplot(mod.quad, 1, type = 'score')
itemplot(mod.combo, 2, type = 'score')
itemplot(mod.combo, 2, type = 'infocontour')
## empirical histogram examples (normal, skew and bimodality)
# make some data
set.seed(1234)
a <- matrix(rlnorm(50, .2, .2))
d <- matrix(rnorm(50))
ThetaNormal <- matrix(rnorm(2000))
ThetaBimodal <- scale(matrix(c(rnorm(1000, -2), rnorm(1000,2)))) #bimodal
ThetaSkew <- scale(matrix(rchisq(2000, 3))) #positive skew
datNormal <- simdata(a, d, 2000, itemtype = '2PL', Theta=ThetaNormal)
datBimodal <- simdata(a, d, 2000, itemtype = '2PL', Theta=ThetaBimodal)
datSkew <- simdata(a, d, 2000, itemtype = '2PL', Theta=ThetaSkew)
normal <- mirt(datNormal, 1, dentype = "empiricalhist")
#>
Iteration: 1, Log-Lik: -54606.961, Max-Change: 0.52637
Iteration: 2, Log-Lik: -54260.672, Max-Change: 0.07687
Iteration: 3, Log-Lik: -54251.710, Max-Change: 0.02534
Iteration: 4, Log-Lik: -54249.817, Max-Change: 0.00602
Iteration: 5, Log-Lik: -54249.069, Max-Change: 0.00358
Iteration: 6, Log-Lik: -54248.637, Max-Change: 0.00298
Iteration: 7, Log-Lik: -54248.348, Max-Change: 0.00222
Iteration: 8, Log-Lik: -54248.113, Max-Change: 0.00045
Iteration: 9, Log-Lik: -54247.934, Max-Change: 0.00033
Iteration: 10, Log-Lik: -54247.783, Max-Change: 0.00018
Iteration: 11, Log-Lik: -54247.651, Max-Change: 0.00025
Iteration: 12, Log-Lik: -54247.534, Max-Change: 0.00028
Iteration: 13, Log-Lik: -54247.428, Max-Change: 0.00038
Iteration: 14, Log-Lik: -54247.329, Max-Change: 0.00015
Iteration: 15, Log-Lik: -54247.239, Max-Change: 0.00010
Iteration: 16, Log-Lik: -54247.154, Max-Change: 0.00013
Iteration: 17, Log-Lik: -54247.075, Max-Change: 0.00015
Iteration: 18, Log-Lik: -54247.000, Max-Change: 0.00015
Iteration: 19, Log-Lik: -54246.929, Max-Change: 0.00014
Iteration: 20, Log-Lik: -54246.861, Max-Change: 0.00007
plot(normal, type = 'empiricalhist')
histogram(ThetaNormal, breaks=30)
bimodal <- mirt(datBimodal, 1, dentype = "empiricalhist")
#>
Iteration: 1, Log-Lik: -54051.451, Max-Change: 0.73865
Iteration: 2, Log-Lik: -53444.408, Max-Change: 0.07607
Iteration: 3, Log-Lik: -53418.953, Max-Change: 0.01449
Iteration: 4, Log-Lik: -53412.710, Max-Change: 0.00800
Iteration: 5, Log-Lik: -53410.613, Max-Change: 0.00559
Iteration: 6, Log-Lik: -53409.823, Max-Change: 0.00286
Iteration: 7, Log-Lik: -53409.485, Max-Change: 0.00174
Iteration: 8, Log-Lik: -53409.317, Max-Change: 0.00111
Iteration: 9, Log-Lik: -53409.216, Max-Change: 0.00036
Iteration: 10, Log-Lik: -53409.147, Max-Change: 0.00039
Iteration: 11, Log-Lik: -53409.095, Max-Change: 0.00034
Iteration: 12, Log-Lik: -53409.052, Max-Change: 0.00029
Iteration: 13, Log-Lik: -53409.016, Max-Change: 0.00021
Iteration: 14, Log-Lik: -53408.985, Max-Change: 0.00011
Iteration: 15, Log-Lik: -53408.958, Max-Change: 0.00010
plot(bimodal, type = 'empiricalhist')
histogram(ThetaBimodal, breaks=30)
skew <- mirt(datSkew, 1, dentype = "empiricalhist")
#>
Iteration: 1, Log-Lik: -55526.768, Max-Change: 0.46059
Iteration: 2, Log-Lik: -55135.282, Max-Change: 0.12740
Iteration: 3, Log-Lik: -55098.715, Max-Change: 0.03479
Iteration: 4, Log-Lik: -55087.259, Max-Change: 0.01382
Iteration: 5, Log-Lik: -55082.153, Max-Change: 0.00984
Iteration: 6, Log-Lik: -55079.400, Max-Change: 0.00644
Iteration: 7, Log-Lik: -55077.672, Max-Change: 0.00111
Iteration: 8, Log-Lik: -55076.535, Max-Change: 0.00184
Iteration: 9, Log-Lik: -55075.706, Max-Change: 0.00126
Iteration: 10, Log-Lik: -55075.062, Max-Change: 0.00190
Iteration: 11, Log-Lik: -55074.554, Max-Change: 0.00104
Iteration: 12, Log-Lik: -55074.138, Max-Change: 0.00074
Iteration: 13, Log-Lik: -55073.786, Max-Change: 0.00026
Iteration: 14, Log-Lik: -55073.490, Max-Change: 0.00057
Iteration: 15, Log-Lik: -55073.235, Max-Change: 0.00054
Iteration: 16, Log-Lik: -55073.009, Max-Change: 0.00119
Iteration: 17, Log-Lik: -55072.809, Max-Change: 0.00028
Iteration: 18, Log-Lik: -55072.635, Max-Change: 0.00029
Iteration: 19, Log-Lik: -55072.479, Max-Change: 0.00019
Iteration: 20, Log-Lik: -55072.338, Max-Change: 0.00025
Iteration: 21, Log-Lik: -55072.211, Max-Change: 0.00025
Iteration: 22, Log-Lik: -55072.091, Max-Change: 0.00062
Iteration: 23, Log-Lik: -55071.982, Max-Change: 0.00020
Iteration: 24, Log-Lik: -55071.882, Max-Change: 0.00021
Iteration: 25, Log-Lik: -55071.787, Max-Change: 0.00028
Iteration: 26, Log-Lik: -55071.699, Max-Change: 0.00019
Iteration: 27, Log-Lik: -55071.617, Max-Change: 0.00019
Iteration: 28, Log-Lik: -55071.538, Max-Change: 0.00033
Iteration: 29, Log-Lik: -55071.464, Max-Change: 0.00016
Iteration: 30, Log-Lik: -55071.394, Max-Change: 0.00017
Iteration: 31, Log-Lik: -55071.327, Max-Change: 0.00023
Iteration: 32, Log-Lik: -55071.263, Max-Change: 0.00015
Iteration: 33, Log-Lik: -55071.203, Max-Change: 0.00015
Iteration: 34, Log-Lik: -55071.144, Max-Change: 0.00018
Iteration: 35, Log-Lik: -55071.088, Max-Change: 0.00013
Iteration: 36, Log-Lik: -55071.035, Max-Change: 0.00014
Iteration: 37, Log-Lik: -55070.983, Max-Change: 0.00014
Iteration: 38, Log-Lik: -55070.933, Max-Change: 0.00012
Iteration: 39, Log-Lik: -55070.885, Max-Change: 0.00012
Iteration: 40, Log-Lik: -55070.838, Max-Change: 0.00011
Iteration: 41, Log-Lik: -55070.793, Max-Change: 0.00010
Iteration: 42, Log-Lik: -55070.750, Max-Change: 0.00011
Iteration: 43, Log-Lik: -55070.708, Max-Change: 0.00009
plot(skew, type = 'empiricalhist')
histogram(ThetaSkew, breaks=30)
#####
# non-linear parameter constraints with Rsolnp package (nloptr supported as well):
# Find Rasch model subject to the constraint that the intercepts sum to 0
dat <- expand.table(LSAT6)
itemstats(dat)
#> $overall
#> N mean_total.score sd_total.score ave.r sd.r alpha SEM.alpha
#> 1000 3.819 1.035 0.077 0.03 0.295 0.869
#>
#> $itemstats
#> N mean sd total.r total.r_if_rm alpha_if_rm
#> Item_1 1000 0.924 0.265 0.362 0.113 0.275
#> Item_2 1000 0.709 0.454 0.567 0.153 0.238
#> Item_3 1000 0.553 0.497 0.618 0.173 0.217
#> Item_4 1000 0.763 0.425 0.534 0.144 0.246
#> Item_5 1000 0.870 0.336 0.435 0.122 0.266
#>
#> $proportions
#> 0 1
#> Item_1 0.076 0.924
#> Item_2 0.291 0.709
#> Item_3 0.447 0.553
#> Item_4 0.237 0.763
#> Item_5 0.130 0.870
#>
# free latent mean and variance terms
model <- 'Theta = 1-5
MEAN = Theta
COV = Theta*Theta'
# view how vector of parameters is organized internally
sv <- mirt(dat, model, itemtype = 'Rasch', pars = 'values')
sv[sv$est, ]
#> group item class name parnum value lbound ubound est const nconst
#> 2 all Item_1 dich d 2 2.815 -Inf Inf TRUE none none
#> 6 all Item_2 dich d 6 1.082 -Inf Inf TRUE none none
#> 10 all Item_3 dich d 10 0.262 -Inf Inf TRUE none none
#> 14 all Item_4 dich d 14 1.407 -Inf Inf TRUE none none
#> 18 all Item_5 dich d 18 2.214 -Inf Inf TRUE none none
#> 21 all GROUP GroupPars MEAN_1 21 0.000 -Inf Inf TRUE none none
#> 22 all GROUP GroupPars COV_11 22 1.000 0 Inf TRUE none none
#> prior.type prior_1 prior_2
#> 2 none NaN NaN
#> 6 none NaN NaN
#> 10 none NaN NaN
#> 14 none NaN NaN
#> 18 none NaN NaN
#> 21 none NaN NaN
#> 22 none NaN NaN
# constraint: create function for solnp to compute constraint, and declare value in eqB
eqfun <- function(p, optim_args) sum(p[1:5]) #could use browser() here, if it helps
LB <- c(rep(-15, 6), 1e-4) # more reasonable lower bound for variance term
mod <- mirt(dat, model, sv=sv, itemtype = 'Rasch', optimizer = 'solnp',
solnp_args=list(eqfun=eqfun, eqB=0, LB=LB))
#>
Iteration: 1, Log-Lik: -2473.219, Max-Change: 2.01548
Iteration: 2, Log-Lik: -2978.093, Max-Change: 0.64564
Iteration: 3, Log-Lik: -2637.888, Max-Change: 0.30377
Iteration: 4, Log-Lik: -2536.573, Max-Change: 0.16978
Iteration: 5, Log-Lik: -2498.679, Max-Change: 0.10519
Iteration: 6, Log-Lik: -2482.438, Max-Change: 0.06941
Iteration: 7, Log-Lik: -2474.859, Max-Change: 0.04771
Iteration: 8, Log-Lik: -2471.120, Max-Change: 0.03371
Iteration: 9, Log-Lik: -2469.203, Max-Change: 0.02429
Iteration: 10, Log-Lik: -2468.200, Max-Change: 0.01951
Iteration: 11, Log-Lik: -2467.607, Max-Change: 0.01270
Iteration: 12, Log-Lik: -2467.329, Max-Change: 0.00946
Iteration: 13, Log-Lik: -2467.179, Max-Change: 0.00864
Iteration: 14, Log-Lik: -2467.073, Max-Change: 0.00542
Iteration: 15, Log-Lik: -2467.027, Max-Change: 0.00401
Iteration: 16, Log-Lik: -2467.001, Max-Change: 0.00343
Iteration: 17, Log-Lik: -2466.983, Max-Change: 0.00217
Iteration: 18, Log-Lik: -2466.975, Max-Change: 0.00166
Iteration: 19, Log-Lik: -2466.969, Max-Change: 0.00191
Iteration: 20, Log-Lik: -2466.964, Max-Change: 0.00105
Iteration: 21, Log-Lik: -2466.961, Max-Change: 0.00106
Iteration: 22, Log-Lik: -2466.958, Max-Change: 0.00095
Iteration: 23, Log-Lik: -2466.956, Max-Change: 0.00078
Iteration: 24, Log-Lik: -2466.954, Max-Change: 0.00112
Iteration: 25, Log-Lik: -2466.952, Max-Change: 0.00105
Iteration: 26, Log-Lik: -2466.950, Max-Change: 0.00099
Iteration: 27, Log-Lik: -2466.949, Max-Change: 0.00093
Iteration: 28, Log-Lik: -2466.947, Max-Change: 0.00087
Iteration: 29, Log-Lik: -2466.946, Max-Change: 0.00085
Iteration: 30, Log-Lik: -2466.945, Max-Change: 0.00079
Iteration: 31, Log-Lik: -2466.944, Max-Change: 0.00075
Iteration: 32, Log-Lik: -2466.944, Max-Change: 0.00020
Iteration: 33, Log-Lik: -2466.943, Max-Change: 0.00014
Iteration: 34, Log-Lik: -2466.943, Max-Change: 0.00010
print(mod)
#>
#> Call:
#> mirt(data = dat, model = model, itemtype = "Rasch", optimizer = "solnp",
#> solnp_args = list(eqfun = eqfun, eqB = 0, LB = LB), sv = sv)
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 34 EM iterations.
#> mirt version: 1.44.3
#> M-step optimizer: solnp
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -2466.943
#> Estimated parameters: 7
#> AIC = 4947.887
#> BIC = 4982.241; SABIC = 4960.009
#> G2 (25) = 21.81, p = 0.6467
#> RMSEA = 0, CFI = NaN, TLI = NaN
coef(mod)
#> $Item_1
#> a1 d g u
#> par 1 1.253 0 1
#>
#> $Item_2
#> a1 d g u
#> par 1 -0.475 0 1
#>
#> $Item_3
#> a1 d g u
#> par 1 -1.233 0 1
#>
#> $Item_4
#> a1 d g u
#> par 1 -0.168 0 1
#>
#> $Item_5
#> a1 d g u
#> par 1 0.623 0 1
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 1.472 0.559
#>
(ds <- sapply(coef(mod)[1:5], function(x) x[,'d']))
#> Item_1 Item_2 Item_3 Item_4 Item_5
#> 1.2529432 -0.4754429 -1.2327196 -0.1681687 0.6233879
sum(ds)
#> [1] 4.635181e-15
# same likelihood location as: mirt(dat, 1, itemtype = 'Rasch')
#######
# latent regression Rasch model
# simulate data
set.seed(1234)
N <- 1000
# covariates
X1 <- rnorm(N); X2 <- rnorm(N)
covdata <- data.frame(X1, X2, X3 = rnorm(N))
Theta <- matrix(0.5 * X1 + -1 * X2 + rnorm(N, sd = 0.5))
# items and response data
a <- matrix(1, 20); d <- matrix(rnorm(20))
dat <- simdata(a, d, 1000, itemtype = '2PL', Theta=Theta)
# unconditional Rasch model
mod0 <- mirt(dat, 1, 'Rasch', SE=TRUE)
#>
Iteration: 1, Log-Lik: -10962.384, Max-Change: 0.17087
Iteration: 2, Log-Lik: -10951.163, Max-Change: 0.10230
Iteration: 3, Log-Lik: -10947.935, Max-Change: 0.05720
Iteration: 4, Log-Lik: -10947.034, Max-Change: 0.03160
Iteration: 5, Log-Lik: -10946.813, Max-Change: 0.01521
Iteration: 6, Log-Lik: -10946.755, Max-Change: 0.00777
Iteration: 7, Log-Lik: -10946.739, Max-Change: 0.00404
Iteration: 8, Log-Lik: -10946.735, Max-Change: 0.00199
Iteration: 9, Log-Lik: -10946.733, Max-Change: 0.00101
Iteration: 10, Log-Lik: -10946.732, Max-Change: 0.00058
Iteration: 11, Log-Lik: -10946.732, Max-Change: 0.00029
Iteration: 12, Log-Lik: -10946.732, Max-Change: 0.00021
Iteration: 13, Log-Lik: -10946.731, Max-Change: 0.00013
Iteration: 14, Log-Lik: -10946.731, Max-Change: 0.00006
#>
#> Calculating information matrix...
coef(mod0, printSE=TRUE)
#> $Item_1
#> a1 d logit(g) logit(u)
#> par 1 -0.998 -999 999
#> SE NA 0.085 NA NA
#>
#> $Item_2
#> a1 d logit(g) logit(u)
#> par 1 -0.917 -999 999
#> SE NA 0.085 NA NA
#>
#> $Item_3
#> a1 d logit(g) logit(u)
#> par 1 -0.099 -999 999
#> SE NA 0.081 NA NA
#>
#> $Item_4
#> a1 d logit(g) logit(u)
#> par 1 1.893 -999 999
#> SE NA 0.099 NA NA
#>
#> $Item_5
#> a1 d logit(g) logit(u)
#> par 1 0.610 -999 999
#> SE NA 0.082 NA NA
#>
#> $Item_6
#> a1 d logit(g) logit(u)
#> par 1 1.071 -999 999
#> SE NA 0.086 NA NA
#>
#> $Item_7
#> a1 d logit(g) logit(u)
#> par 1 -0.074 -999 999
#> SE NA 0.081 NA NA
#>
#> $Item_8
#> a1 d logit(g) logit(u)
#> par 1 -1.405 -999 999
#> SE NA 0.090 NA NA
#>
#> $Item_9
#> a1 d logit(g) logit(u)
#> par 1 0.707 -999 999
#> SE NA 0.083 NA NA
#>
#> $Item_10
#> a1 d logit(g) logit(u)
#> par 1 -0.258 -999 999
#> SE NA 0.081 NA NA
#>
#> $Item_11
#> a1 d logit(g) logit(u)
#> par 1 0.336 -999 999
#> SE NA 0.081 NA NA
#>
#> $Item_12
#> a1 d logit(g) logit(u)
#> par 1 0.891 -999 999
#> SE NA 0.084 NA NA
#>
#> $Item_13
#> a1 d logit(g) logit(u)
#> par 1 0.653 -999 999
#> SE NA 0.083 NA NA
#>
#> $Item_14
#> a1 d logit(g) logit(u)
#> par 1 -1.942 -999 999
#> SE NA 0.099 NA NA
#>
#> $Item_15
#> a1 d logit(g) logit(u)
#> par 1 -2.143 -999 999
#> SE NA 0.104 NA NA
#>
#> $Item_16
#> a1 d logit(g) logit(u)
#> par 1 1.759 -999 999
#> SE NA 0.096 NA NA
#>
#> $Item_17
#> a1 d logit(g) logit(u)
#> par 1 -1.015 -999 999
#> SE NA 0.085 NA NA
#>
#> $Item_18
#> a1 d logit(g) logit(u)
#> par 1 -1.009 -999 999
#> SE NA 0.085 NA NA
#>
#> $Item_19
#> a1 d logit(g) logit(u)
#> par 1 -1.251 -999 999
#> SE NA 0.088 NA NA
#>
#> $Item_20
#> a1 d logit(g) logit(u)
#> par 1 -0.619 -999 999
#> SE NA 0.082 NA NA
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 1.393
#> SE NA 0.085
#>
# conditional model using X1, X2, and X3 (bad) as predictors of Theta
mod1 <- mirt(dat, 1, 'Rasch', covdata=covdata, formula = ~ X1 + X2 + X3, SE=TRUE)
#>
Iteration: 1, Log-Lik: -10962.384, Max-Change: 0.75355
Iteration: 2, Log-Lik: -10579.333, Max-Change: 0.51116
Iteration: 3, Log-Lik: -10430.132, Max-Change: 0.19355
Iteration: 4, Log-Lik: -10388.086, Max-Change: 0.08722
Iteration: 5, Log-Lik: -10372.328, Max-Change: 0.04911
Iteration: 6, Log-Lik: -10364.865, Max-Change: 0.03133
Iteration: 7, Log-Lik: -10360.851, Max-Change: 0.02159
Iteration: 8, Log-Lik: -10358.517, Max-Change: 0.01565
Iteration: 9, Log-Lik: -10357.088, Max-Change: 0.01176
Iteration: 10, Log-Lik: -10356.147, Max-Change: 0.00929
Iteration: 11, Log-Lik: -10355.550, Max-Change: 0.00722
Iteration: 12, Log-Lik: -10355.163, Max-Change: 0.00572
Iteration: 13, Log-Lik: -10354.904, Max-Change: 0.00468
Iteration: 14, Log-Lik: -10354.718, Max-Change: 0.00377
Iteration: 15, Log-Lik: -10354.597, Max-Change: 0.00307
Iteration: 16, Log-Lik: -10354.513, Max-Change: 0.00257
Iteration: 17, Log-Lik: -10354.451, Max-Change: 0.00211
Iteration: 18, Log-Lik: -10354.409, Max-Change: 0.00175
Iteration: 19, Log-Lik: -10354.380, Max-Change: 0.00148
Iteration: 20, Log-Lik: -10354.358, Max-Change: 0.00123
Iteration: 21, Log-Lik: -10354.344, Max-Change: 0.00103
Iteration: 22, Log-Lik: -10354.333, Max-Change: 0.00088
Iteration: 23, Log-Lik: -10354.325, Max-Change: 0.00074
Iteration: 24, Log-Lik: -10354.320, Max-Change: 0.00062
Iteration: 25, Log-Lik: -10354.316, Max-Change: 0.00053
Iteration: 26, Log-Lik: -10354.313, Max-Change: 0.00045
Iteration: 27, Log-Lik: -10354.311, Max-Change: 0.00038
Iteration: 28, Log-Lik: -10354.309, Max-Change: 0.00032
Iteration: 29, Log-Lik: -10354.308, Max-Change: 0.00027
Iteration: 30, Log-Lik: -10354.307, Max-Change: 0.00023
Iteration: 31, Log-Lik: -10354.307, Max-Change: 0.00028
Iteration: 32, Log-Lik: -10354.306, Max-Change: 0.00017
Iteration: 33, Log-Lik: -10354.306, Max-Change: 0.00014
Iteration: 34, Log-Lik: -10354.306, Max-Change: 0.00012
Iteration: 35, Log-Lik: -10354.306, Max-Change: 0.00010
Iteration: 36, Log-Lik: -10354.306, Max-Change: 0.00009
#>
#> Calculating information matrix...
coef(mod1, printSE=TRUE)
#> $Item_1
#> a1 d logit(g) logit(u)
#> par 1 -0.967 -999 999
#> SE NA 0.078 NA NA
#>
#> $Item_2
#> a1 d logit(g) logit(u)
#> par 1 -0.887 -999 999
#> SE NA 0.077 NA NA
#>
#> $Item_3
#> a1 d logit(g) logit(u)
#> par 1 -0.068 -999 999
#> SE NA 0.073 NA NA
#>
#> $Item_4
#> a1 d logit(g) logit(u)
#> par 1 1.920 -999 999
#> SE NA 0.092 NA NA
#>
#> $Item_5
#> a1 d logit(g) logit(u)
#> par 1 0.640 -999 999
#> SE NA 0.075 NA NA
#>
#> $Item_6
#> a1 d logit(g) logit(u)
#> par 1 1.100 -999 999
#> SE NA 0.079 NA NA
#>
#> $Item_7
#> a1 d logit(g) logit(u)
#> par 1 -0.043 -999 999
#> SE NA 0.073 NA NA
#>
#> $Item_8
#> a1 d logit(g) logit(u)
#> par 1 -1.375 -999 999
#> SE NA 0.083 NA NA
#>
#> $Item_9
#> a1 d logit(g) logit(u)
#> par 1 0.737 -999 999
#> SE NA 0.076 NA NA
#>
#> $Item_10
#> a1 d logit(g) logit(u)
#> par 1 -0.227 -999 999
#> SE NA 0.073 NA NA
#>
#> $Item_11
#> a1 d logit(g) logit(u)
#> par 1 0.367 -999 999
#> SE NA 0.074 NA NA
#>
#> $Item_12
#> a1 d logit(g) logit(u)
#> par 1 0.921 -999 999
#> SE NA 0.077 NA NA
#>
#> $Item_13
#> a1 d logit(g) logit(u)
#> par 1 0.683 -999 999
#> SE NA 0.075 NA NA
#>
#> $Item_14
#> a1 d logit(g) logit(u)
#> par 1 -1.913 -999 999
#> SE NA 0.093 NA NA
#>
#> $Item_15
#> a1 d logit(g) logit(u)
#> par 1 -2.114 -999 999
#> SE NA 0.098 NA NA
#>
#> $Item_16
#> a1 d logit(g) logit(u)
#> par 1 1.786 -999 999
#> SE NA 0.090 NA NA
#>
#> $Item_17
#> a1 d logit(g) logit(u)
#> par 1 -0.985 -999 999
#> SE NA 0.078 NA NA
#>
#> $Item_18
#> a1 d logit(g) logit(u)
#> par 1 -0.979 -999 999
#> SE NA 0.078 NA NA
#>
#> $Item_19
#> a1 d logit(g) logit(u)
#> par 1 -1.221 -999 999
#> SE NA 0.081 NA NA
#>
#> $Item_20
#> a1 d logit(g) logit(u)
#> par 1 -0.589 -999 999
#> SE NA 0.075 NA NA
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 0.210
#> SE NA 0.011
#>
#> $lr.betas
#> $lr.betas$betas
#> F1
#> (Intercept) 0.000
#> X1 0.513
#> X2 -1.003
#> X3 -0.003
#>
#> $lr.betas$SE
#> F1
#> (Intercept) NA
#> X1 0.015
#> X2 0.015
#> X3 0.014
#>
#>
coef(mod1, simplify=TRUE)
#> $items
#> a1 d g u
#> Item_1 1 -0.967 0 1
#> Item_2 1 -0.887 0 1
#> Item_3 1 -0.068 0 1
#> Item_4 1 1.920 0 1
#> Item_5 1 0.640 0 1
#> Item_6 1 1.100 0 1
#> Item_7 1 -0.043 0 1
#> Item_8 1 -1.375 0 1
#> Item_9 1 0.737 0 1
#> Item_10 1 -0.227 0 1
#> Item_11 1 0.367 0 1
#> Item_12 1 0.921 0 1
#> Item_13 1 0.683 0 1
#> Item_14 1 -1.913 0 1
#> Item_15 1 -2.114 0 1
#> Item_16 1 1.786 0 1
#> Item_17 1 -0.985 0 1
#> Item_18 1 -0.979 0 1
#> Item_19 1 -1.221 0 1
#> Item_20 1 -0.589 0 1
#>
#> $means
#> F1
#> 0
#>
#> $cov
#> F1
#> F1 0.21
#>
#> $lr.betas
#> $lr.betas$betas
#> F1
#> (Intercept) 0.000
#> X1 0.513
#> X2 -1.003
#> X3 -0.003
#>
#> $lr.betas$CI_2.5
#> F1
#> (Intercept) NA
#> X1 0.485
#> X2 -1.032
#> X3 -0.031
#>
#> $lr.betas$CI_97.5
#> F1
#> (Intercept) NA
#> X1 0.542
#> X2 -0.974
#> X3 0.025
#>
#>
anova(mod0, mod1) # jointly significant predictors of theta
#> AIC SABIC HQ BIC logLik X2 df p
#> mod0 21935.46 21971.83 21974.63 22038.53 -10946.73
#> mod1 20756.61 20798.17 20801.38 20874.40 -10354.31 1184.851 3 0
# large sample z-ratios and p-values (if one cares)
cfs <- coef(mod1, printSE=TRUE)
(z <- cfs$lr.betas[[1]] / cfs$lr.betas[[2]])
#> F1
#> (Intercept) NA
#> X1 35.2668946
#> X2 -67.5847949
#> X3 -0.2114561
round(pnorm(abs(z[,1]), lower.tail=FALSE)*2, 3)
#> (Intercept) X1 X2 X3
#> NA 0.000 0.000 0.833
# drop predictor for nested comparison
mod1b <- mirt(dat, 1, 'Rasch', covdata=covdata, formula = ~ X1 + X2)
#>
Iteration: 1, Log-Lik: -10962.384, Max-Change: 0.75353
Iteration: 2, Log-Lik: -10579.333, Max-Change: 0.51116
Iteration: 3, Log-Lik: -10430.135, Max-Change: 0.19355
Iteration: 4, Log-Lik: -10388.092, Max-Change: 0.08722
Iteration: 5, Log-Lik: -10372.335, Max-Change: 0.04910
Iteration: 6, Log-Lik: -10364.873, Max-Change: 0.03133
Iteration: 7, Log-Lik: -10360.859, Max-Change: 0.02159
Iteration: 8, Log-Lik: -10358.525, Max-Change: 0.01565
Iteration: 9, Log-Lik: -10357.097, Max-Change: 0.01176
Iteration: 10, Log-Lik: -10356.155, Max-Change: 0.00929
Iteration: 11, Log-Lik: -10355.559, Max-Change: 0.00722
Iteration: 12, Log-Lik: -10355.172, Max-Change: 0.00572
Iteration: 13, Log-Lik: -10354.912, Max-Change: 0.00468
Iteration: 14, Log-Lik: -10354.727, Max-Change: 0.00377
Iteration: 15, Log-Lik: -10354.606, Max-Change: 0.00307
Iteration: 16, Log-Lik: -10354.522, Max-Change: 0.00257
Iteration: 17, Log-Lik: -10354.460, Max-Change: 0.00211
Iteration: 18, Log-Lik: -10354.418, Max-Change: 0.00175
Iteration: 19, Log-Lik: -10354.389, Max-Change: 0.00148
Iteration: 20, Log-Lik: -10354.368, Max-Change: 0.00123
Iteration: 21, Log-Lik: -10354.353, Max-Change: 0.00103
Iteration: 22, Log-Lik: -10354.342, Max-Change: 0.00088
Iteration: 23, Log-Lik: -10354.334, Max-Change: 0.00074
Iteration: 24, Log-Lik: -10354.329, Max-Change: 0.00062
Iteration: 25, Log-Lik: -10354.325, Max-Change: 0.00053
Iteration: 26, Log-Lik: -10354.322, Max-Change: 0.00045
Iteration: 27, Log-Lik: -10354.320, Max-Change: 0.00038
Iteration: 28, Log-Lik: -10354.318, Max-Change: 0.00032
Iteration: 29, Log-Lik: -10354.317, Max-Change: 0.00027
Iteration: 30, Log-Lik: -10354.316, Max-Change: 0.00023
Iteration: 31, Log-Lik: -10354.316, Max-Change: 0.00020
Iteration: 32, Log-Lik: -10354.315, Max-Change: 0.00017
Iteration: 33, Log-Lik: -10354.315, Max-Change: 0.00014
Iteration: 34, Log-Lik: -10354.315, Max-Change: 0.00012
Iteration: 35, Log-Lik: -10354.315, Max-Change: 0.00010
Iteration: 36, Log-Lik: -10354.315, Max-Change: 0.00009
anova(mod1b, mod1)
#> AIC SABIC HQ BIC logLik X2 df p
#> mod1b 20754.63 20794.46 20797.53 20867.51 -10354.32
#> mod1 20756.61 20798.17 20801.38 20874.40 -10354.31 0.018 1 0.893
# compare to mixedmirt() version of the same model
mod1.mixed <- mixedmirt(dat, 1, itemtype='Rasch',
covdata=covdata, lr.fixed = ~ X1 + X2 + X3, SE=TRUE)
#>
Stage 1 = 1, CDLL = -13584.5, AR(0.80) = [0.48], Max-Change = 0.1317
Stage 1 = 2, CDLL = -13479.0, AR(0.80) = [0.50], Max-Change = 0.1109
Stage 1 = 3, CDLL = -13421.6, AR(0.80) = [0.49], Max-Change = 0.0928
Stage 1 = 4, CDLL = -13328.9, AR(0.80) = [0.49], Max-Change = 0.2000
Stage 1 = 5, CDLL = -13198.2, AR(0.80) = [0.45], Max-Change = 0.0832
Stage 1 = 6, CDLL = -13154.8, AR(0.80) = [0.45], Max-Change = 0.0494
Stage 1 = 7, CDLL = -13096.7, AR(0.80) = [0.44], Max-Change = 0.0447
Stage 1 = 8, CDLL = -13067.2, AR(0.80) = [0.48], Max-Change = 0.0467
Stage 1 = 9, CDLL = -13011.7, AR(0.80) = [0.46], Max-Change = 0.0290
Stage 1 = 10, CDLL = -12943.9, AR(0.80) = [0.45], Max-Change = 0.0373
Stage 1 = 11, CDLL = -12900.4, AR(0.80) = [0.44], Max-Change = 0.0231
Stage 1 = 12, CDLL = -12899.5, AR(0.80) = [0.41], Max-Change = 0.0177
Stage 1 = 13, CDLL = -12885.2, AR(0.80) = [0.44], Max-Change = 0.0250
Stage 1 = 14, CDLL = -12834.1, AR(0.80) = [0.42], Max-Change = 0.0135
Stage 1 = 15, CDLL = -12815.7, AR(0.80) = [0.41], Max-Change = 0.0126
Stage 1 = 16, CDLL = -12785.4, AR(0.80) = [0.40], Max-Change = 0.0102
Stage 1 = 17, CDLL = -12768.8, AR(0.80) = [0.40], Max-Change = 0.0078
Stage 1 = 18, CDLL = -12808.1, AR(0.80) = [0.43], Max-Change = 0.0107
Stage 1 = 19, CDLL = -12769.0, AR(0.80) = [0.41], Max-Change = 0.0102
Stage 1 = 20, CDLL = -12766.7, AR(0.80) = [0.41], Max-Change = 0.0073
Stage 1 = 21, CDLL = -12764.9, AR(0.80) = [0.39], Max-Change = 0.0075
Stage 1 = 22, CDLL = -12727.5, AR(0.80) = [0.39], Max-Change = 0.0059
Stage 1 = 23, CDLL = -12703.4, AR(0.80) = [0.41], Max-Change = 0.0071
Stage 1 = 24, CDLL = -12693.6, AR(0.80) = [0.38], Max-Change = 0.0106
Stage 1 = 25, CDLL = -12646.9, AR(0.80) = [0.39], Max-Change = 0.0133
Stage 1 = 26, CDLL = -12654.6, AR(0.80) = [0.39], Max-Change = 0.0034
Stage 1 = 27, CDLL = -12707.2, AR(0.80) = [0.40], Max-Change = 0.0015
Stage 1 = 28, CDLL = -12677.6, AR(0.80) = [0.39], Max-Change = 0.0054
Stage 1 = 29, CDLL = -12647.9, AR(0.80) = [0.37], Max-Change = 0.0074
Stage 1 = 30, CDLL = -12648.9, AR(0.80) = [0.41], Max-Change = 0.0034
Stage 1 = 31, CDLL = -12657.8, AR(0.80) = [0.40], Max-Change = 0.0037
Stage 1 = 32, CDLL = -12632.9, AR(0.80) = [0.39], Max-Change = 0.0062
Stage 1 = 33, CDLL = -12602.2, AR(0.80) = [0.35], Max-Change = 0.0042
Stage 1 = 34, CDLL = -12619.3, AR(0.80) = [0.36], Max-Change = 0.0055
Stage 1 = 35, CDLL = -12606.9, AR(0.80) = [0.38], Max-Change = 0.0040
Stage 1 = 36, CDLL = -12626.2, AR(0.80) = [0.38], Max-Change = 0.0024
Stage 1 = 37, CDLL = -12611.9, AR(0.80) = [0.40], Max-Change = 0.0034
Stage 1 = 38, CDLL = -12544.1, AR(0.80) = [0.38], Max-Change = 0.0049
Stage 1 = 39, CDLL = -12588.6, AR(0.80) = [0.36], Max-Change = 0.0043
Stage 1 = 40, CDLL = -12586.7, AR(0.80) = [0.35], Max-Change = 0.0024
Stage 1 = 41, CDLL = -12641.1, AR(0.80) = [0.38], Max-Change = 0.0024
Stage 1 = 42, CDLL = -12571.9, AR(0.80) = [0.36], Max-Change = 0.0032
Stage 1 = 43, CDLL = -12611.6, AR(0.80) = [0.35], Max-Change = 0.0032
Stage 1 = 44, CDLL = -12564.6, AR(0.80) = [0.37], Max-Change = 0.0040
Stage 1 = 45, CDLL = -12533.6, AR(0.80) = [0.36], Max-Change = 0.0022
Stage 1 = 46, CDLL = -12581.0, AR(0.80) = [0.36], Max-Change = 0.0031
Stage 1 = 47, CDLL = -12571.9, AR(0.80) = [0.40], Max-Change = 0.0010
Stage 1 = 48, CDLL = -12549.5, AR(0.80) = [0.35], Max-Change = 0.0035
Stage 1 = 49, CDLL = -12594.2, AR(0.80) = [0.35], Max-Change = 0.0025
Stage 1 = 50, CDLL = -12568.8, AR(0.80) = [0.37], Max-Change = 0.0016
Stage 1 = 51, CDLL = -12559.1, AR(0.80) = [0.37], Max-Change = 0.0031
Stage 1 = 52, CDLL = -12553.3, AR(0.80) = [0.35], Max-Change = 0.0033
Stage 1 = 53, CDLL = -12546.3, AR(0.80) = [0.33], Max-Change = 0.0033
Stage 1 = 54, CDLL = -12538.3, AR(0.80) = [0.38], Max-Change = 0.0024
Stage 1 = 55, CDLL = -12507.0, AR(0.80) = [0.37], Max-Change = 0.0025
Stage 1 = 56, CDLL = -12527.1, AR(0.80) = [0.36], Max-Change = 0.0029
Stage 1 = 57, CDLL = -12571.3, AR(0.80) = [0.34], Max-Change = 0.0014
Stage 1 = 58, CDLL = -12527.8, AR(0.80) = [0.37], Max-Change = 0.0025
Stage 1 = 59, CDLL = -12547.8, AR(0.80) = [0.34], Max-Change = 0.0028
Stage 1 = 60, CDLL = -12528.4, AR(0.80) = [0.35], Max-Change = 0.0024
Stage 1 = 61, CDLL = -12542.2, AR(0.80) = [0.34], Max-Change = 0.0023
Stage 1 = 62, CDLL = -12478.8, AR(0.80) = [0.32], Max-Change = 0.0028
Stage 1 = 63, CDLL = -12517.5, AR(0.80) = [0.35], Max-Change = 0.0025
Stage 1 = 64, CDLL = -12532.8, AR(0.80) = [0.35], Max-Change = 0.0033
Stage 1 = 65, CDLL = -12504.5, AR(0.80) = [0.35], Max-Change = 0.0055
Stage 1 = 66, CDLL = -12499.1, AR(0.80) = [0.35], Max-Change = 0.0030
Stage 1 = 67, CDLL = -12487.2, AR(0.80) = [0.34], Max-Change = 0.0016
Stage 1 = 68, CDLL = -12507.0, AR(0.80) = [0.35], Max-Change = 0.0034
Stage 1 = 69, CDLL = -12469.7, AR(0.80) = [0.36], Max-Change = 0.0030
Stage 1 = 70, CDLL = -12469.5, AR(0.80) = [0.33], Max-Change = 0.0026
Stage 1 = 71, CDLL = -12494.0, AR(0.80) = [0.32], Max-Change = 0.0033
Stage 1 = 72, CDLL = -12483.8, AR(0.80) = [0.34], Max-Change = 0.0006
Stage 1 = 73, CDLL = -12530.8, AR(0.80) = [0.34], Max-Change = 0.0026
Stage 1 = 74, CDLL = -12453.8, AR(0.80) = [0.35], Max-Change = 0.0041
Stage 1 = 75, CDLL = -12472.5, AR(0.80) = [0.33], Max-Change = 0.0029
Stage 1 = 76, CDLL = -12472.4, AR(0.80) = [0.35], Max-Change = 0.0015
Stage 1 = 77, CDLL = -12497.3, AR(0.80) = [0.33], Max-Change = 0.0026
Stage 1 = 78, CDLL = -12491.2, AR(0.80) = [0.33], Max-Change = 0.0024
Stage 1 = 79, CDLL = -12494.9, AR(0.80) = [0.37], Max-Change = 0.0050
Stage 1 = 80, CDLL = -12505.2, AR(0.80) = [0.35], Max-Change = 0.0037
Stage 1 = 81, CDLL = -12494.2, AR(0.80) = [0.34], Max-Change = 0.0017
Stage 1 = 82, CDLL = -12448.8, AR(0.80) = [0.33], Max-Change = 0.0027
Stage 1 = 83, CDLL = -12461.9, AR(0.80) = [0.33], Max-Change = 0.0042
Stage 1 = 84, CDLL = -12473.8, AR(0.80) = [0.33], Max-Change = 0.0027
Stage 1 = 85, CDLL = -12510.0, AR(0.80) = [0.33], Max-Change = 0.0037
Stage 1 = 86, CDLL = -12447.5, AR(0.80) = [0.33], Max-Change = 0.0048
Stage 1 = 87, CDLL = -12514.8, AR(0.80) = [0.34], Max-Change = 0.0020
Stage 1 = 88, CDLL = -12468.7, AR(0.80) = [0.33], Max-Change = 0.0024
Stage 1 = 89, CDLL = -12473.9, AR(0.80) = [0.36], Max-Change = 0.0039
Stage 1 = 90, CDLL = -12470.2, AR(0.80) = [0.34], Max-Change = 0.0027
Stage 1 = 91, CDLL = -12479.5, AR(0.80) = [0.34], Max-Change = 0.0018
Stage 1 = 92, CDLL = -12506.0, AR(0.80) = [0.36], Max-Change = 0.0015
Stage 1 = 93, CDLL = -12470.9, AR(0.80) = [0.33], Max-Change = 0.0019
Stage 1 = 94, CDLL = -12479.8, AR(0.80) = [0.34], Max-Change = 0.0022
Stage 1 = 95, CDLL = -12493.4, AR(0.80) = [0.34], Max-Change = 0.0019
Stage 1 = 96, CDLL = -12451.0, AR(0.80) = [0.35], Max-Change = 0.0022
Stage 1 = 97, CDLL = -12469.9, AR(0.80) = [0.32], Max-Change = 0.0024
Stage 1 = 98, CDLL = -12454.4, AR(0.80) = [0.32], Max-Change = 0.0024
Stage 1 = 99, CDLL = -12431.6, AR(0.80) = [0.32], Max-Change = 0.0018
Stage 1 = 100, CDLL = -12465.6, AR(0.80) = [0.33], Max-Change = 0.0029
Stage 1 = 101, CDLL = -12462.7, AR(0.80) = [0.34], Max-Change = 0.0042
Stage 1 = 102, CDLL = -12474.7, AR(0.80) = [0.37], Max-Change = 0.0017
Stage 1 = 103, CDLL = -12486.8, AR(0.80) = [0.36], Max-Change = 0.0013
Stage 1 = 104, CDLL = -12480.0, AR(0.80) = [0.33], Max-Change = 0.0029
Stage 1 = 105, CDLL = -12483.6, AR(0.80) = [0.32], Max-Change = 0.0016
Stage 1 = 106, CDLL = -12454.9, AR(0.80) = [0.34], Max-Change = 0.0027
Stage 1 = 107, CDLL = -12459.3, AR(0.80) = [0.36], Max-Change = 0.0021
Stage 1 = 108, CDLL = -12471.6, AR(0.80) = [0.34], Max-Change = 0.0027
Stage 1 = 109, CDLL = -12434.3, AR(0.80) = [0.34], Max-Change = 0.0026
Stage 1 = 110, CDLL = -12468.7, AR(0.80) = [0.30], Max-Change = 0.0019
Stage 1 = 111, CDLL = -12433.6, AR(0.80) = [0.31], Max-Change = 0.0008
Stage 1 = 112, CDLL = -12433.0, AR(0.80) = [0.34], Max-Change = 0.0019
Stage 1 = 113, CDLL = -12395.6, AR(0.80) = [0.33], Max-Change = 0.0043
Stage 1 = 114, CDLL = -12448.0, AR(0.80) = [0.32], Max-Change = 0.0016
Stage 1 = 115, CDLL = -12465.5, AR(0.80) = [0.30], Max-Change = 0.0032
Stage 1 = 116, CDLL = -12427.6, AR(0.80) = [0.34], Max-Change = 0.0024
Stage 1 = 117, CDLL = -12479.9, AR(0.80) = [0.33], Max-Change = 0.0043
Stage 1 = 118, CDLL = -12400.1, AR(0.80) = [0.33], Max-Change = 0.0022
Stage 1 = 119, CDLL = -12440.6, AR(0.80) = [0.33], Max-Change = 0.0026
Stage 1 = 120, CDLL = -12481.2, AR(0.80) = [0.33], Max-Change = 0.0037
Stage 1 = 121, CDLL = -12517.2, AR(0.80) = [0.34], Max-Change = 0.0034
Stage 1 = 122, CDLL = -12436.1, AR(0.80) = [0.34], Max-Change = 0.0029
Stage 1 = 123, CDLL = -12442.9, AR(0.80) = [0.32], Max-Change = 0.0016
Stage 1 = 124, CDLL = -12432.6, AR(0.80) = [0.33], Max-Change = 0.0033
Stage 1 = 125, CDLL = -12463.8, AR(0.80) = [0.35], Max-Change = 0.0014
Stage 1 = 126, CDLL = -12444.8, AR(0.80) = [0.35], Max-Change = 0.0035
Stage 1 = 127, CDLL = -12426.3, AR(0.80) = [0.34], Max-Change = 0.0023
Stage 1 = 128, CDLL = -12422.5, AR(0.80) = [0.33], Max-Change = 0.0027
Stage 1 = 129, CDLL = -12427.6, AR(0.80) = [0.34], Max-Change = 0.0010
Stage 1 = 130, CDLL = -12428.1, AR(0.80) = [0.32], Max-Change = 0.0018
Stage 1 = 131, CDLL = -12444.4, AR(0.80) = [0.34], Max-Change = 0.0015
Stage 1 = 132, CDLL = -12419.9, AR(0.80) = [0.32], Max-Change = 0.0009
Stage 1 = 133, CDLL = -12405.0, AR(0.80) = [0.35], Max-Change = 0.0017
Stage 1 = 134, CDLL = -12413.5, AR(0.80) = [0.32], Max-Change = 0.0026
Stage 1 = 135, CDLL = -12447.8, AR(0.80) = [0.33], Max-Change = 0.0035
Stage 1 = 136, CDLL = -12457.1, AR(0.80) = [0.30], Max-Change = 0.0030
Stage 1 = 137, CDLL = -12419.8, AR(0.80) = [0.31], Max-Change = 0.0052
Stage 1 = 138, CDLL = -12422.8, AR(0.80) = [0.32], Max-Change = 0.0011
Stage 1 = 139, CDLL = -12424.7, AR(0.80) = [0.31], Max-Change = 0.0025
Stage 1 = 140, CDLL = -12407.2, AR(0.80) = [0.31], Max-Change = 0.0043
Stage 1 = 141, CDLL = -12410.0, AR(0.80) = [0.32], Max-Change = 0.0016
Stage 1 = 142, CDLL = -12461.0, AR(0.80) = [0.35], Max-Change = 0.0028
Stage 1 = 143, CDLL = -12397.1, AR(0.80) = [0.31], Max-Change = 0.0021
Stage 1 = 144, CDLL = -12418.7, AR(0.80) = [0.32], Max-Change = 0.0028
Stage 1 = 145, CDLL = -12411.9, AR(0.80) = [0.30], Max-Change = 0.0026
Stage 1 = 146, CDLL = -12416.9, AR(0.80) = [0.30], Max-Change = 0.0032
Stage 1 = 147, CDLL = -12398.5, AR(0.80) = [0.32], Max-Change = 0.0020
Stage 1 = 148, CDLL = -12440.1, AR(0.80) = [0.32], Max-Change = 0.0021
Stage 1 = 149, CDLL = -12483.3, AR(0.80) = [0.34], Max-Change = 0.0051
Stage 1 = 150, CDLL = -12424.5, AR(0.48) = [0.41], Max-Change = 0.0025
Stage 2 = 1, CDLL = -12462.7, AR(0.48) = [0.39], Max-Change = 0.0024
Stage 2 = 2, CDLL = -12414.2, AR(0.48) = [0.41], Max-Change = 0.0018
Stage 2 = 3, CDLL = -12431.2, AR(0.48) = [0.40], Max-Change = 0.0014
Stage 2 = 4, CDLL = -12442.6, AR(0.48) = [0.41], Max-Change = 0.0029
Stage 2 = 5, CDLL = -12444.9, AR(0.48) = [0.40], Max-Change = 0.0029
Stage 2 = 6, CDLL = -12436.7, AR(0.48) = [0.36], Max-Change = 0.0009
Stage 2 = 7, CDLL = -12444.0, AR(0.48) = [0.39], Max-Change = 0.0022
Stage 2 = 8, CDLL = -12439.1, AR(0.48) = [0.39], Max-Change = 0.0029
Stage 2 = 9, CDLL = -12441.3, AR(0.48) = [0.38], Max-Change = 0.0015
Stage 2 = 10, CDLL = -12428.5, AR(0.48) = [0.41], Max-Change = 0.0018
Stage 2 = 11, CDLL = -12404.3, AR(0.48) = [0.40], Max-Change = 0.0032
Stage 2 = 12, CDLL = -12413.5, AR(0.48) = [0.39], Max-Change = 0.0027
Stage 2 = 13, CDLL = -12407.0, AR(0.48) = [0.38], Max-Change = 0.0011
Stage 2 = 14, CDLL = -12414.1, AR(0.48) = [0.39], Max-Change = 0.0019
Stage 2 = 15, CDLL = -12432.6, AR(0.48) = [0.41], Max-Change = 0.0027
Stage 2 = 16, CDLL = -12429.4, AR(0.48) = [0.40], Max-Change = 0.0039
Stage 2 = 17, CDLL = -12442.9, AR(0.48) = [0.38], Max-Change = 0.0032
Stage 2 = 18, CDLL = -12437.8, AR(0.48) = [0.40], Max-Change = 0.0031
Stage 2 = 19, CDLL = -12380.4, AR(0.48) = [0.39], Max-Change = 0.0026
Stage 2 = 20, CDLL = -12441.2, AR(0.48) = [0.39], Max-Change = 0.0036
Stage 2 = 21, CDLL = -12445.9, AR(0.48) = [0.41], Max-Change = 0.0021
Stage 2 = 22, CDLL = -12446.7, AR(0.48) = [0.38], Max-Change = 0.0019
Stage 2 = 23, CDLL = -12468.6, AR(0.48) = [0.39], Max-Change = 0.0011
Stage 2 = 24, CDLL = -12412.5, AR(0.48) = [0.37], Max-Change = 0.0029
Stage 2 = 25, CDLL = -12423.6, AR(0.48) = [0.41], Max-Change = 0.0017
Stage 2 = 26, CDLL = -12445.9, AR(0.48) = [0.38], Max-Change = 0.0012
Stage 2 = 27, CDLL = -12422.2, AR(0.48) = [0.40], Max-Change = 0.0014
Stage 2 = 28, CDLL = -12404.3, AR(0.48) = [0.38], Max-Change = 0.0040
Stage 2 = 29, CDLL = -12428.6, AR(0.48) = [0.39], Max-Change = 0.0017
Stage 2 = 30, CDLL = -12377.5, AR(0.48) = [0.42], Max-Change = 0.0028
Stage 2 = 31, CDLL = -12399.6, AR(0.48) = [0.39], Max-Change = 0.0019
Stage 2 = 32, CDLL = -12377.5, AR(0.48) = [0.40], Max-Change = 0.0015
Stage 2 = 33, CDLL = -12443.2, AR(0.48) = [0.38], Max-Change = 0.0026
Stage 2 = 34, CDLL = -12399.4, AR(0.48) = [0.37], Max-Change = 0.0026
Stage 2 = 35, CDLL = -12412.2, AR(0.48) = [0.38], Max-Change = 0.0025
Stage 2 = 36, CDLL = -12433.0, AR(0.48) = [0.37], Max-Change = 0.0032
Stage 2 = 37, CDLL = -12421.9, AR(0.48) = [0.39], Max-Change = 0.0019
Stage 2 = 38, CDLL = -12429.6, AR(0.48) = [0.41], Max-Change = 0.0019
Stage 2 = 39, CDLL = -12432.6, AR(0.48) = [0.42], Max-Change = 0.0025
Stage 2 = 40, CDLL = -12439.7, AR(0.48) = [0.39], Max-Change = 0.0020
Stage 2 = 41, CDLL = -12402.9, AR(0.48) = [0.41], Max-Change = 0.0027
Stage 2 = 42, CDLL = -12416.4, AR(0.48) = [0.40], Max-Change = 0.0019
Stage 2 = 43, CDLL = -12422.7, AR(0.48) = [0.40], Max-Change = 0.0011
Stage 2 = 44, CDLL = -12430.5, AR(0.48) = [0.39], Max-Change = 0.0034
Stage 2 = 45, CDLL = -12420.2, AR(0.48) = [0.40], Max-Change = 0.0035
Stage 2 = 46, CDLL = -12421.3, AR(0.48) = [0.38], Max-Change = 0.0029
Stage 2 = 47, CDLL = -12451.3, AR(0.48) = [0.38], Max-Change = 0.0015
Stage 2 = 48, CDLL = -12407.2, AR(0.48) = [0.38], Max-Change = 0.0034
Stage 2 = 49, CDLL = -12450.2, AR(0.48) = [0.41], Max-Change = 0.0019
Stage 2 = 50, CDLL = -12436.2, AR(0.48) = [0.41], Max-Change = 0.0015
Stage 2 = 51, CDLL = -12466.7, AR(0.48) = [0.39], Max-Change = 0.0013
Stage 2 = 52, CDLL = -12431.8, AR(0.48) = [0.42], Max-Change = 0.0031
Stage 2 = 53, CDLL = -12472.8, AR(0.48) = [0.41], Max-Change = 0.0028
Stage 2 = 54, CDLL = -12436.0, AR(0.48) = [0.38], Max-Change = 0.0017
Stage 2 = 55, CDLL = -12460.0, AR(0.48) = [0.38], Max-Change = 0.0023
Stage 2 = 56, CDLL = -12474.9, AR(0.48) = [0.39], Max-Change = 0.0033
Stage 2 = 57, CDLL = -12469.2, AR(0.48) = [0.40], Max-Change = 0.0031
Stage 2 = 58, CDLL = -12460.7, AR(0.48) = [0.42], Max-Change = 0.0019
Stage 2 = 59, CDLL = -12459.3, AR(0.48) = [0.39], Max-Change = 0.0034
Stage 2 = 60, CDLL = -12435.4, AR(0.48) = [0.39], Max-Change = 0.0025
Stage 2 = 61, CDLL = -12469.0, AR(0.48) = [0.44], Max-Change = 0.0028
Stage 2 = 62, CDLL = -12441.3, AR(0.48) = [0.40], Max-Change = 0.0020
Stage 2 = 63, CDLL = -12461.0, AR(0.48) = [0.40], Max-Change = 0.0027
Stage 2 = 64, CDLL = -12475.8, AR(0.48) = [0.41], Max-Change = 0.0023
Stage 2 = 65, CDLL = -12425.7, AR(0.48) = [0.44], Max-Change = 0.0053
Stage 2 = 66, CDLL = -12432.4, AR(0.48) = [0.40], Max-Change = 0.0036
Stage 2 = 67, CDLL = -12399.3, AR(0.48) = [0.41], Max-Change = 0.0026
Stage 2 = 68, CDLL = -12441.5, AR(0.48) = [0.40], Max-Change = 0.0024
Stage 2 = 69, CDLL = -12429.1, AR(0.48) = [0.43], Max-Change = 0.0024
Stage 2 = 70, CDLL = -12418.9, AR(0.48) = [0.41], Max-Change = 0.0029
Stage 2 = 71, CDLL = -12412.9, AR(0.48) = [0.38], Max-Change = 0.0021
Stage 2 = 72, CDLL = -12398.5, AR(0.48) = [0.42], Max-Change = 0.0011
Stage 2 = 73, CDLL = -12435.3, AR(0.48) = [0.40], Max-Change = 0.0020
Stage 2 = 74, CDLL = -12457.0, AR(0.48) = [0.41], Max-Change = 0.0018
Stage 2 = 75, CDLL = -12448.7, AR(0.48) = [0.40], Max-Change = 0.0020
Stage 2 = 76, CDLL = -12444.0, AR(0.48) = [0.36], Max-Change = 0.0016
Stage 2 = 77, CDLL = -12405.8, AR(0.48) = [0.41], Max-Change = 0.0012
Stage 2 = 78, CDLL = -12441.2, AR(0.48) = [0.42], Max-Change = 0.0025
Stage 2 = 79, CDLL = -12432.2, AR(0.48) = [0.39], Max-Change = 0.0040
Stage 2 = 80, CDLL = -12434.3, AR(0.48) = [0.39], Max-Change = 0.0030
Stage 2 = 81, CDLL = -12443.5, AR(0.48) = [0.38], Max-Change = 0.0019
Stage 2 = 82, CDLL = -12431.2, AR(0.48) = [0.39], Max-Change = 0.0039
Stage 2 = 83, CDLL = -12436.8, AR(0.48) = [0.42], Max-Change = 0.0017
Stage 2 = 84, CDLL = -12407.6, AR(0.48) = [0.41], Max-Change = 0.0022
Stage 2 = 85, CDLL = -12401.1, AR(0.48) = [0.41], Max-Change = 0.0013
Stage 2 = 86, CDLL = -12423.1, AR(0.48) = [0.41], Max-Change = 0.0013
Stage 2 = 87, CDLL = -12412.9, AR(0.48) = [0.36], Max-Change = 0.0034
Stage 2 = 88, CDLL = -12408.7, AR(0.48) = [0.38], Max-Change = 0.0010
Stage 2 = 89, CDLL = -12409.0, AR(0.48) = [0.37], Max-Change = 0.0014
Stage 2 = 90, CDLL = -12388.8, AR(0.48) = [0.37], Max-Change = 0.0015
Stage 2 = 91, CDLL = -12396.3, AR(0.48) = [0.39], Max-Change = 0.0014
Stage 2 = 92, CDLL = -12428.9, AR(0.48) = [0.39], Max-Change = 0.0011
Stage 2 = 93, CDLL = -12438.6, AR(0.48) = [0.43], Max-Change = 0.0036
Stage 2 = 94, CDLL = -12446.3, AR(0.48) = [0.39], Max-Change = 0.0013
Stage 2 = 95, CDLL = -12445.6, AR(0.48) = [0.41], Max-Change = 0.0020
Stage 2 = 96, CDLL = -12394.4, AR(0.48) = [0.40], Max-Change = 0.0024
Stage 2 = 97, CDLL = -12416.8, AR(0.48) = [0.41], Max-Change = 0.0018
Stage 2 = 98, CDLL = -12438.3, AR(0.48) = [0.38], Max-Change = 0.0029
Stage 2 = 99, CDLL = -12434.5, AR(0.48) = [0.41], Max-Change = 0.0051
Stage 2 = 100, CDLL = -12388.0, AR(0.48) = [0.41], Max-Change = 0.0023
Stage 3 = 1, CDLL = -12427.4, AR(0.48) = [0.40], gam = 0.0000, Max-Change = 0.0000
Stage 3 = 2, CDLL = -12439.3, AR(0.48) = [0.41], gam = 0.1778, Max-Change = 0.0033
Stage 3 = 3, CDLL = -12432.6, AR(0.48) = [0.40], gam = 0.1057, Max-Change = 0.0012
Stage 3 = 4, CDLL = -12400.5, AR(0.48) = [0.41], gam = 0.0780, Max-Change = 0.0010
Stage 3 = 5, CDLL = -12451.1, AR(0.48) = [0.41], gam = 0.0629, Max-Change = 0.0005
Stage 3 = 6, CDLL = -12453.3, AR(0.48) = [0.41], gam = 0.0532, Max-Change = 0.0008
Stage 3 = 7, CDLL = -12441.9, AR(0.48) = [0.40], gam = 0.0464, Max-Change = 0.0006
#>
#> Calculating information matrix...
#>
#> Calculating log-likelihood...
coef(mod1.mixed)
#> $Item_1
#> (Intercept) a1 d g u
#> par -0.131 1 0 0 1
#> CI_2.5 -0.166 NA NA NA NA
#> CI_97.5 -0.097 NA NA NA NA
#>
#> $Item_2
#> (Intercept) a1 d g u
#> par -0.131 1 0 0 1
#> CI_2.5 -0.166 NA NA NA NA
#> CI_97.5 -0.097 NA NA NA NA
#>
#> $Item_3
#> (Intercept) a1 d g u
#> par -0.131 1 0 0 1
#> CI_2.5 -0.166 NA NA NA NA
#> CI_97.5 -0.097 NA NA NA NA
#>
#> $Item_4
#> (Intercept) a1 d g u
#> par -0.131 1 0 0 1
#> CI_2.5 -0.166 NA NA NA NA
#> CI_97.5 -0.097 NA NA NA NA
#>
#> $Item_5
#> (Intercept) a1 d g u
#> par -0.131 1 0 0 1
#> CI_2.5 -0.166 NA NA NA NA
#> CI_97.5 -0.097 NA NA NA NA
#>
#> $Item_6
#> (Intercept) a1 d g u
#> par -0.131 1 0 0 1
#> CI_2.5 -0.166 NA NA NA NA
#> CI_97.5 -0.097 NA NA NA NA
#>
#> $Item_7
#> (Intercept) a1 d g u
#> par -0.131 1 0 0 1
#> CI_2.5 -0.166 NA NA NA NA
#> CI_97.5 -0.097 NA NA NA NA
#>
#> $Item_8
#> (Intercept) a1 d g u
#> par -0.131 1 0 0 1
#> CI_2.5 -0.166 NA NA NA NA
#> CI_97.5 -0.097 NA NA NA NA
#>
#> $Item_9
#> (Intercept) a1 d g u
#> par -0.131 1 0 0 1
#> CI_2.5 -0.166 NA NA NA NA
#> CI_97.5 -0.097 NA NA NA NA
#>
#> $Item_10
#> (Intercept) a1 d g u
#> par -0.131 1 0 0 1
#> CI_2.5 -0.166 NA NA NA NA
#> CI_97.5 -0.097 NA NA NA NA
#>
#> $Item_11
#> (Intercept) a1 d g u
#> par -0.131 1 0 0 1
#> CI_2.5 -0.166 NA NA NA NA
#> CI_97.5 -0.097 NA NA NA NA
#>
#> $Item_12
#> (Intercept) a1 d g u
#> par -0.131 1 0 0 1
#> CI_2.5 -0.166 NA NA NA NA
#> CI_97.5 -0.097 NA NA NA NA
#>
#> $Item_13
#> (Intercept) a1 d g u
#> par -0.131 1 0 0 1
#> CI_2.5 -0.166 NA NA NA NA
#> CI_97.5 -0.097 NA NA NA NA
#>
#> $Item_14
#> (Intercept) a1 d g u
#> par -0.131 1 0 0 1
#> CI_2.5 -0.166 NA NA NA NA
#> CI_97.5 -0.097 NA NA NA NA
#>
#> $Item_15
#> (Intercept) a1 d g u
#> par -0.131 1 0 0 1
#> CI_2.5 -0.166 NA NA NA NA
#> CI_97.5 -0.097 NA NA NA NA
#>
#> $Item_16
#> (Intercept) a1 d g u
#> par -0.131 1 0 0 1
#> CI_2.5 -0.166 NA NA NA NA
#> CI_97.5 -0.097 NA NA NA NA
#>
#> $Item_17
#> (Intercept) a1 d g u
#> par -0.131 1 0 0 1
#> CI_2.5 -0.166 NA NA NA NA
#> CI_97.5 -0.097 NA NA NA NA
#>
#> $Item_18
#> (Intercept) a1 d g u
#> par -0.131 1 0 0 1
#> CI_2.5 -0.166 NA NA NA NA
#> CI_97.5 -0.097 NA NA NA NA
#>
#> $Item_19
#> (Intercept) a1 d g u
#> par -0.131 1 0 0 1
#> CI_2.5 -0.166 NA NA NA NA
#> CI_97.5 -0.097 NA NA NA NA
#>
#> $Item_20
#> (Intercept) a1 d g u
#> par -0.131 1 0 0 1
#> CI_2.5 -0.166 NA NA NA NA
#> CI_97.5 -0.097 NA NA NA NA
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 0.087
#> CI_2.5 NA 0.068
#> CI_97.5 NA 0.105
#>
#> $lr.betas
#> F1_(Intercept) F1_X1 F1_X2 F1_X3
#> par 0 0.409 -0.795 -0.007
#> CI_2.5 NA 0.376 -0.837 -0.040
#> CI_97.5 NA 0.441 -0.753 0.027
#>
coef(mod1.mixed, printSE=TRUE)
#> $Item_1
#> (Intercept) a1 d g u
#> par -0.131 1 0 -999 999
#> SE 0.018 NA NA NA NA
#>
#> $Item_2
#> (Intercept) a1 d g u
#> par -0.131 1 0 -999 999
#> SE 0.018 NA NA NA NA
#>
#> $Item_3
#> (Intercept) a1 d g u
#> par -0.131 1 0 -999 999
#> SE 0.018 NA NA NA NA
#>
#> $Item_4
#> (Intercept) a1 d g u
#> par -0.131 1 0 -999 999
#> SE 0.018 NA NA NA NA
#>
#> $Item_5
#> (Intercept) a1 d g u
#> par -0.131 1 0 -999 999
#> SE 0.018 NA NA NA NA
#>
#> $Item_6
#> (Intercept) a1 d g u
#> par -0.131 1 0 -999 999
#> SE 0.018 NA NA NA NA
#>
#> $Item_7
#> (Intercept) a1 d g u
#> par -0.131 1 0 -999 999
#> SE 0.018 NA NA NA NA
#>
#> $Item_8
#> (Intercept) a1 d g u
#> par -0.131 1 0 -999 999
#> SE 0.018 NA NA NA NA
#>
#> $Item_9
#> (Intercept) a1 d g u
#> par -0.131 1 0 -999 999
#> SE 0.018 NA NA NA NA
#>
#> $Item_10
#> (Intercept) a1 d g u
#> par -0.131 1 0 -999 999
#> SE 0.018 NA NA NA NA
#>
#> $Item_11
#> (Intercept) a1 d g u
#> par -0.131 1 0 -999 999
#> SE 0.018 NA NA NA NA
#>
#> $Item_12
#> (Intercept) a1 d g u
#> par -0.131 1 0 -999 999
#> SE 0.018 NA NA NA NA
#>
#> $Item_13
#> (Intercept) a1 d g u
#> par -0.131 1 0 -999 999
#> SE 0.018 NA NA NA NA
#>
#> $Item_14
#> (Intercept) a1 d g u
#> par -0.131 1 0 -999 999
#> SE 0.018 NA NA NA NA
#>
#> $Item_15
#> (Intercept) a1 d g u
#> par -0.131 1 0 -999 999
#> SE 0.018 NA NA NA NA
#>
#> $Item_16
#> (Intercept) a1 d g u
#> par -0.131 1 0 -999 999
#> SE 0.018 NA NA NA NA
#>
#> $Item_17
#> (Intercept) a1 d g u
#> par -0.131 1 0 -999 999
#> SE 0.018 NA NA NA NA
#>
#> $Item_18
#> (Intercept) a1 d g u
#> par -0.131 1 0 -999 999
#> SE 0.018 NA NA NA NA
#>
#> $Item_19
#> (Intercept) a1 d g u
#> par -0.131 1 0 -999 999
#> SE 0.018 NA NA NA NA
#>
#> $Item_20
#> (Intercept) a1 d g u
#> par -0.131 1 0 -999 999
#> SE 0.018 NA NA NA NA
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 0.087
#> SE NA 0.009
#>
#> $lr.betas
#> F1_(Intercept) F1_X1 F1_X2 F1_X3
#> par 0 0.409 -0.795 -0.007
#> SE NA 0.016 0.021 0.017
#>
# draw plausible values for secondary analyses
pv <- fscores(mod1, plausible.draws = 10)
pvmods <- lapply(pv, function(x, covdata) lm(x ~ covdata$X1 + covdata$X2),
covdata=covdata)
# population characteristics recovered well, and can be averaged over
so <- lapply(pvmods, summary)
so
#> [[1]]
#>
#> Call:
#> lm(formula = x ~ covdata$X1 + covdata$X2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.58018 -0.29446 0.00306 0.28514 1.80285
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.001826 0.014870 0.123 0.902
#> covdata$X1 0.522138 0.014934 34.963 <2e-16 ***
#> covdata$X2 -1.007205 0.015180 -66.353 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.47 on 997 degrees of freedom
#> Multiple R-squared: 0.8436, Adjusted R-squared: 0.8433
#> F-statistic: 2690 on 2 and 997 DF, p-value: < 2.2e-16
#>
#>
#> [[2]]
#>
#> Call:
#> lm(formula = x ~ covdata$X1 + covdata$X2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.41425 -0.31655 0.01905 0.30417 1.32953
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.007369 0.014386 -0.512 0.609
#> covdata$X1 0.501445 0.014447 34.708 <2e-16 ***
#> covdata$X2 -1.012151 0.014685 -68.924 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4547 on 997 degrees of freedom
#> Multiple R-squared: 0.8512, Adjusted R-squared: 0.8509
#> F-statistic: 2851 on 2 and 997 DF, p-value: < 2.2e-16
#>
#>
#> [[3]]
#>
#> Call:
#> lm(formula = x ~ covdata$X1 + covdata$X2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.40267 -0.31055 0.04396 0.30822 1.36044
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.003617 0.014556 -0.248 0.804
#> covdata$X1 0.502951 0.014618 34.406 <2e-16 ***
#> covdata$X2 -0.999167 0.014859 -67.245 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4601 on 997 degrees of freedom
#> Multiple R-squared: 0.8456, Adjusted R-squared: 0.8453
#> F-statistic: 2731 on 2 and 997 DF, p-value: < 2.2e-16
#>
#>
#> [[4]]
#>
#> Call:
#> lm(formula = x ~ covdata$X1 + covdata$X2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.37771 -0.32496 0.00811 0.32851 1.59946
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.01587 0.01497 1.06 0.289
#> covdata$X1 0.52893 0.01504 35.18 <2e-16 ***
#> covdata$X2 -0.99322 0.01528 -64.98 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4732 on 997 degrees of freedom
#> Multiple R-squared: 0.8396, Adjusted R-squared: 0.8393
#> F-statistic: 2609 on 2 and 997 DF, p-value: < 2.2e-16
#>
#>
#> [[5]]
#>
#> Call:
#> lm(formula = x ~ covdata$X1 + covdata$X2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.57210 -0.30913 -0.00413 0.31196 1.33557
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.006511 0.014338 0.454 0.65
#> covdata$X1 0.511708 0.014400 35.536 <2e-16 ***
#> covdata$X2 -1.006448 0.014637 -68.763 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4532 on 997 degrees of freedom
#> Multiple R-squared: 0.8519, Adjusted R-squared: 0.8516
#> F-statistic: 2866 on 2 and 997 DF, p-value: < 2.2e-16
#>
#>
#> [[6]]
#>
#> Call:
#> lm(formula = x ~ covdata$X1 + covdata$X2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.66029 -0.32641 -0.00233 0.31263 1.67948
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.006891 0.014906 0.462 0.644
#> covdata$X1 0.504434 0.014970 33.696 <2e-16 ***
#> covdata$X2 -0.988252 0.015216 -64.947 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4711 on 997 degrees of freedom
#> Multiple R-squared: 0.8371, Adjusted R-squared: 0.8367
#> F-statistic: 2561 on 2 and 997 DF, p-value: < 2.2e-16
#>
#>
#> [[7]]
#>
#> Call:
#> lm(formula = x ~ covdata$X1 + covdata$X2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.56408 -0.31059 -0.00792 0.31611 1.60839
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.01777 0.01461 -1.216 0.224
#> covdata$X1 0.52230 0.01467 35.596 <2e-16 ***
#> covdata$X2 -1.01685 0.01491 -68.180 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4618 on 997 degrees of freedom
#> Multiple R-squared: 0.8502, Adjusted R-squared: 0.8499
#> F-statistic: 2829 on 2 and 997 DF, p-value: < 2.2e-16
#>
#>
#> [[8]]
#>
#> Call:
#> lm(formula = x ~ covdata$X1 + covdata$X2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.70215 -0.28200 0.00583 0.29951 1.32691
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.002541 0.014172 -0.179 0.858
#> covdata$X1 0.515759 0.014233 36.237 <2e-16 ***
#> covdata$X2 -0.985688 0.014467 -68.133 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4479 on 997 degrees of freedom
#> Multiple R-squared: 0.851, Adjusted R-squared: 0.8507
#> F-statistic: 2847 on 2 and 997 DF, p-value: < 2.2e-16
#>
#>
#> [[9]]
#>
#> Call:
#> lm(formula = x ~ covdata$X1 + covdata$X2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.35302 -0.31098 -0.00154 0.31738 1.50051
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.02344 0.01448 -1.619 0.106
#> covdata$X1 0.53585 0.01454 36.848 <2e-16 ***
#> covdata$X2 -0.99557 0.01478 -67.352 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4577 on 997 degrees of freedom
#> Multiple R-squared: 0.8496, Adjusted R-squared: 0.8493
#> F-statistic: 2816 on 2 and 997 DF, p-value: < 2.2e-16
#>
#>
#> [[10]]
#>
#> Call:
#> lm(formula = x ~ covdata$X1 + covdata$X2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.64819 -0.32132 -0.01963 0.32821 1.55474
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.01220 0.01483 -0.823 0.411
#> covdata$X1 0.51641 0.01489 34.671 <2e-16 ***
#> covdata$X2 -1.01707 0.01514 -67.179 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4688 on 997 degrees of freedom
#> Multiple R-squared: 0.8458, Adjusted R-squared: 0.8455
#> F-statistic: 2734 on 2 and 997 DF, p-value: < 2.2e-16
#>
#>
# compute Rubin's multiple imputation average
par <- lapply(so, function(x) x$coefficients[, 'Estimate'])
SEpar <- lapply(so, function(x) x$coefficients[, 'Std. Error'])
averageMI(par, SEpar)
#> par SEpar t df p
#> (Intercept) -0.004 0.019 -0.186 49.256 0.213
#> covdata$X1 0.516 0.019 27.255 56.399 0
#> covdata$X2 -1.002 0.019 -52.338 58.281 0
############
# Example using Gauss-Hermite quadrature with custom input functions
if (FALSE) { # \dontrun{
library(fastGHQuad)
data(SAT12)
data <- key2binary(SAT12,
key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
GH <- gaussHermiteData(50)
Theta <- matrix(GH$x)
# This prior works for uni- and multi-dimensional models
prior <- function(Theta, Etable){
P <- grid <- GH$w / sqrt(pi)
if(ncol(Theta) > 1)
for(i in 2:ncol(Theta))
P <- expand.grid(P, grid)
if(!is.vector(P)) P <- apply(P, 1, prod)
P
}
GHmod1 <- mirt(data, 1, optimizer = 'NR',
technical = list(customTheta = Theta, customPriorFun = prior))
coef(GHmod1, simplify=TRUE)
Theta2 <- as.matrix(expand.grid(Theta, Theta))
GHmod2 <- mirt(data, 2, optimizer = 'NR', TOL = .0002,
technical = list(customTheta = Theta2, customPriorFun = prior))
summary(GHmod2, suppress=.2)
} # }
############
# Davidian curve example
dat <- key2binary(SAT12,
key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
dav <- mirt(dat, 1, dentype = 'Davidian-4') # use four smoothing parameters
#>
Iteration: 1, Log-Lik: -9613.786, Max-Change: 1.59379
Iteration: 2, Log-Lik: -9462.908, Max-Change: 0.38466
Iteration: 3, Log-Lik: -9444.402, Max-Change: 0.23488
Iteration: 4, Log-Lik: -9438.567, Max-Change: 0.16574
Iteration: 5, Log-Lik: -9435.700, Max-Change: 0.12922
Iteration: 6, Log-Lik: -9433.789, Max-Change: 0.10223
Iteration: 7, Log-Lik: -9432.154, Max-Change: 0.04878
Iteration: 8, Log-Lik: -9432.104, Max-Change: 0.03598
Iteration: 9, Log-Lik: -9432.230, Max-Change: 0.03555
Iteration: 10, Log-Lik: -9432.055, Max-Change: 0.02082
Iteration: 11, Log-Lik: -9432.099, Max-Change: 0.00970
Iteration: 12, Log-Lik: -9432.134, Max-Change: 0.00686
Iteration: 13, Log-Lik: -9432.146, Max-Change: 0.00631
Iteration: 14, Log-Lik: -9432.174, Max-Change: 0.00277
Iteration: 15, Log-Lik: -9432.189, Max-Change: 0.00211
Iteration: 16, Log-Lik: -9432.197, Max-Change: 0.00185
Iteration: 17, Log-Lik: -9432.208, Max-Change: 0.00085
Iteration: 18, Log-Lik: -9432.213, Max-Change: 0.00067
Iteration: 19, Log-Lik: -9432.216, Max-Change: 0.00065
Iteration: 20, Log-Lik: -9432.219, Max-Change: 0.00016
Iteration: 21, Log-Lik: -9432.220, Max-Change: 0.00015
Iteration: 22, Log-Lik: -9432.221, Max-Change: 0.00013
Iteration: 23, Log-Lik: -9432.221, Max-Change: 0.00008
plot(dav, type = 'Davidian') # shape of latent trait distribution
coef(dav, simplify=TRUE)
#> $items
#> a1 d g u
#> Item.1 0.774 -1.048 0 1
#> Item.2 1.684 0.495 0 1
#> Item.3 1.051 -1.114 0 1
#> Item.4 0.582 -0.531 0 1
#> Item.5 1.043 0.613 0 1
#> Item.6 1.037 -2.030 0 1
#> Item.7 1.096 1.397 0 1
#> Item.8 0.639 -1.513 0 1
#> Item.9 0.543 2.128 0 1
#> Item.10 0.993 -0.352 0 1
#> Item.11 2.130 5.453 0 1
#> Item.12 0.163 -0.338 0 1
#> Item.13 1.204 0.867 0 1
#> Item.14 1.171 1.211 0 1
#> Item.15 1.387 1.925 0 1
#> Item.16 0.725 -0.389 0 1
#> Item.17 1.860 4.273 0 1
#> Item.18 1.763 -0.788 0 1
#> Item.19 0.880 0.236 0 1
#> Item.20 1.866 2.743 0 1
#> Item.21 0.695 2.552 0 1
#> Item.22 1.863 3.592 0 1
#> Item.23 0.590 -0.851 0 1
#> Item.24 1.335 1.296 0 1
#> Item.25 0.733 -0.558 0 1
#> Item.26 1.649 -0.125 0 1
#> Item.27 2.356 2.968 0 1
#> Item.28 1.060 0.184 0 1
#> Item.29 0.803 -0.742 0 1
#> Item.30 0.352 -0.241 0 1
#> Item.31 2.944 3.061 0 1
#> Item.32 0.169 -1.651 0 1
#>
#> $means
#> F1
#> 0
#>
#> $cov
#> F1
#> F1 1
#>
#> $Davidian_phis
#> [1] 1.289 0.086 -0.443 1.245
#>
fs <- fscores(dav) # assume normal prior
fs2 <- fscores(dav, use_dentype_estimate=TRUE) # use Davidian estimated prior shape
head(cbind(fs, fs2))
#> F1 F1
#> [1,] 2.66818540 3.599616034
#> [2,] 0.14648879 0.070501775
#> [3,] 0.06802365 0.004037417
#> [4,] -0.41577386 -0.426755059
#> [5,] 0.67027700 0.559830142
#> [6,] 0.45477422 0.353831282
itemfit(dav) # assume normal prior
#> Error: Only X2, G2, PV_Q1, PV_Q1*, infit, X2*, and X2*_df can be computed with missing data.
#> Pass na.rm=TRUE to remove missing data row-wise
itemfit(dav, use_dentype_estimate=TRUE) # use Davidian estimated prior shape
#> Error: Only X2, G2, PV_Q1, PV_Q1*, infit, X2*, and X2*_df can be computed with missing data.
#> Pass na.rm=TRUE to remove missing data row-wise
############
# Unfolding models
# polytomous hyperbolic cosine model with
# estimated latitude of acceptance (rho parameters)
mod <- mirt(Science, model=1, itemtype = 'hcm')
#>
Iteration: 1, Log-Lik: -2887.501, Max-Change: 21.39161
Iteration: 2, Log-Lik: -1855.751, Max-Change: 0.74095
Iteration: 3, Log-Lik: -1832.969, Max-Change: 3.92655
Iteration: 4, Log-Lik: -1676.140, Max-Change: 0.87523
Iteration: 5, Log-Lik: -1641.089, Max-Change: 0.52198
Iteration: 6, Log-Lik: -1630.678, Max-Change: 0.15458
Iteration: 7, Log-Lik: -1628.627, Max-Change: 0.06557
Iteration: 8, Log-Lik: -1628.001, Max-Change: 0.03298
Iteration: 9, Log-Lik: -1627.778, Max-Change: 0.01721
Iteration: 10, Log-Lik: -1627.682, Max-Change: 0.00828
Iteration: 11, Log-Lik: -1627.662, Max-Change: 0.00447
Iteration: 12, Log-Lik: -1627.655, Max-Change: 0.00257
Iteration: 13, Log-Lik: -1627.652, Max-Change: 0.00146
Iteration: 14, Log-Lik: -1627.651, Max-Change: 0.00037
Iteration: 15, Log-Lik: -1627.651, Max-Change: 0.00048
Iteration: 16, Log-Lik: -1627.651, Max-Change: 0.00032
Iteration: 17, Log-Lik: -1627.651, Max-Change: 0.00015
Iteration: 18, Log-Lik: -1627.651, Max-Change: 0.00006
coef(mod, simplify=TRUE)$items
#> a1 d log_rho1 log_rho2 log_rho3
#> Comfort 1 1.989655 1.625421 1.526102 -16.17198
#> Work 1 2.485054 1.478531 1.224489 -20.39161
#> Future 1 1.801569 1.491945 1.185052 -15.30324
#> Benefit 1 1.903674 1.471276 1.039336 -17.53716
coef(mod, simplify=TRUE, IRTpars=TRUE)$items
#> a b rho1 rho2 rho3
#> Comfort 1 -1.989655 5.080557 4.600212 9.475379e-08
#> Work 1 -2.485054 4.386497 3.402426 1.393270e-09
#> Future 1 -1.801569 4.445732 3.270856 2.258856e-07
#> Benefit 1 -1.903674 4.354789 2.827339 2.419408e-08
plot(mod)
plot(mod, type = 'trace')
plot(mod, type = 'itemscore')
# EAP estimates
fs <- fscores(mod)
head(fs)
#> F1
#> [1,] -0.6675994
#> [2,] -0.1584800
#> [3,] 0.6560938
#> [4,] 0.6560938
#> [5,] -0.2058628
#> [6,] -1.0079077
itemfit(mod)
#> item S_X2 df.S_X2 RMSEA.S_X2 p.S_X2
#> 1 Comfort 4.437 6 0.000 0.618
#> 2 Work 10.778 8 0.030 0.215
#> 3 Future 18.242 10 0.046 0.051
#> 4 Benefit 12.020 11 0.015 0.362
M2(mod, type = 'C2')
#> M2 df p RMSEA RMSEA_5 RMSEA_95 TLI CFI
#> stats 18.78276 2 8.344004e-05 0.1464969 0.09063855 0.209979 0.736325 0.9121083
###########
# 5PL and restricted 5PL example
dat <- expand.table(LSAT7)
mod2PL <- mirt(dat)
#>
Iteration: 1, Log-Lik: -2668.786, Max-Change: 0.18243
Iteration: 2, Log-Lik: -2663.691, Max-Change: 0.13637
Iteration: 3, Log-Lik: -2661.454, Max-Change: 0.10231
Iteration: 4, Log-Lik: -2659.430, Max-Change: 0.04181
Iteration: 5, Log-Lik: -2659.241, Max-Change: 0.03417
Iteration: 6, Log-Lik: -2659.113, Max-Change: 0.02911
Iteration: 7, Log-Lik: -2658.812, Max-Change: 0.00456
Iteration: 8, Log-Lik: -2658.809, Max-Change: 0.00363
Iteration: 9, Log-Lik: -2658.808, Max-Change: 0.00273
Iteration: 10, Log-Lik: -2658.806, Max-Change: 0.00144
Iteration: 11, Log-Lik: -2658.806, Max-Change: 0.00118
Iteration: 12, Log-Lik: -2658.806, Max-Change: 0.00101
Iteration: 13, Log-Lik: -2658.805, Max-Change: 0.00042
Iteration: 14, Log-Lik: -2658.805, Max-Change: 0.00025
Iteration: 15, Log-Lik: -2658.805, Max-Change: 0.00026
Iteration: 16, Log-Lik: -2658.805, Max-Change: 0.00023
Iteration: 17, Log-Lik: -2658.805, Max-Change: 0.00023
Iteration: 18, Log-Lik: -2658.805, Max-Change: 0.00021
Iteration: 19, Log-Lik: -2658.805, Max-Change: 0.00019
Iteration: 20, Log-Lik: -2658.805, Max-Change: 0.00017
Iteration: 21, Log-Lik: -2658.805, Max-Change: 0.00017
Iteration: 22, Log-Lik: -2658.805, Max-Change: 0.00015
Iteration: 23, Log-Lik: -2658.805, Max-Change: 0.00015
Iteration: 24, Log-Lik: -2658.805, Max-Change: 0.00013
Iteration: 25, Log-Lik: -2658.805, Max-Change: 0.00013
Iteration: 26, Log-Lik: -2658.805, Max-Change: 0.00011
Iteration: 27, Log-Lik: -2658.805, Max-Change: 0.00011
Iteration: 28, Log-Lik: -2658.805, Max-Change: 0.00010
mod2PL
#>
#> Call:
#> mirt(data = dat)
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 28 EM iterations.
#> mirt version: 1.44.3
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -2658.805
#> Estimated parameters: 10
#> AIC = 5337.61
#> BIC = 5386.688; SABIC = 5354.927
#> G2 (21) = 31.7, p = 0.0628
#> RMSEA = 0.023, CFI = NaN, TLI = NaN
# Following does not converge without including strong priors
# mod5PL <- mirt(dat, itemtype = '5PL')
# mod5PL
# restricted version of 5PL (asymmetric 2PL)
model <- 'Theta = 1-5
FIXED = (1-5, g), (1-5, u)'
mod2PL_asym <- mirt(dat, model=model, itemtype = '5PL')
#>
Iteration: 1, Log-Lik: -2668.786, Max-Change: 0.51326
Iteration: 2, Log-Lik: -2663.511, Max-Change: 0.13862
Iteration: 3, Log-Lik: -2661.246, Max-Change: 0.08865
Iteration: 4, Log-Lik: -2659.548, Max-Change: 0.04834
Iteration: 5, Log-Lik: -2659.140, Max-Change: 0.08108
Iteration: 6, Log-Lik: -2658.895, Max-Change: 0.08582
Iteration: 7, Log-Lik: -2658.338, Max-Change: 0.03611
Iteration: 8, Log-Lik: -2658.230, Max-Change: 0.01253
Iteration: 9, Log-Lik: -2658.215, Max-Change: 0.04774
Iteration: 10, Log-Lik: -2658.190, Max-Change: 0.02676
Iteration: 11, Log-Lik: -2658.180, Max-Change: 0.05271
Iteration: 12, Log-Lik: -2658.164, Max-Change: 0.04346
Iteration: 13, Log-Lik: -2658.107, Max-Change: 0.05266
Iteration: 14, Log-Lik: -2658.089, Max-Change: 0.02992
Iteration: 15, Log-Lik: -2658.081, Max-Change: 0.04333
Iteration: 16, Log-Lik: -2658.049, Max-Change: 0.03464
Iteration: 17, Log-Lik: -2658.039, Max-Change: 0.02877
Iteration: 18, Log-Lik: -2658.032, Max-Change: 0.02668
Iteration: 19, Log-Lik: -2657.997, Max-Change: 0.02270
Iteration: 20, Log-Lik: -2657.991, Max-Change: 0.02926
Iteration: 21, Log-Lik: -2657.984, Max-Change: 0.01128
Iteration: 22, Log-Lik: -2657.983, Max-Change: 0.02726
Iteration: 23, Log-Lik: -2657.978, Max-Change: 0.02501
Iteration: 24, Log-Lik: -2657.972, Max-Change: 0.01968
Iteration: 25, Log-Lik: -2657.958, Max-Change: 0.00845
Iteration: 26, Log-Lik: -2657.956, Max-Change: 0.02232
Iteration: 27, Log-Lik: -2657.952, Max-Change: 0.01347
Iteration: 28, Log-Lik: -2657.947, Max-Change: 0.02663
Iteration: 29, Log-Lik: -2657.942, Max-Change: 0.01681
Iteration: 30, Log-Lik: -2657.938, Max-Change: 0.00044
Iteration: 31, Log-Lik: -2657.938, Max-Change: 0.00042
Iteration: 32, Log-Lik: -2657.938, Max-Change: 0.00040
Iteration: 33, Log-Lik: -2657.938, Max-Change: 0.00033
Iteration: 34, Log-Lik: -2657.938, Max-Change: 0.01223
Iteration: 35, Log-Lik: -2657.936, Max-Change: 0.01815
Iteration: 36, Log-Lik: -2657.933, Max-Change: 0.00064
Iteration: 37, Log-Lik: -2657.933, Max-Change: 0.01543
Iteration: 38, Log-Lik: -2657.930, Max-Change: 0.00043
Iteration: 39, Log-Lik: -2657.930, Max-Change: 0.00046
Iteration: 40, Log-Lik: -2657.930, Max-Change: 0.02086
Iteration: 41, Log-Lik: -2657.926, Max-Change: 0.00069
Iteration: 42, Log-Lik: -2657.926, Max-Change: 0.00062
Iteration: 43, Log-Lik: -2657.926, Max-Change: 0.00022
Iteration: 44, Log-Lik: -2657.926, Max-Change: 0.00014
Iteration: 45, Log-Lik: -2657.926, Max-Change: 0.00020
Iteration: 46, Log-Lik: -2657.926, Max-Change: 0.00623
Iteration: 47, Log-Lik: -2657.924, Max-Change: 0.00034
Iteration: 48, Log-Lik: -2657.924, Max-Change: 0.00025
Iteration: 49, Log-Lik: -2657.924, Max-Change: 0.00437
Iteration: 50, Log-Lik: -2657.923, Max-Change: 0.00087
Iteration: 51, Log-Lik: -2657.923, Max-Change: 0.00092
Iteration: 52, Log-Lik: -2657.923, Max-Change: 0.02021
Iteration: 53, Log-Lik: -2657.920, Max-Change: 0.00026
Iteration: 54, Log-Lik: -2657.920, Max-Change: 0.00015
Iteration: 55, Log-Lik: -2657.920, Max-Change: 0.00770
Iteration: 56, Log-Lik: -2657.919, Max-Change: 0.00205
Iteration: 57, Log-Lik: -2657.918, Max-Change: 0.00056
Iteration: 58, Log-Lik: -2657.918, Max-Change: 0.00031
Iteration: 59, Log-Lik: -2657.918, Max-Change: 0.00033
Iteration: 60, Log-Lik: -2657.918, Max-Change: 0.00029
Iteration: 61, Log-Lik: -2657.918, Max-Change: 0.01647
Iteration: 62, Log-Lik: -2657.915, Max-Change: 0.01720
Iteration: 63, Log-Lik: -2657.912, Max-Change: 0.00028
Iteration: 64, Log-Lik: -2657.912, Max-Change: 0.00027
Iteration: 65, Log-Lik: -2657.912, Max-Change: 0.00020
Iteration: 66, Log-Lik: -2657.912, Max-Change: 0.00028
Iteration: 67, Log-Lik: -2657.912, Max-Change: 0.00640
Iteration: 68, Log-Lik: -2657.911, Max-Change: 0.00070
Iteration: 69, Log-Lik: -2657.911, Max-Change: 0.00010
mod2PL_asym
#>
#> Call:
#> mirt(data = dat, model = model, itemtype = "5PL")
#>
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 1e-04 tolerance after 69 EM iterations.
#> mirt version: 1.44.3
#> M-step optimizer: BFGS
#> EM acceleration: Ramsay
#> Number of rectangular quadrature: 61
#> Latent density type: Gaussian
#>
#> Log-likelihood = -2657.911
#> Estimated parameters: 15
#> AIC = 5345.822
#> BIC = 5419.438; SABIC = 5371.797
#> G2 (16) = 29.91, p = 0.0185
#> RMSEA = 0.03, CFI = NaN, TLI = NaN
coef(mod2PL_asym, simplify=TRUE)
#> $items
#> a1 d g u logS
#> Item.1 0.926 2.882 0 1 0.962
#> Item.2 2.141 -1.547 0 1 -1.454
#> Item.3 1.589 2.066 0 1 0.264
#> Item.4 0.613 2.223 0 1 1.518
#> Item.5 0.748 1.948 0 1 0.079
#>
#> $means
#> Theta
#> 0
#>
#> $cov
#> Theta
#> Theta 1
#>
coef(mod2PL_asym, simplify=TRUE, IRTpars=TRUE)
#> $items
#> a b g u S
#> Item.1 0.926 -3.113 0 1 2.618
#> Item.2 2.141 0.722 0 1 0.234
#> Item.3 1.589 -1.301 0 1 1.301
#> Item.4 0.613 -3.627 0 1 4.563
#> Item.5 0.748 -2.605 0 1 1.082
#>
#> $means
#> Theta
#> 0
#>
#> $cov
#> Theta
#> Theta 1
#>
# no big difference statistically or visually
anova(mod2PL, mod2PL_asym)
#> AIC SABIC HQ BIC logLik X2 df p
#> mod2PL 5337.610 5354.927 5356.263 5386.688 -2658.805
#> mod2PL_asym 5345.822 5371.797 5373.801 5419.438 -2657.911 1.788 5 0.878
plot(mod2PL, type = 'trace')
plot(mod2PL_asym, type = 'trace')
###################
# LLTM example
a <- matrix(rep(1,30))
d <- rep(c(1,0, -1),each = 10) # first easy, then medium, last difficult
dat <- simdata(a, d, 1000, itemtype = '2PL')
# unconditional model for intercept comparisons
mod <- mirt(dat, itemtype = 'Rasch')
#>
Iteration: 1, Log-Lik: -17542.943, Max-Change: 0.01620
Iteration: 2, Log-Lik: -17542.403, Max-Change: 0.01087
Iteration: 3, Log-Lik: -17542.353, Max-Change: 0.00443
Iteration: 4, Log-Lik: -17542.345, Max-Change: 0.00175
Iteration: 5, Log-Lik: -17542.344, Max-Change: 0.00080
Iteration: 6, Log-Lik: -17542.343, Max-Change: 0.00030
Iteration: 7, Log-Lik: -17542.343, Max-Change: 0.00015
Iteration: 8, Log-Lik: -17542.343, Max-Change: 0.00007
coef(mod, simplify=TRUE)
#> $items
#> a1 d g u
#> Item_1 1 1.013 0 1
#> Item_2 1 1.181 0 1
#> Item_3 1 1.181 0 1
#> Item_4 1 1.087 0 1
#> Item_5 1 1.265 0 1
#> Item_6 1 0.936 0 1
#> Item_7 1 1.128 0 1
#> Item_8 1 1.076 0 1
#> Item_9 1 1.076 0 1
#> Item_10 1 1.187 0 1
#> Item_11 1 0.179 0 1
#> Item_12 1 0.106 0 1
#> Item_13 1 -0.014 0 1
#> Item_14 1 0.116 0 1
#> Item_15 1 -0.004 0 1
#> Item_16 1 -0.004 0 1
#> Item_17 1 -0.014 0 1
#> Item_18 1 0.097 0 1
#> Item_19 1 0.053 0 1
#> Item_20 1 0.005 0 1
#> Item_21 1 -0.968 0 1
#> Item_22 1 -0.837 0 1
#> Item_23 1 -0.880 0 1
#> Item_24 1 -0.929 0 1
#> Item_25 1 -0.913 0 1
#> Item_26 1 -0.924 0 1
#> Item_27 1 -0.968 0 1
#> Item_28 1 -0.951 0 1
#> Item_29 1 -1.035 0 1
#> Item_30 1 -0.951 0 1
#>
#> $means
#> F1
#> 0
#>
#> $cov
#> F1
#> F1 0.965
#>
# Suppose that the first 10 items were suspected to be easy, followed by 10 medium difficulty items,
# then finally the last 10 items are difficult,
# and we wish to test this item structure hypothesis (more intercept designs are possible
# by including more columns).
itemdesign <- data.frame(difficulty =
factor(c(rep('easy', 10), rep('medium', 10), rep('hard', 10))))
rownames(itemdesign) <- colnames(dat)
itemdesign
#> difficulty
#> Item_1 easy
#> Item_2 easy
#> Item_3 easy
#> Item_4 easy
#> Item_5 easy
#> Item_6 easy
#> Item_7 easy
#> Item_8 easy
#> Item_9 easy
#> Item_10 easy
#> Item_11 medium
#> Item_12 medium
#> Item_13 medium
#> Item_14 medium
#> Item_15 medium
#> Item_16 medium
#> Item_17 medium
#> Item_18 medium
#> Item_19 medium
#> Item_20 medium
#> Item_21 hard
#> Item_22 hard
#> Item_23 hard
#> Item_24 hard
#> Item_25 hard
#> Item_26 hard
#> Item_27 hard
#> Item_28 hard
#> Item_29 hard
#> Item_30 hard
# LLTM with mirt()
lltm <- mirt(dat, itemtype = 'Rasch', SE=TRUE,
item.formula = ~ 0 + difficulty, itemdesign=itemdesign)
#>
Iteration: 1, Log-Lik: -19541.318, Max-Change: 1.02541
Iteration: 2, Log-Lik: -17563.535, Max-Change: 0.08816
Iteration: 3, Log-Lik: -17558.308, Max-Change: 0.04162
Iteration: 4, Log-Lik: -17557.147, Max-Change: 0.01778
Iteration: 5, Log-Lik: -17556.796, Max-Change: 0.00723
Iteration: 6, Log-Lik: -17556.629, Max-Change: 0.00489
Iteration: 7, Log-Lik: -17556.322, Max-Change: 0.00270
Iteration: 8, Log-Lik: -17556.306, Max-Change: 0.00140
Iteration: 9, Log-Lik: -17556.296, Max-Change: 0.00118
Iteration: 10, Log-Lik: -17556.271, Max-Change: 0.00020
Iteration: 11, Log-Lik: -17556.271, Max-Change: 0.00016
Iteration: 12, Log-Lik: -17556.271, Max-Change: 0.00013
Iteration: 13, Log-Lik: -17556.271, Max-Change: 0.00002
#>
#> Calculating information matrix...
coef(lltm, simplify=TRUE)
#> $items
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> Item_1 1.111 0.000 0.000 1 0 0 1
#> Item_2 1.111 0.000 0.000 1 0 0 1
#> Item_3 1.111 0.000 0.000 1 0 0 1
#> Item_4 1.111 0.000 0.000 1 0 0 1
#> Item_5 1.111 0.000 0.000 1 0 0 1
#> Item_6 1.111 0.000 0.000 1 0 0 1
#> Item_7 1.111 0.000 0.000 1 0 0 1
#> Item_8 1.111 0.000 0.000 1 0 0 1
#> Item_9 1.111 0.000 0.000 1 0 0 1
#> Item_10 1.111 0.000 0.000 1 0 0 1
#> Item_11 0.000 0.000 0.052 1 0 0 1
#> Item_12 0.000 0.000 0.052 1 0 0 1
#> Item_13 0.000 0.000 0.052 1 0 0 1
#> Item_14 0.000 0.000 0.052 1 0 0 1
#> Item_15 0.000 0.000 0.052 1 0 0 1
#> Item_16 0.000 0.000 0.052 1 0 0 1
#> Item_17 0.000 0.000 0.052 1 0 0 1
#> Item_18 0.000 0.000 0.052 1 0 0 1
#> Item_19 0.000 0.000 0.052 1 0 0 1
#> Item_20 0.000 0.000 0.052 1 0 0 1
#> Item_21 0.000 -0.935 0.000 1 0 0 1
#> Item_22 0.000 -0.935 0.000 1 0 0 1
#> Item_23 0.000 -0.935 0.000 1 0 0 1
#> Item_24 0.000 -0.935 0.000 1 0 0 1
#> Item_25 0.000 -0.935 0.000 1 0 0 1
#> Item_26 0.000 -0.935 0.000 1 0 0 1
#> Item_27 0.000 -0.935 0.000 1 0 0 1
#> Item_28 0.000 -0.935 0.000 1 0 0 1
#> Item_29 0.000 -0.935 0.000 1 0 0 1
#> Item_30 0.000 -0.935 0.000 1 0 0 1
#>
#> $means
#> F1
#> 0
#>
#> $cov
#> F1
#> F1 0.963
#>
coef(lltm, printSE=TRUE)
#> $Item_1
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_2
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_3
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_4
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_5
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_6
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_7
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_8
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_9
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_10
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_11
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_12
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_13
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_14
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_15
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_16
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_17
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_18
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_19
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_20
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_21
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_22
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_23
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_24
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_25
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_26
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_27
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_28
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_29
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $Item_30
#> difficultyeasy difficultyhard difficultymedium a1 d logit(g) logit(u)
#> par 1.111 -0.935 0.052 1 0 -999 999
#> SE 0.040 0.039 0.038 NA NA NA NA
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 0.963
#> SE NA 0.055
#>
anova(lltm, mod) # models fit effectively the same; hence, intercept variability well captured
#> AIC SABIC HQ BIC logLik X2 df p
#> lltm 35120.54 35127.47 35128.00 35140.17 -17556.27
#> mod 35146.69 35200.37 35204.51 35298.83 -17542.34 27.855 27 0.418
# additional information for LLTM
plot(lltm)
plot(lltm, type = 'trace')
itemplot(lltm, item=1)
itemfit(lltm)
#> item S_X2 df.S_X2 RMSEA.S_X2 p.S_X2
#> 1 Item_1 23.752 20 0.014 0.253
#> 2 Item_2 23.130 20 0.013 0.282
#> 3 Item_3 27.993 20 0.020 0.110
#> 4 Item_4 40.861 20 0.032 0.004
#> 5 Item_5 31.981 20 0.024 0.044
#> 6 Item_6 23.488 20 0.013 0.265
#> 7 Item_7 43.655 20 0.034 0.002
#> 8 Item_8 21.861 20 0.010 0.348
#> 9 Item_9 21.998 20 0.010 0.341
#> 10 Item_10 37.390 20 0.030 0.011
#> 11 Item_11 28.113 21 0.018 0.137
#> 12 Item_12 28.969 21 0.019 0.115
#> 13 Item_13 20.205 21 0.000 0.508
#> 14 Item_14 43.886 21 0.033 0.002
#> 15 Item_15 14.443 21 0.000 0.850
#> 16 Item_16 28.846 21 0.019 0.118
#> 17 Item_17 21.570 21 0.005 0.425
#> 18 Item_18 20.712 21 0.000 0.477
#> 19 Item_19 34.553 21 0.025 0.032
#> 20 Item_20 29.787 21 0.020 0.096
#> 21 Item_21 30.672 20 0.023 0.060
#> 22 Item_22 25.632 20 0.017 0.178
#> 23 Item_23 21.496 20 0.009 0.368
#> 24 Item_24 25.820 20 0.017 0.172
#> 25 Item_25 15.185 20 0.000 0.766
#> 26 Item_26 20.141 20 0.003 0.449
#> 27 Item_27 34.447 20 0.027 0.023
#> 28 Item_28 35.993 20 0.028 0.015
#> 29 Item_29 26.583 20 0.018 0.147
#> 30 Item_30 17.789 20 0.000 0.601
head(fscores(lltm)) #EAP estimates
#> F1
#> [1,] -1.0635660
#> [2,] 0.2114673
#> [3,] 1.0975084
#> [4,] -0.6186294
#> [5,] 0.2114673
#> [6,] 0.4919959
fscores(lltm, method='EAPsum', full.scores=FALSE)
#> df X2 p.X2 SEM.alpha rxx.alpha rxx_F1
#> stats 29 24.235 0.717 2.379 0.844 0.841
#>
#> Sum.Scores F1 SE_F1 observed expected std.res
#> 0 0 -2.718 0.552 1 0.770 0.262
#> 1 1 -2.433 0.515 2 2.637 0.393
#> 2 2 -2.183 0.486 5 5.585 0.247
#> 3 3 -1.959 0.462 11 9.450 0.504
#> 4 4 -1.755 0.443 14 14.026 0.007
#> 5 5 -1.566 0.427 15 19.100 0.938
#> 6 6 -1.389 0.414 24 24.468 0.095
#> 7 7 -1.223 0.403 31 29.937 0.194
#> 8 8 -1.064 0.395 47 35.328 1.964
#> 9 9 -0.911 0.388 41 40.472 0.083
#> 10 10 -0.763 0.382 35 45.218 1.519
#> 11 11 -0.619 0.378 53 49.426 0.508
#> 12 12 -0.477 0.374 50 52.977 0.409
#> 13 13 -0.338 0.372 55 55.769 0.103
#> 14 14 -0.201 0.371 57 57.721 0.095
#> 15 15 -0.063 0.370 45 58.777 1.797
#> 16 16 0.074 0.371 74 58.900 1.967
#> 17 17 0.211 0.372 61 58.081 0.383
#> 18 18 0.351 0.374 59 56.332 0.355
#> 19 19 0.492 0.378 48 53.691 0.777
#> 20 20 0.636 0.382 47 50.218 0.454
#> 21 21 0.785 0.388 55 45.998 1.327
#> 22 22 0.938 0.395 41 41.137 0.021
#> 23 23 1.098 0.404 32 35.769 0.630
#> 24 24 1.265 0.415 29 30.047 0.191
#> 25 25 1.443 0.428 26 24.157 0.375
#> 26 26 1.633 0.445 17 18.316 0.308
#> 27 27 1.840 0.465 11 12.780 0.498
#> 28 28 2.067 0.490 5 7.851 1.018
#> 29 29 2.322 0.520 8 3.872 2.097
#> 30 30 2.612 0.558 1 1.189 0.173
M2(lltm) # goodness of fit
#> M2 df p RMSEA RMSEA_5 RMSEA_95 SRMSR
#> stats 487.6935 461 0.1882019 0.007613246 0 0.01347354 0.03179874
#> TLI CFI
#> stats 0.9975308 0.9973832
head(personfit(lltm))
#> outfit z.outfit infit z.infit Zh
#> 1 1.1453002 0.6017489 1.0598868 0.3791985 -0.3978746
#> 2 0.9677996 -0.1331664 0.9687086 -0.1659070 0.2047321
#> 3 0.7530052 -0.7663314 0.8973446 -0.4655325 0.6124102
#> 4 0.8359489 -0.8138577 0.8611352 -0.8738968 0.8680327
#> 5 1.1084361 0.6690511 1.1199264 0.8336140 -0.7552087
#> 6 0.9078434 -0.4036949 0.9437998 -0.3180501 0.3975139
residuals(lltm)
#> LD matrix (lower triangle) and standardized residual correlations (upper triangle)
#>
#> Upper triangle summary:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.122 -0.044 -0.011 0.000 0.044 0.104
#>
#> Item_1 Item_2 Item_3 Item_4 Item_5 Item_6 Item_7 Item_8 Item_9 Item_10
#> Item_1 0.051 0.068 0.055 0.101 0.089 -0.063 0.039 0.057 -0.055
#> Item_2 2.575 -0.049 0.057 0.060 -0.081 0.037 -0.055 0.059 0.067
#> Item_3 4.666 2.408 -0.076 -0.060 -0.089 0.026 0.034 -0.036 0.036
#> Item_4 3.052 3.217 5.778 0.065 0.095 -0.015 -0.041 0.021 0.041
#> Item_5 10.290 3.643 3.606 4.166 0.098 0.058 0.062 -0.063 0.104
#> Item_6 7.940 6.518 7.967 8.980 9.557 0.071 -0.122 0.077 0.102
#> Item_7 3.965 1.397 0.700 0.222 3.411 5.082 -0.027 0.061 0.040
#> Item_8 1.537 3.018 1.152 1.643 3.794 14.780 0.717 -0.040 -0.045
#> Item_9 3.229 3.507 1.275 0.462 3.957 5.899 3.769 1.617 0.034
#> Item_10 2.985 4.535 1.322 1.692 10.766 10.378 1.604 1.982 1.140
#> Item_11 7.124 4.522 3.204 3.466 5.495 9.288 3.165 3.504 3.380 3.472
#> Item_12 4.837 1.445 1.445 2.165 3.521 5.963 0.520 0.850 1.202 2.428
#> Item_13 6.404 3.245 1.716 3.940 8.348 5.097 1.721 1.105 3.105 1.916
#> Item_14 5.652 4.123 1.923 2.928 3.785 7.612 0.707 3.560 2.011 6.154
#> Item_15 1.777 1.465 1.478 2.193 4.356 5.945 1.692 0.742 0.742 2.404
#> Item_16 8.296 2.021 7.266 3.469 4.555 4.993 2.661 1.166 0.839 1.617
#> Item_17 2.042 1.709 2.910 1.050 5.042 5.676 3.163 3.579 1.998 2.216
#> Item_18 2.503 1.913 1.083 0.672 3.467 6.592 1.121 1.101 2.603 1.144
#> Item_19 2.038 0.950 2.556 1.930 3.394 4.959 0.080 5.245 3.321 1.580
#> Item_20 1.921 1.359 1.318 1.835 4.163 6.019 0.504 1.957 0.506 1.619
#> Item_21 1.521 0.968 1.015 0.288 3.809 4.845 0.250 0.556 0.313 1.889
#> Item_22 3.680 2.387 2.193 1.761 4.572 13.780 4.138 2.465 1.932 2.254
#> Item_23 3.828 5.080 1.497 0.621 3.864 5.939 0.661 3.812 1.104 1.125
#> Item_24 4.387 2.996 1.952 0.219 3.448 5.818 3.721 1.710 0.367 1.064
#> Item_25 2.616 1.358 0.936 1.435 4.450 6.235 0.767 2.160 0.796 0.841
#> Item_26 1.722 1.488 0.691 0.490 3.541 5.032 1.972 0.247 0.269 1.443
#> Item_27 1.521 2.554 1.274 0.391 4.977 8.675 0.269 0.420 1.656 1.167
#> Item_28 2.047 0.836 1.392 0.153 5.285 4.852 0.920 4.350 0.288 1.153
#> Item_29 5.337 2.621 7.830 2.797 5.679 7.602 2.107 1.722 5.080 2.667
#> Item_30 1.534 1.873 2.670 1.162 3.755 5.095 0.647 0.357 0.581 3.156
#> Item_11 Item_12 Item_13 Item_14 Item_15 Item_16 Item_17 Item_18 Item_19
#> Item_1 0.084 0.070 -0.080 -0.075 -0.042 0.091 0.045 0.050 0.045
#> Item_2 -0.067 -0.038 0.057 -0.064 0.038 0.045 -0.041 -0.044 -0.031
#> Item_3 -0.057 -0.038 0.041 -0.044 -0.038 -0.085 0.054 0.033 0.051
#> Item_4 -0.059 -0.047 -0.063 -0.054 -0.047 -0.059 0.032 0.026 0.044
#> Item_5 0.074 -0.059 -0.091 -0.062 0.066 0.067 -0.071 -0.059 0.058
#> Item_6 0.096 0.077 -0.071 -0.087 0.077 -0.071 0.075 0.081 0.070
#> Item_7 -0.056 -0.023 -0.041 -0.027 0.041 -0.052 0.056 -0.033 0.009
#> Item_8 -0.059 0.029 -0.033 -0.060 0.027 -0.034 -0.060 0.033 -0.072
#> Item_9 -0.058 0.035 0.056 0.045 0.027 -0.029 0.045 0.051 0.058
#> Item_10 -0.059 -0.049 -0.044 -0.078 -0.049 0.040 0.047 0.034 0.040
#> Item_11 -0.056 -0.064 -0.080 -0.091 -0.073 0.064 0.090 0.055
#> Item_12 3.107 0.039 -0.082 -0.048 -0.043 -0.041 -0.044 -0.050
#> Item_13 4.152 1.516 -0.064 -0.044 -0.039 -0.040 0.037 0.059
#> Item_14 6.358 6.673 4.051 -0.040 -0.068 0.059 -0.032 -0.074
#> Item_15 8.278 2.277 1.956 1.563 0.031 0.037 0.047 -0.027
#> Item_16 5.297 1.829 1.553 4.655 0.958 -0.035 -0.040 -0.024
#> Item_17 4.122 1.643 1.571 3.470 1.372 1.196 0.049 0.066
#> Item_18 8.148 1.909 1.333 1.006 2.184 1.624 2.424 0.019
#> Item_19 3.031 2.473 3.483 5.431 0.744 0.597 4.393 0.350
#> Item_20 4.297 1.623 1.058 3.228 1.576 1.084 1.763 4.677 2.306
#> Item_21 3.616 3.592 0.956 3.194 1.909 0.711 2.994 0.637 0.206
#> Item_22 4.499 1.978 2.771 4.947 3.954 3.954 2.810 1.675 4.127
#> Item_23 3.293 0.936 1.996 2.894 6.652 1.219 2.488 0.922 6.172
#> Item_24 3.200 0.529 0.805 0.759 0.675 0.658 1.040 0.750 0.439
#> Item_25 2.759 1.181 1.373 2.433 0.736 1.711 1.134 0.833 0.479
#> Item_26 3.506 0.558 1.555 0.765 0.884 0.884 0.857 0.521 0.379
#> Item_27 4.321 1.740 0.836 2.377 0.711 0.723 1.937 0.637 0.228
#> Item_28 3.010 2.095 2.072 6.019 0.842 4.274 1.043 1.968 0.174
#> Item_29 8.636 5.111 2.780 3.224 2.099 3.701 6.623 2.244 4.005
#> Item_30 3.626 1.045 1.663 1.372 0.713 1.309 0.824 0.593 0.294
#> Item_20 Item_21 Item_22 Item_23 Item_24 Item_25 Item_26 Item_27 Item_28
#> Item_1 -0.044 -0.039 -0.061 -0.062 0.066 0.051 0.041 -0.039 -0.045
#> Item_2 -0.037 -0.031 -0.049 0.071 0.055 0.037 0.039 0.051 0.029
#> Item_3 0.036 -0.032 0.047 0.039 -0.044 0.031 0.026 -0.036 -0.037
#> Item_4 -0.043 0.017 -0.042 0.025 0.015 0.038 -0.022 -0.020 0.012
#> Item_5 0.065 -0.062 -0.068 0.062 -0.059 -0.067 0.060 -0.071 -0.073
#> Item_6 0.078 0.070 -0.117 -0.077 0.076 0.079 -0.071 -0.093 -0.070
#> Item_7 -0.022 0.016 -0.064 -0.026 -0.061 -0.028 -0.044 -0.016 -0.030
#> Item_8 -0.044 -0.024 -0.050 0.062 -0.041 0.046 0.016 -0.021 -0.066
#> Item_9 0.022 -0.018 0.044 0.033 -0.019 0.028 -0.016 0.041 0.017
#> Item_10 0.040 0.043 0.047 -0.034 -0.033 0.029 -0.038 -0.034 -0.034
#> Item_11 0.066 -0.060 -0.067 0.057 -0.057 -0.053 -0.059 -0.066 -0.055
#> Item_12 -0.040 -0.060 0.044 -0.031 -0.023 -0.034 -0.024 -0.042 -0.046
#> Item_13 -0.033 0.031 -0.053 0.045 -0.028 0.037 -0.039 -0.029 -0.046
#> Item_14 -0.057 -0.057 -0.070 -0.054 -0.028 -0.049 0.028 0.049 -0.078
#> Item_15 0.040 -0.044 -0.063 0.082 -0.026 0.027 -0.030 0.027 -0.029
#> Item_16 -0.033 0.027 -0.063 0.035 0.026 0.041 -0.030 -0.027 -0.065
#> Item_17 0.042 0.055 0.053 0.050 -0.032 -0.034 -0.029 0.044 0.032
#> Item_18 0.068 -0.025 0.041 0.030 0.027 0.029 -0.023 -0.025 0.044
#> Item_19 0.048 0.014 -0.064 0.079 -0.021 0.022 -0.019 -0.015 0.013
#> Item_20 -0.023 0.051 -0.044 -0.022 0.044 0.022 -0.023 0.025
#> Item_21 0.534 -0.061 0.040 0.016 0.035 -0.016 -0.017 -0.055
#> Item_22 2.575 3.682 -0.053 0.039 0.053 -0.039 -0.055 -0.066
#> Item_23 1.932 1.612 2.822 0.023 0.024 -0.026 -0.067 -0.024
#> Item_24 0.466 0.251 1.522 0.548 -0.009 0.023 -0.023 0.027
#> Item_25 1.951 1.209 2.822 0.568 0.090 0.024 -0.022 0.014
#> Item_26 0.494 0.257 1.544 0.702 0.513 0.558 0.041 -0.011
#> Item_27 0.534 0.296 2.993 4.465 0.546 0.505 1.672 -0.025
#> Item_28 0.644 3.018 4.371 0.570 0.723 0.191 0.127 0.648
#> Item_29 2.036 3.911 8.176 3.908 1.667 4.721 4.012 1.611 1.510
#> Item_30 5.136 0.992 2.814 1.449 0.978 0.786 0.073 0.198 0.100
#> Item_29 Item_30
#> Item_1 0.073 -0.039
#> Item_2 0.051 0.043
#> Item_3 0.088 0.052
#> Item_4 0.053 0.034
#> Item_5 0.075 -0.061
#> Item_6 0.087 -0.071
#> Item_7 0.046 -0.025
#> Item_8 0.041 -0.019
#> Item_9 0.071 0.024
#> Item_10 -0.052 0.056
#> Item_11 -0.093 0.060
#> Item_12 0.071 -0.032
#> Item_13 0.053 0.041
#> Item_14 -0.057 -0.037
#> Item_15 0.046 -0.027
#> Item_16 0.061 0.036
#> Item_17 0.081 0.029
#> Item_18 -0.047 0.024
#> Item_19 0.063 0.017
#> Item_20 0.045 0.072
#> Item_21 0.063 0.031
#> Item_22 0.090 -0.053
#> Item_23 0.063 -0.038
#> Item_24 0.041 0.031
#> Item_25 0.069 0.028
#> Item_26 0.063 0.009
#> Item_27 0.040 -0.014
#> Item_28 0.039 0.010
#> Item_29 0.044
#> Item_30 1.942
# intercept across items also possible by removing ~ 0 portion, just interpreted differently
lltm.int <- mirt(dat, itemtype = 'Rasch',
item.formula = ~ difficulty, itemdesign=itemdesign)
#>
Iteration: 1, Log-Lik: -19541.318, Max-Change: 1.99267
Iteration: 2, Log-Lik: -17563.535, Max-Change: 0.08820
Iteration: 3, Log-Lik: -17558.307, Max-Change: 0.04160
Iteration: 4, Log-Lik: -17557.147, Max-Change: 0.01777
Iteration: 5, Log-Lik: -17556.796, Max-Change: 0.00721
Iteration: 6, Log-Lik: -17556.629, Max-Change: 0.00489
Iteration: 7, Log-Lik: -17556.421, Max-Change: 0.00251
Iteration: 8, Log-Lik: -17556.377, Max-Change: 0.00247
Iteration: 9, Log-Lik: -17556.347, Max-Change: 0.00206
Iteration: 10, Log-Lik: -17556.274, Max-Change: 0.00036
Iteration: 11, Log-Lik: -17556.273, Max-Change: 0.00035
Iteration: 12, Log-Lik: -17556.272, Max-Change: 0.00030
Iteration: 13, Log-Lik: -17556.271, Max-Change: 0.00004
anova(lltm, lltm.int) # same
#> AIC SABIC HQ BIC logLik X2 df p
#> lltm 35120.54 35127.47 35128 35140.17 -17556.27
#> lltm.int 35120.54 35127.47 35128 35140.17 -17556.27 0 0 NaN
coef(lltm.int, simplify=TRUE)
#> $items
#> (Intercept) difficultyhard difficultymedium a1 d g u
#> Item_1 1.111 0.000 0.000 1 0 0 1
#> Item_2 1.111 0.000 0.000 1 0 0 1
#> Item_3 1.111 0.000 0.000 1 0 0 1
#> Item_4 1.111 0.000 0.000 1 0 0 1
#> Item_5 1.111 0.000 0.000 1 0 0 1
#> Item_6 1.111 0.000 0.000 1 0 0 1
#> Item_7 1.111 0.000 0.000 1 0 0 1
#> Item_8 1.111 0.000 0.000 1 0 0 1
#> Item_9 1.111 0.000 0.000 1 0 0 1
#> Item_10 1.111 0.000 0.000 1 0 0 1
#> Item_11 1.111 0.000 -1.059 1 0 0 1
#> Item_12 1.111 0.000 -1.059 1 0 0 1
#> Item_13 1.111 0.000 -1.059 1 0 0 1
#> Item_14 1.111 0.000 -1.059 1 0 0 1
#> Item_15 1.111 0.000 -1.059 1 0 0 1
#> Item_16 1.111 0.000 -1.059 1 0 0 1
#> Item_17 1.111 0.000 -1.059 1 0 0 1
#> Item_18 1.111 0.000 -1.059 1 0 0 1
#> Item_19 1.111 0.000 -1.059 1 0 0 1
#> Item_20 1.111 0.000 -1.059 1 0 0 1
#> Item_21 1.111 -2.046 0.000 1 0 0 1
#> Item_22 1.111 -2.046 0.000 1 0 0 1
#> Item_23 1.111 -2.046 0.000 1 0 0 1
#> Item_24 1.111 -2.046 0.000 1 0 0 1
#> Item_25 1.111 -2.046 0.000 1 0 0 1
#> Item_26 1.111 -2.046 0.000 1 0 0 1
#> Item_27 1.111 -2.046 0.000 1 0 0 1
#> Item_28 1.111 -2.046 0.000 1 0 0 1
#> Item_29 1.111 -2.046 0.000 1 0 0 1
#> Item_30 1.111 -2.046 0.000 1 0 0 1
#>
#> $means
#> F1
#> 0
#>
#> $cov
#> F1
#> F1 0.963
#>
# using unconditional modeling for first four items
itemdesign.sub <- itemdesign[5:nrow(itemdesign), , drop=FALSE]
itemdesign.sub # note that rownames are required in this case
#> difficulty
#> Item_5 easy
#> Item_6 easy
#> Item_7 easy
#> Item_8 easy
#> Item_9 easy
#> Item_10 easy
#> Item_11 medium
#> Item_12 medium
#> Item_13 medium
#> Item_14 medium
#> Item_15 medium
#> Item_16 medium
#> Item_17 medium
#> Item_18 medium
#> Item_19 medium
#> Item_20 medium
#> Item_21 hard
#> Item_22 hard
#> Item_23 hard
#> Item_24 hard
#> Item_25 hard
#> Item_26 hard
#> Item_27 hard
#> Item_28 hard
#> Item_29 hard
#> Item_30 hard
lltm.4 <- mirt(dat, itemtype = 'Rasch',
item.formula = ~ 0 + difficulty, itemdesign=itemdesign.sub)
#>
Iteration: 1, Log-Lik: -19076.961, Max-Change: 1.15268
Iteration: 2, Log-Lik: -17559.895, Max-Change: 0.07099
Iteration: 3, Log-Lik: -17556.412, Max-Change: 0.03204
Iteration: 4, Log-Lik: -17555.460, Max-Change: 0.01334
Iteration: 5, Log-Lik: -17555.147, Max-Change: 0.00643
Iteration: 6, Log-Lik: -17554.970, Max-Change: 0.00506
Iteration: 7, Log-Lik: -17554.588, Max-Change: 0.00226
Iteration: 8, Log-Lik: -17554.578, Max-Change: 0.00114
Iteration: 9, Log-Lik: -17554.571, Max-Change: 0.00095
Iteration: 10, Log-Lik: -17554.556, Max-Change: 0.00020
Iteration: 11, Log-Lik: -17554.556, Max-Change: 0.00013
Iteration: 12, Log-Lik: -17554.556, Max-Change: 0.00011
Iteration: 13, Log-Lik: -17554.555, Max-Change: 0.00002
coef(lltm.4, simplify=TRUE) # first four items are the standard Rasch
#> $items
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> Item_1 0.000 0.000 0.000 1 1.013 0 1
#> Item_2 0.000 0.000 0.000 1 1.180 0 1
#> Item_3 0.000 0.000 0.000 1 1.180 0 1
#> Item_4 0.000 0.000 0.000 1 1.087 0 1
#> Item_5 1.109 0.000 0.000 1 0.000 0 1
#> Item_6 1.109 0.000 0.000 1 0.000 0 1
#> Item_7 1.109 0.000 0.000 1 0.000 0 1
#> Item_8 1.109 0.000 0.000 1 0.000 0 1
#> Item_9 1.109 0.000 0.000 1 0.000 0 1
#> Item_10 1.109 0.000 0.000 1 0.000 0 1
#> Item_11 0.000 0.000 0.052 1 0.000 0 1
#> Item_12 0.000 0.000 0.052 1 0.000 0 1
#> Item_13 0.000 0.000 0.052 1 0.000 0 1
#> Item_14 0.000 0.000 0.052 1 0.000 0 1
#> Item_15 0.000 0.000 0.052 1 0.000 0 1
#> Item_16 0.000 0.000 0.052 1 0.000 0 1
#> Item_17 0.000 0.000 0.052 1 0.000 0 1
#> Item_18 0.000 0.000 0.052 1 0.000 0 1
#> Item_19 0.000 0.000 0.052 1 0.000 0 1
#> Item_20 0.000 0.000 0.052 1 0.000 0 1
#> Item_21 0.000 -0.935 0.000 1 0.000 0 1
#> Item_22 0.000 -0.935 0.000 1 0.000 0 1
#> Item_23 0.000 -0.935 0.000 1 0.000 0 1
#> Item_24 0.000 -0.935 0.000 1 0.000 0 1
#> Item_25 0.000 -0.935 0.000 1 0.000 0 1
#> Item_26 0.000 -0.935 0.000 1 0.000 0 1
#> Item_27 0.000 -0.935 0.000 1 0.000 0 1
#> Item_28 0.000 -0.935 0.000 1 0.000 0 1
#> Item_29 0.000 -0.935 0.000 1 0.000 0 1
#> Item_30 0.000 -0.935 0.000 1 0.000 0 1
#>
#> $means
#> F1
#> 0
#>
#> $cov
#> F1
#> F1 0.963
#>
anova(lltm, lltm.4) # similar fit, hence more constrained model preferred
#> AIC SABIC HQ BIC logLik X2 df p
#> lltm 35120.54 35127.47 35128.00 35140.17 -17556.27
#> lltm.4 35125.11 35138.96 35140.03 35164.37 -17554.56 3.431 4 0.488
# LLTM with mixedmirt() (more flexible in general, but slower)
LLTM <- mixedmirt(dat, model=1, fixed = ~ 0 + difficulty,
itemdesign=itemdesign, SE=FALSE)
#>
Stage 1 = 1, CDLL = -19926.5, AR(0.55) = [0.51], Max-Change = 0.1895
Stage 1 = 2, CDLL = -19273.2, AR(0.55) = [0.51], Max-Change = 0.1532
Stage 1 = 3, CDLL = -18887.8, AR(0.55) = [0.50], Max-Change = 0.1314
Stage 1 = 4, CDLL = -18569.4, AR(0.55) = [0.47], Max-Change = 0.1007
Stage 1 = 5, CDLL = -18373.7, AR(0.55) = [0.48], Max-Change = 0.0870
Stage 1 = 6, CDLL = -18243.0, AR(0.55) = [0.48], Max-Change = 0.0715
Stage 1 = 7, CDLL = -18109.2, AR(0.55) = [0.49], Max-Change = 0.0569
Stage 1 = 8, CDLL = -18135.3, AR(0.55) = [0.53], Max-Change = 0.0476
Stage 1 = 9, CDLL = -18055.8, AR(0.55) = [0.53], Max-Change = 0.0393
Stage 1 = 10, CDLL = -18031.8, AR(0.55) = [0.50], Max-Change = 0.0356
Stage 1 = 11, CDLL = -18010.3, AR(0.55) = [0.52], Max-Change = 0.0282
Stage 1 = 12, CDLL = -18023.4, AR(0.55) = [0.48], Max-Change = 0.0228
Stage 1 = 13, CDLL = -18031.6, AR(0.55) = [0.53], Max-Change = 0.0195
Stage 1 = 14, CDLL = -18037.1, AR(0.55) = [0.49], Max-Change = 0.0186
Stage 1 = 15, CDLL = -18042.3, AR(0.55) = [0.51], Max-Change = 0.0167
Stage 1 = 16, CDLL = -18021.7, AR(0.55) = [0.51], Max-Change = 0.0112
Stage 1 = 17, CDLL = -18015.7, AR(0.55) = [0.51], Max-Change = 0.0157
Stage 1 = 18, CDLL = -18040.2, AR(0.55) = [0.52], Max-Change = 0.0056
Stage 1 = 19, CDLL = -18055.3, AR(0.55) = [0.49], Max-Change = 0.0061
Stage 1 = 20, CDLL = -18031.5, AR(0.55) = [0.50], Max-Change = 0.0057
Stage 1 = 21, CDLL = -18005.0, AR(0.55) = [0.49], Max-Change = 0.0061
Stage 1 = 22, CDLL = -18014.5, AR(0.55) = [0.51], Max-Change = 0.0064
Stage 1 = 23, CDLL = -18035.0, AR(0.55) = [0.53], Max-Change = 0.0048
Stage 1 = 24, CDLL = -18050.3, AR(0.55) = [0.52], Max-Change = 0.0053
Stage 1 = 25, CDLL = -17996.4, AR(0.55) = [0.50], Max-Change = 0.0050
Stage 1 = 26, CDLL = -18021.3, AR(0.55) = [0.51], Max-Change = 0.0128
Stage 1 = 27, CDLL = -18074.3, AR(0.55) = [0.55], Max-Change = 0.0070
Stage 1 = 28, CDLL = -18016.5, AR(0.55) = [0.52], Max-Change = 0.0037
Stage 1 = 29, CDLL = -18022.5, AR(0.55) = [0.49], Max-Change = 0.0043
Stage 1 = 30, CDLL = -18031.9, AR(0.55) = [0.53], Max-Change = 0.0089
Stage 1 = 31, CDLL = -18024.6, AR(0.55) = [0.51], Max-Change = 0.0025
Stage 1 = 32, CDLL = -18024.2, AR(0.55) = [0.51], Max-Change = 0.0037
Stage 1 = 33, CDLL = -17984.2, AR(0.55) = [0.52], Max-Change = 0.0030
Stage 1 = 34, CDLL = -18003.4, AR(0.55) = [0.50], Max-Change = 0.0023
Stage 1 = 35, CDLL = -18014.3, AR(0.55) = [0.51], Max-Change = 0.0061
Stage 1 = 36, CDLL = -18046.5, AR(0.55) = [0.53], Max-Change = 0.0037
Stage 1 = 37, CDLL = -18019.2, AR(0.55) = [0.54], Max-Change = 0.0037
Stage 1 = 38, CDLL = -18020.1, AR(0.55) = [0.53], Max-Change = 0.0008
Stage 1 = 39, CDLL = -18072.9, AR(0.55) = [0.52], Max-Change = 0.0058
Stage 1 = 40, CDLL = -18016.6, AR(0.55) = [0.51], Max-Change = 0.0078
Stage 1 = 41, CDLL = -18050.3, AR(0.55) = [0.52], Max-Change = 0.0026
Stage 1 = 42, CDLL = -18021.0, AR(0.55) = [0.51], Max-Change = 0.0010
Stage 1 = 43, CDLL = -18007.9, AR(0.55) = [0.53], Max-Change = 0.0062
Stage 1 = 44, CDLL = -18055.7, AR(0.55) = [0.53], Max-Change = 0.0064
Stage 1 = 45, CDLL = -18007.2, AR(0.55) = [0.49], Max-Change = 0.0153
Stage 1 = 46, CDLL = -18038.6, AR(0.55) = [0.54], Max-Change = 0.0054
Stage 1 = 47, CDLL = -18023.6, AR(0.55) = [0.53], Max-Change = 0.0047
Stage 1 = 48, CDLL = -18058.8, AR(0.55) = [0.49], Max-Change = 0.0053
Stage 1 = 49, CDLL = -18019.5, AR(0.55) = [0.51], Max-Change = 0.0045
Stage 1 = 50, CDLL = -18044.3, AR(0.55) = [0.51], Max-Change = 0.0022
Stage 1 = 51, CDLL = -18083.4, AR(0.55) = [0.53], Max-Change = 0.0027
Stage 1 = 52, CDLL = -18051.1, AR(0.55) = [0.49], Max-Change = 0.0027
Stage 1 = 53, CDLL = -18055.0, AR(0.55) = [0.51], Max-Change = 0.0048
Stage 1 = 54, CDLL = -18010.1, AR(0.55) = [0.54], Max-Change = 0.0051
Stage 1 = 55, CDLL = -18061.8, AR(0.55) = [0.53], Max-Change = 0.0057
Stage 1 = 56, CDLL = -18044.9, AR(0.55) = [0.53], Max-Change = 0.0030
Stage 1 = 57, CDLL = -18049.0, AR(0.55) = [0.50], Max-Change = 0.0083
Stage 1 = 58, CDLL = -17988.5, AR(0.55) = [0.54], Max-Change = 0.0047
Stage 1 = 59, CDLL = -18027.6, AR(0.55) = [0.49], Max-Change = 0.0068
Stage 1 = 60, CDLL = -18063.1, AR(0.55) = [0.51], Max-Change = 0.0042
Stage 1 = 61, CDLL = -18081.5, AR(0.55) = [0.52], Max-Change = 0.0099
Stage 1 = 62, CDLL = -18025.8, AR(0.55) = [0.51], Max-Change = 0.0008
Stage 1 = 63, CDLL = -18039.0, AR(0.55) = [0.51], Max-Change = 0.0020
Stage 1 = 64, CDLL = -18024.9, AR(0.55) = [0.53], Max-Change = 0.0040
Stage 1 = 65, CDLL = -18038.7, AR(0.55) = [0.51], Max-Change = 0.0047
Stage 1 = 66, CDLL = -18030.0, AR(0.55) = [0.50], Max-Change = 0.0017
Stage 1 = 67, CDLL = -18068.9, AR(0.55) = [0.49], Max-Change = 0.0028
Stage 1 = 68, CDLL = -18051.2, AR(0.55) = [0.53], Max-Change = 0.0052
Stage 1 = 69, CDLL = -18041.8, AR(0.55) = [0.54], Max-Change = 0.0014
Stage 1 = 70, CDLL = -18037.5, AR(0.55) = [0.51], Max-Change = 0.0060
Stage 1 = 71, CDLL = -18026.9, AR(0.55) = [0.51], Max-Change = 0.0037
Stage 1 = 72, CDLL = -18049.5, AR(0.55) = [0.52], Max-Change = 0.0053
Stage 1 = 73, CDLL = -18042.4, AR(0.55) = [0.54], Max-Change = 0.0065
Stage 1 = 74, CDLL = -17998.7, AR(0.55) = [0.52], Max-Change = 0.0096
Stage 1 = 75, CDLL = -18046.2, AR(0.55) = [0.49], Max-Change = 0.0029
Stage 1 = 76, CDLL = -18039.9, AR(0.55) = [0.48], Max-Change = 0.0065
Stage 1 = 77, CDLL = -18058.5, AR(0.55) = [0.52], Max-Change = 0.0028
Stage 1 = 78, CDLL = -18055.3, AR(0.55) = [0.49], Max-Change = 0.0079
Stage 1 = 79, CDLL = -18049.3, AR(0.55) = [0.54], Max-Change = 0.0044
Stage 1 = 80, CDLL = -18011.4, AR(0.55) = [0.50], Max-Change = 0.0039
Stage 1 = 81, CDLL = -18051.2, AR(0.55) = [0.50], Max-Change = 0.0013
Stage 1 = 82, CDLL = -18003.3, AR(0.55) = [0.52], Max-Change = 0.0054
Stage 1 = 83, CDLL = -18012.3, AR(0.55) = [0.51], Max-Change = 0.0084
Stage 1 = 84, CDLL = -18036.1, AR(0.55) = [0.52], Max-Change = 0.0063
Stage 1 = 85, CDLL = -17987.1, AR(0.55) = [0.49], Max-Change = 0.0108
Stage 1 = 86, CDLL = -17996.7, AR(0.55) = [0.50], Max-Change = 0.0069
Stage 1 = 87, CDLL = -18020.4, AR(0.55) = [0.55], Max-Change = 0.0043
Stage 1 = 88, CDLL = -18047.0, AR(0.55) = [0.52], Max-Change = 0.0076
Stage 1 = 89, CDLL = -18023.2, AR(0.55) = [0.55], Max-Change = 0.0081
Stage 1 = 90, CDLL = -18035.7, AR(0.55) = [0.51], Max-Change = 0.0039
Stage 1 = 91, CDLL = -18043.6, AR(0.55) = [0.53], Max-Change = 0.0033
Stage 1 = 92, CDLL = -18017.3, AR(0.55) = [0.51], Max-Change = 0.0061
Stage 1 = 93, CDLL = -18000.6, AR(0.55) = [0.49], Max-Change = 0.0015
Stage 1 = 94, CDLL = -18021.8, AR(0.55) = [0.52], Max-Change = 0.0011
Stage 1 = 95, CDLL = -18048.8, AR(0.55) = [0.52], Max-Change = 0.0038
Stage 1 = 96, CDLL = -18023.6, AR(0.55) = [0.53], Max-Change = 0.0028
Stage 1 = 97, CDLL = -18066.4, AR(0.55) = [0.51], Max-Change = 0.0071
Stage 1 = 98, CDLL = -18029.1, AR(0.55) = [0.51], Max-Change = 0.0045
Stage 1 = 99, CDLL = -18058.2, AR(0.55) = [0.47], Max-Change = 0.0088
Stage 1 = 100, CDLL = -18020.8, AR(0.55) = [0.50], Max-Change = 0.0041
Stage 1 = 101, CDLL = -18029.9, AR(0.55) = [0.49], Max-Change = 0.0047
Stage 1 = 102, CDLL = -18040.5, AR(0.55) = [0.52], Max-Change = 0.0066
Stage 1 = 103, CDLL = -18043.0, AR(0.55) = [0.52], Max-Change = 0.0012
Stage 1 = 104, CDLL = -18020.7, AR(0.55) = [0.49], Max-Change = 0.0042
Stage 1 = 105, CDLL = -18015.0, AR(0.55) = [0.50], Max-Change = 0.0047
Stage 1 = 106, CDLL = -18018.4, AR(0.55) = [0.49], Max-Change = 0.0012
Stage 1 = 107, CDLL = -18047.9, AR(0.55) = [0.55], Max-Change = 0.0045
Stage 1 = 108, CDLL = -18020.7, AR(0.55) = [0.53], Max-Change = 0.0100
Stage 1 = 109, CDLL = -18028.9, AR(0.55) = [0.52], Max-Change = 0.0054
Stage 1 = 110, CDLL = -18048.6, AR(0.55) = [0.50], Max-Change = 0.0042
Stage 1 = 111, CDLL = -18023.1, AR(0.55) = [0.51], Max-Change = 0.0077
Stage 1 = 112, CDLL = -18055.0, AR(0.55) = [0.51], Max-Change = 0.0021
Stage 1 = 113, CDLL = -17997.7, AR(0.55) = [0.53], Max-Change = 0.0048
Stage 1 = 114, CDLL = -18053.8, AR(0.55) = [0.52], Max-Change = 0.0027
Stage 1 = 115, CDLL = -18065.2, AR(0.55) = [0.50], Max-Change = 0.0073
Stage 1 = 116, CDLL = -18016.5, AR(0.55) = [0.52], Max-Change = 0.0024
Stage 1 = 117, CDLL = -18048.6, AR(0.55) = [0.53], Max-Change = 0.0015
Stage 1 = 118, CDLL = -18086.5, AR(0.55) = [0.51], Max-Change = 0.0032
Stage 1 = 119, CDLL = -18043.2, AR(0.55) = [0.51], Max-Change = 0.0027
Stage 1 = 120, CDLL = -18023.4, AR(0.55) = [0.51], Max-Change = 0.0120
Stage 1 = 121, CDLL = -18014.3, AR(0.55) = [0.54], Max-Change = 0.0035
Stage 1 = 122, CDLL = -18014.7, AR(0.55) = [0.51], Max-Change = 0.0022
Stage 1 = 123, CDLL = -18028.3, AR(0.55) = [0.48], Max-Change = 0.0106
Stage 1 = 124, CDLL = -17993.6, AR(0.55) = [0.51], Max-Change = 0.0044
Stage 1 = 125, CDLL = -18029.1, AR(0.55) = [0.53], Max-Change = 0.0058
Stage 1 = 126, CDLL = -18056.6, AR(0.55) = [0.48], Max-Change = 0.0075
Stage 1 = 127, CDLL = -18029.6, AR(0.55) = [0.54], Max-Change = 0.0028
Stage 1 = 128, CDLL = -17986.4, AR(0.55) = [0.50], Max-Change = 0.0017
Stage 1 = 129, CDLL = -17980.8, AR(0.55) = [0.54], Max-Change = 0.0069
Stage 1 = 130, CDLL = -18005.1, AR(0.55) = [0.51], Max-Change = 0.0057
Stage 1 = 131, CDLL = -18014.1, AR(0.55) = [0.55], Max-Change = 0.0056
Stage 1 = 132, CDLL = -18032.3, AR(0.55) = [0.49], Max-Change = 0.0048
Stage 1 = 133, CDLL = -17995.5, AR(0.55) = [0.54], Max-Change = 0.0031
Stage 1 = 134, CDLL = -18007.4, AR(0.55) = [0.51], Max-Change = 0.0047
Stage 1 = 135, CDLL = -18029.5, AR(0.55) = [0.52], Max-Change = 0.0034
Stage 1 = 136, CDLL = -18037.1, AR(0.55) = [0.50], Max-Change = 0.0017
Stage 1 = 137, CDLL = -18033.0, AR(0.55) = [0.49], Max-Change = 0.0042
Stage 1 = 138, CDLL = -18013.3, AR(0.55) = [0.50], Max-Change = 0.0047
Stage 1 = 139, CDLL = -18028.3, AR(0.55) = [0.51], Max-Change = 0.0013
Stage 1 = 140, CDLL = -18068.8, AR(0.55) = [0.50], Max-Change = 0.0039
Stage 1 = 141, CDLL = -18092.7, AR(0.55) = [0.53], Max-Change = 0.0122
Stage 1 = 142, CDLL = -18027.1, AR(0.55) = [0.52], Max-Change = 0.0016
Stage 1 = 143, CDLL = -18034.3, AR(0.55) = [0.51], Max-Change = 0.0027
Stage 1 = 144, CDLL = -18047.1, AR(0.55) = [0.53], Max-Change = 0.0057
Stage 1 = 145, CDLL = -18060.0, AR(0.55) = [0.51], Max-Change = 0.0020
Stage 1 = 146, CDLL = -18011.2, AR(0.55) = [0.50], Max-Change = 0.0035
Stage 1 = 147, CDLL = -18018.3, AR(0.55) = [0.52], Max-Change = 0.0056
Stage 1 = 148, CDLL = -18041.0, AR(0.55) = [0.51], Max-Change = 0.0021
Stage 1 = 149, CDLL = -18067.7, AR(0.55) = [0.52], Max-Change = 0.0062
Stage 1 = 150, CDLL = -18074.5, AR(1.48) = [0.37], Max-Change = 0.0043
Stage 2 = 1, CDLL = -18075.0, AR(1.48) = [0.36], Max-Change = 0.0035
Stage 2 = 2, CDLL = -18020.4, AR(1.48) = [0.37], Max-Change = 0.0027
Stage 2 = 3, CDLL = -18036.7, AR(1.48) = [0.35], Max-Change = 0.0062
Stage 2 = 4, CDLL = -18007.8, AR(1.48) = [0.37], Max-Change = 0.0089
Stage 2 = 5, CDLL = -18050.5, AR(1.48) = [0.35], Max-Change = 0.0049
Stage 2 = 6, CDLL = -18028.9, AR(1.48) = [0.33], Max-Change = 0.0021
Stage 2 = 7, CDLL = -18030.7, AR(1.48) = [0.36], Max-Change = 0.0077
Stage 2 = 8, CDLL = -18029.3, AR(1.48) = [0.37], Max-Change = 0.0072
Stage 2 = 9, CDLL = -18039.6, AR(1.48) = [0.35], Max-Change = 0.0049
Stage 2 = 10, CDLL = -18045.8, AR(1.48) = [0.39], Max-Change = 0.0053
Stage 2 = 11, CDLL = -18031.1, AR(1.48) = [0.36], Max-Change = 0.0020
Stage 2 = 12, CDLL = -18014.4, AR(1.48) = [0.35], Max-Change = 0.0138
Stage 2 = 13, CDLL = -18041.6, AR(1.48) = [0.35], Max-Change = 0.0036
Stage 2 = 14, CDLL = -18057.4, AR(1.48) = [0.35], Max-Change = 0.0050
Stage 2 = 15, CDLL = -18039.7, AR(1.48) = [0.37], Max-Change = 0.0045
Stage 2 = 16, CDLL = -18026.6, AR(1.48) = [0.37], Max-Change = 0.0031
Stage 2 = 17, CDLL = -18046.9, AR(1.48) = [0.34], Max-Change = 0.0139
Stage 2 = 18, CDLL = -18066.6, AR(1.48) = [0.37], Max-Change = 0.0050
Stage 2 = 19, CDLL = -18019.5, AR(1.48) = [0.36], Max-Change = 0.0058
Stage 2 = 20, CDLL = -18042.3, AR(1.48) = [0.36], Max-Change = 0.0020
Stage 2 = 21, CDLL = -18037.4, AR(1.48) = [0.37], Max-Change = 0.0034
Stage 2 = 22, CDLL = -18045.2, AR(1.48) = [0.34], Max-Change = 0.0048
Stage 2 = 23, CDLL = -18067.0, AR(1.48) = [0.36], Max-Change = 0.0042
Stage 2 = 24, CDLL = -18025.6, AR(1.48) = [0.34], Max-Change = 0.0048
Stage 2 = 25, CDLL = -18019.6, AR(1.48) = [0.39], Max-Change = 0.0025
Stage 2 = 26, CDLL = -18031.9, AR(1.48) = [0.35], Max-Change = 0.0083
Stage 2 = 27, CDLL = -18034.4, AR(1.48) = [0.37], Max-Change = 0.0053
Stage 2 = 28, CDLL = -18012.9, AR(1.48) = [0.36], Max-Change = 0.0025
Stage 2 = 29, CDLL = -18040.2, AR(1.48) = [0.35], Max-Change = 0.0007
Stage 2 = 30, CDLL = -18013.3, AR(1.48) = [0.38], Max-Change = 0.0064
Stage 2 = 31, CDLL = -18023.0, AR(1.48) = [0.33], Max-Change = 0.0035
Stage 2 = 32, CDLL = -17992.1, AR(1.48) = [0.37], Max-Change = 0.0074
Stage 2 = 33, CDLL = -18050.9, AR(1.48) = [0.35], Max-Change = 0.0026
Stage 2 = 34, CDLL = -18036.3, AR(1.48) = [0.33], Max-Change = 0.0026
Stage 2 = 35, CDLL = -18038.8, AR(1.48) = [0.35], Max-Change = 0.0031
Stage 2 = 36, CDLL = -18063.6, AR(1.48) = [0.36], Max-Change = 0.0013
Stage 2 = 37, CDLL = -18034.2, AR(1.48) = [0.38], Max-Change = 0.0035
Stage 2 = 38, CDLL = -18072.4, AR(1.48) = [0.39], Max-Change = 0.0077
Stage 2 = 39, CDLL = -18067.9, AR(1.48) = [0.39], Max-Change = 0.0029
Stage 2 = 40, CDLL = -18066.4, AR(1.48) = [0.36], Max-Change = 0.0078
Stage 2 = 41, CDLL = -17994.7, AR(1.48) = [0.37], Max-Change = 0.0004
Stage 2 = 42, CDLL = -18015.2, AR(1.48) = [0.37], Max-Change = 0.0022
Stage 2 = 43, CDLL = -18020.0, AR(1.48) = [0.35], Max-Change = 0.0019
Stage 2 = 44, CDLL = -18042.6, AR(1.48) = [0.35], Max-Change = 0.0074
Stage 2 = 45, CDLL = -18028.3, AR(1.48) = [0.36], Max-Change = 0.0029
Stage 2 = 46, CDLL = -18045.4, AR(1.48) = [0.36], Max-Change = 0.0012
Stage 2 = 47, CDLL = -18043.9, AR(1.48) = [0.35], Max-Change = 0.0032
Stage 2 = 48, CDLL = -18030.7, AR(1.48) = [0.35], Max-Change = 0.0078
Stage 2 = 49, CDLL = -18074.4, AR(1.48) = [0.38], Max-Change = 0.0016
Stage 2 = 50, CDLL = -18029.5, AR(1.48) = [0.36], Max-Change = 0.0036
Stage 2 = 51, CDLL = -18045.6, AR(1.48) = [0.35], Max-Change = 0.0012
Stage 2 = 52, CDLL = -18011.5, AR(1.48) = [0.38], Max-Change = 0.0019
Stage 2 = 53, CDLL = -18049.7, AR(1.48) = [0.37], Max-Change = 0.0072
Stage 2 = 54, CDLL = -18058.8, AR(1.48) = [0.35], Max-Change = 0.0032
Stage 2 = 55, CDLL = -18050.6, AR(1.48) = [0.36], Max-Change = 0.0033
Stage 2 = 56, CDLL = -18038.6, AR(1.48) = [0.34], Max-Change = 0.0015
Stage 2 = 57, CDLL = -18061.3, AR(1.48) = [0.35], Max-Change = 0.0042
Stage 2 = 58, CDLL = -18094.5, AR(1.48) = [0.37], Max-Change = 0.0065
Stage 2 = 59, CDLL = -18066.0, AR(1.48) = [0.36], Max-Change = 0.0056
Stage 2 = 60, CDLL = -18046.5, AR(1.48) = [0.37], Max-Change = 0.0046
Stage 2 = 61, CDLL = -18079.2, AR(1.48) = [0.39], Max-Change = 0.0031
Stage 2 = 62, CDLL = -18056.8, AR(1.48) = [0.37], Max-Change = 0.0111
Stage 2 = 63, CDLL = -18055.0, AR(1.48) = [0.37], Max-Change = 0.0063
Stage 2 = 64, CDLL = -18068.9, AR(1.48) = [0.35], Max-Change = 0.0039
Stage 2 = 65, CDLL = -18003.1, AR(1.48) = [0.37], Max-Change = 0.0057
Stage 2 = 66, CDLL = -18035.7, AR(1.48) = [0.35], Max-Change = 0.0079
Stage 2 = 67, CDLL = -18003.6, AR(1.48) = [0.37], Max-Change = 0.0120
Stage 2 = 68, CDLL = -18048.1, AR(1.48) = [0.37], Max-Change = 0.0070
Stage 2 = 69, CDLL = -18021.0, AR(1.48) = [0.41], Max-Change = 0.0010
Stage 2 = 70, CDLL = -18020.0, AR(1.48) = [0.37], Max-Change = 0.0039
Stage 2 = 71, CDLL = -18015.4, AR(1.48) = [0.34], Max-Change = 0.0052
Stage 2 = 72, CDLL = -18003.6, AR(1.48) = [0.39], Max-Change = 0.0026
Stage 2 = 73, CDLL = -18055.3, AR(1.48) = [0.36], Max-Change = 0.0030
Stage 2 = 74, CDLL = -18032.3, AR(1.48) = [0.38], Max-Change = 0.0034
Stage 2 = 75, CDLL = -18045.2, AR(1.48) = [0.36], Max-Change = 0.0034
Stage 2 = 76, CDLL = -18031.2, AR(1.48) = [0.31], Max-Change = 0.0028
Stage 2 = 77, CDLL = -18016.4, AR(1.48) = [0.38], Max-Change = 0.0040
Stage 2 = 78, CDLL = -18008.2, AR(1.48) = [0.36], Max-Change = 0.0089
Stage 2 = 79, CDLL = -18042.4, AR(1.48) = [0.37], Max-Change = 0.0048
Stage 2 = 80, CDLL = -18002.3, AR(1.48) = [0.35], Max-Change = 0.0042
Stage 2 = 81, CDLL = -18029.3, AR(1.48) = [0.35], Max-Change = 0.0025
Stage 2 = 82, CDLL = -18038.5, AR(1.48) = [0.36], Max-Change = 0.0034
Stage 2 = 83, CDLL = -18054.1, AR(1.48) = [0.39], Max-Change = 0.0053
Stage 2 = 84, CDLL = -17992.5, AR(1.48) = [0.35], Max-Change = 0.0042
Stage 2 = 85, CDLL = -17976.0, AR(1.48) = [0.37], Max-Change = 0.0016
Stage 2 = 86, CDLL = -18027.2, AR(1.48) = [0.36], Max-Change = 0.0026
Stage 2 = 87, CDLL = -18022.9, AR(1.48) = [0.35], Max-Change = 0.0043
Stage 2 = 88, CDLL = -17998.7, AR(1.48) = [0.35], Max-Change = 0.0010
Stage 2 = 89, CDLL = -18011.3, AR(1.48) = [0.35], Max-Change = 0.0039
Stage 2 = 90, CDLL = -17993.7, AR(1.48) = [0.34], Max-Change = 0.0053
Stage 2 = 91, CDLL = -18023.8, AR(1.48) = [0.35], Max-Change = 0.0094
Stage 2 = 92, CDLL = -18029.0, AR(1.48) = [0.37], Max-Change = 0.0066
Stage 2 = 93, CDLL = -18053.3, AR(1.48) = [0.39], Max-Change = 0.0042
Stage 2 = 94, CDLL = -18038.0, AR(1.48) = [0.35], Max-Change = 0.0055
Stage 2 = 95, CDLL = -18021.7, AR(1.48) = [0.34], Max-Change = 0.0049
Stage 2 = 96, CDLL = -18008.2, AR(1.48) = [0.36], Max-Change = 0.0048
Stage 2 = 97, CDLL = -18057.6, AR(1.48) = [0.36], Max-Change = 0.0028
Stage 2 = 98, CDLL = -18050.3, AR(1.48) = [0.34], Max-Change = 0.0043
Stage 2 = 99, CDLL = -18041.1, AR(1.48) = [0.38], Max-Change = 0.0065
Stage 2 = 100, CDLL = -18005.8, AR(1.48) = [0.36], Max-Change = 0.0139
Stage 3 = 1, CDLL = -18051.5, AR(1.48) = [0.38], gam = 0.0000, Max-Change = 0.0000
Stage 3 = 2, CDLL = -18068.6, AR(1.48) = [0.37], gam = 0.1778, Max-Change = 0.0035
Stage 3 = 3, CDLL = -18034.2, AR(1.48) = [0.37], gam = 0.1057, Max-Change = 0.0014
Stage 3 = 4, CDLL = -17995.7, AR(1.48) = [0.37], gam = 0.0780, Max-Change = 0.0018
Stage 3 = 5, CDLL = -18021.6, AR(1.48) = [0.39], gam = 0.0629, Max-Change = 0.0010
Stage 3 = 6, CDLL = -18043.9, AR(1.48) = [0.38], gam = 0.0532, Max-Change = 0.0012
Stage 3 = 7, CDLL = -18043.4, AR(1.48) = [0.36], gam = 0.0464, Max-Change = 0.0004
Stage 3 = 8, CDLL = -18037.1, AR(1.48) = [0.38], gam = 0.0413, Max-Change = 0.0010
Stage 3 = 9, CDLL = -18046.3, AR(1.48) = [0.38], gam = 0.0374, Max-Change = 0.0007
#>
#> Calculating log-likelihood...
summary(LLTM)
#>
#> Call:
#> mixedmirt(data = dat, model = 1, fixed = ~0 + difficulty, itemdesign = itemdesign,
#> SE = FALSE)
#>
#> --------------
#> FIXED EFFECTS:
#> Estimate Std.Error z.value
#> difficultyeasy 1.113 NA NA
#> difficultyhard -0.933 NA NA
#> difficultymedium 0.054 NA NA
#>
#> --------------
#> RANDOM EFFECT COVARIANCE(S):
#> Correlations on upper diagonal
#>
#> $Theta
#> F1
#> F1 0.957
#>
coef(LLTM)
#> $Item_1
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_2
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_3
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_4
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_5
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_6
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_7
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_8
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_9
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_10
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_11
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_12
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_13
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_14
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_15
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_16
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_17
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_18
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_19
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_20
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_21
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_22
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_23
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_24
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_25
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_26
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_27
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_28
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_29
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $Item_30
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.113 -0.933 0.054 1 0 0 1
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 0.957
#>
# LLTM with random error estimate (not supported with mirt() )
LLTM.e <- mixedmirt(dat, model=1, fixed = ~ 0 + difficulty,
random = ~ 1|items, itemdesign=itemdesign, SE=FALSE)
#>
Stage 1 = 1, CDLL = -19926.5, AR(0.55) = [0.51], Max-Change = 0.1895
Stage 1 = 2, CDLL = -19273.2, AR(0.55) = [0.51], Max-Change = 0.1532
Stage 1 = 3, CDLL = -18887.8, AR(0.55) = [0.50], Max-Change = 0.1314
Stage 1 = 4, CDLL = -18569.4, AR(0.55) = [0.47], Max-Change = 0.1007
Stage 1 = 5, CDLL = -18373.7, AR(0.55) = [0.48], Max-Change = 0.0870
Stage 1 = 6, CDLL = -18243.0, AR(0.55) = [0.48], Max-Change = 0.0715
Stage 1 = 7, CDLL = -18109.2, AR(0.55) = [0.49], Max-Change = 0.0569
Stage 1 = 8, CDLL = -18135.3, AR(0.55) = [0.53], Max-Change = 0.0476
Stage 1 = 9, CDLL = -18055.8, AR(0.55) = [0.53], Max-Change = 0.0393
Stage 1 = 10, CDLL = -18031.8, AR(0.55) = [0.50], Max-Change = 0.0356
Stage 1 = 11, CDLL = -18010.3, AR(0.55) = [0.52], Max-Change = 0.0282
Stage 1 = 12, CDLL = -18023.4, AR(0.55) = [0.48], Max-Change = 0.0228
Stage 1 = 13, CDLL = -18031.6, AR(0.55) = [0.53], Max-Change = 0.0195
Stage 1 = 14, CDLL = -18037.1, AR(0.55) = [0.49], Max-Change = 0.0186
Stage 1 = 15, CDLL = -18042.3, AR(0.55) = [0.51], Max-Change = 0.0167
Stage 1 = 16, CDLL = -18021.7, AR(0.55) = [0.51], Max-Change = 0.0112
Stage 1 = 17, CDLL = -18015.7, AR(0.55) = [0.51], Max-Change = 0.0157
Stage 1 = 18, CDLL = -18040.2, AR(0.55) = [0.52], Max-Change = 0.0056
Stage 1 = 19, CDLL = -18055.3, AR(0.55) = [0.49], Max-Change = 0.0061
Stage 1 = 20, CDLL = -18031.5, AR(0.55) = [0.50], Max-Change = 0.0057
Stage 1 = 21, CDLL = -18005.0, AR(0.55) = [0.49], Max-Change = 0.0061
Stage 1 = 22, CDLL = -18014.5, AR(0.55) = [0.51], Max-Change = 0.0064
Stage 1 = 23, CDLL = -18035.0, AR(0.55) = [0.53], Max-Change = 0.0048
Stage 1 = 24, CDLL = -18050.3, AR(0.55) = [0.52], Max-Change = 0.0053
Stage 1 = 25, CDLL = -17996.4, AR(0.55) = [0.50], Max-Change = 0.0050
Stage 1 = 26, CDLL = -18021.3, AR(0.55) = [0.51], Max-Change = 0.0128
Stage 1 = 27, CDLL = -18074.3, AR(0.55) = [0.55], Max-Change = 0.0070
Stage 1 = 28, CDLL = -18016.5, AR(0.55) = [0.52], Max-Change = 0.0037
Stage 1 = 29, CDLL = -18022.5, AR(0.55) = [0.49], Max-Change = 0.0043
Stage 1 = 30, CDLL = -18031.9, AR(0.55) = [0.53], Max-Change = 0.0089
Stage 1 = 31, CDLL = -18024.6, AR(0.55) = [0.51], Max-Change = 0.0025
Stage 1 = 32, CDLL = -18024.2, AR(0.55) = [0.51], Max-Change = 0.0037
Stage 1 = 33, CDLL = -17984.2, AR(0.55) = [0.52], Max-Change = 0.0030
Stage 1 = 34, CDLL = -18003.4, AR(0.55) = [0.50], Max-Change = 0.0023
Stage 1 = 35, CDLL = -18014.3, AR(0.55) = [0.51], Max-Change = 0.0061
Stage 1 = 36, CDLL = -18046.5, AR(0.55) = [0.53], Max-Change = 0.0037
Stage 1 = 37, CDLL = -18019.2, AR(0.55) = [0.54], Max-Change = 0.0037
Stage 1 = 38, CDLL = -18020.1, AR(0.55) = [0.53], Max-Change = 0.0008
Stage 1 = 39, CDLL = -18072.9, AR(0.55) = [0.52], Max-Change = 0.0058
Stage 1 = 40, CDLL = -18016.6, AR(0.55) = [0.51], Max-Change = 0.0078
Stage 1 = 41, CDLL = -18050.3, AR(0.55) = [0.52], Max-Change = 0.0026
Stage 1 = 42, CDLL = -18021.0, AR(0.55) = [0.51], Max-Change = 0.0010
Stage 1 = 43, CDLL = -18007.9, AR(0.55) = [0.53], Max-Change = 0.0062
Stage 1 = 44, CDLL = -18055.7, AR(0.55) = [0.53], Max-Change = 0.0064
Stage 1 = 45, CDLL = -18007.2, AR(0.55) = [0.49], Max-Change = 0.0153
Stage 1 = 46, CDLL = -18038.6, AR(0.55) = [0.54], Max-Change = 0.0054
Stage 1 = 47, CDLL = -18023.6, AR(0.55) = [0.53], Max-Change = 0.0047
Stage 1 = 48, CDLL = -18058.8, AR(0.55) = [0.49], Max-Change = 0.0053
Stage 1 = 49, CDLL = -18019.5, AR(0.55) = [0.51], Max-Change = 0.0045
Stage 1 = 50, CDLL = -18044.3, AR(0.55) = [0.51], Max-Change = 0.0022
Stage 1 = 51, CDLL = -18083.4, AR(0.55) = [0.53], Max-Change = 0.0027
Stage 1 = 52, CDLL = -18051.1, AR(0.55) = [0.49], Max-Change = 0.0027
Stage 1 = 53, CDLL = -18055.0, AR(0.55) = [0.51], Max-Change = 0.0048
Stage 1 = 54, CDLL = -18010.1, AR(0.55) = [0.54], Max-Change = 0.0051
Stage 1 = 55, CDLL = -18061.8, AR(0.55) = [0.53], Max-Change = 0.0057
Stage 1 = 56, CDLL = -18044.9, AR(0.55) = [0.53], Max-Change = 0.0030
Stage 1 = 57, CDLL = -18049.0, AR(0.55) = [0.50], Max-Change = 0.0083
Stage 1 = 58, CDLL = -17988.5, AR(0.55) = [0.54], Max-Change = 0.0047
Stage 1 = 59, CDLL = -18027.6, AR(0.55) = [0.49], Max-Change = 0.0068
Stage 1 = 60, CDLL = -18063.1, AR(0.55) = [0.51], Max-Change = 0.0042
Stage 1 = 61, CDLL = -18081.5, AR(0.55) = [0.52], Max-Change = 0.0099
Stage 1 = 62, CDLL = -18025.8, AR(0.55) = [0.51], Max-Change = 0.0008
Stage 1 = 63, CDLL = -18039.0, AR(0.55) = [0.51], Max-Change = 0.0020
Stage 1 = 64, CDLL = -18024.9, AR(0.55) = [0.53], Max-Change = 0.0040
Stage 1 = 65, CDLL = -18038.7, AR(0.55) = [0.51], Max-Change = 0.0047
Stage 1 = 66, CDLL = -18030.0, AR(0.55) = [0.50], Max-Change = 0.0017
Stage 1 = 67, CDLL = -18068.9, AR(0.55) = [0.49], Max-Change = 0.0028
Stage 1 = 68, CDLL = -18051.2, AR(0.55) = [0.53], Max-Change = 0.0052
Stage 1 = 69, CDLL = -18041.8, AR(0.55) = [0.54], Max-Change = 0.0014
Stage 1 = 70, CDLL = -18037.5, AR(0.55) = [0.51], Max-Change = 0.0060
Stage 1 = 71, CDLL = -18026.9, AR(0.55) = [0.51], Max-Change = 0.0037
Stage 1 = 72, CDLL = -18049.5, AR(0.55) = [0.52], Max-Change = 0.0053
Stage 1 = 73, CDLL = -18042.4, AR(0.55) = [0.54], Max-Change = 0.0065
Stage 1 = 74, CDLL = -17998.7, AR(0.55) = [0.52], Max-Change = 0.0096
Stage 1 = 75, CDLL = -18046.2, AR(0.55) = [0.49], Max-Change = 0.0029
Stage 1 = 76, CDLL = -18039.9, AR(0.55) = [0.48], Max-Change = 0.0065
Stage 1 = 77, CDLL = -18058.5, AR(0.55) = [0.52], Max-Change = 0.0028
Stage 1 = 78, CDLL = -18055.3, AR(0.55) = [0.49], Max-Change = 0.0079
Stage 1 = 79, CDLL = -18049.3, AR(0.55) = [0.54], Max-Change = 0.0044
Stage 1 = 80, CDLL = -18011.4, AR(0.55) = [0.50], Max-Change = 0.0039
Stage 1 = 81, CDLL = -18051.2, AR(0.55) = [0.50], Max-Change = 0.0013
Stage 1 = 82, CDLL = -18003.3, AR(0.55) = [0.52], Max-Change = 0.0054
Stage 1 = 83, CDLL = -18012.3, AR(0.55) = [0.51], Max-Change = 0.0084
Stage 1 = 84, CDLL = -18036.1, AR(0.55) = [0.52], Max-Change = 0.0063
Stage 1 = 85, CDLL = -17987.1, AR(0.55) = [0.49], Max-Change = 0.0108
Stage 1 = 86, CDLL = -17996.7, AR(0.55) = [0.50], Max-Change = 0.0069
Stage 1 = 87, CDLL = -18020.4, AR(0.55) = [0.55], Max-Change = 0.0043
Stage 1 = 88, CDLL = -18047.0, AR(0.55) = [0.52], Max-Change = 0.0076
Stage 1 = 89, CDLL = -18023.2, AR(0.55) = [0.55], Max-Change = 0.0081
Stage 1 = 90, CDLL = -18035.7, AR(0.55) = [0.51], Max-Change = 0.0039
Stage 1 = 91, CDLL = -18043.6, AR(0.55) = [0.53], Max-Change = 0.0033
Stage 1 = 92, CDLL = -18017.3, AR(0.55) = [0.51], Max-Change = 0.0061
Stage 1 = 93, CDLL = -18000.6, AR(0.55) = [0.49], Max-Change = 0.0015
Stage 1 = 94, CDLL = -18021.8, AR(0.55) = [0.52], Max-Change = 0.0011
Stage 1 = 95, CDLL = -18048.8, AR(0.55) = [0.52], Max-Change = 0.0038
Stage 1 = 96, CDLL = -18023.6, AR(0.55) = [0.53], Max-Change = 0.0028
Stage 1 = 97, CDLL = -18066.4, AR(0.55) = [0.51], Max-Change = 0.0071
Stage 1 = 98, CDLL = -18029.1, AR(0.55) = [0.51], Max-Change = 0.0045
Stage 1 = 99, CDLL = -18058.2, AR(0.55) = [0.47], Max-Change = 0.0088
Stage 1 = 100, CDLL = -18051.9, AR(0.58) = [0.51], Max-Change = 0.0341
Stage 1 = 101, CDLL = -18032.9, AR(0.58; 0.01) = [0.47; 0.67], Max-Change = 0.2000
Stage 1 = 102, CDLL = -18046.8, AR(0.58; 0.01) = [0.50; 0.43], Max-Change = 0.1635
Stage 1 = 103, CDLL = -18032.9, AR(0.58; 0.01) = [0.52; 0.27], Max-Change = 0.1300
Stage 1 = 104, CDLL = -18032.7, AR(0.58; 0.01) = [0.52; 0.23], Max-Change = 0.1040
Stage 1 = 105, CDLL = -18032.8, AR(0.58; 0.01) = [0.50; 0.27], Max-Change = 0.0830
Stage 1 = 106, CDLL = -18034.3, AR(0.58; 0.01) = [0.52; 0.03], Max-Change = 0.0663
Stage 1 = 107, CDLL = -18020.2, AR(0.58; 0.01) = [0.52; 0.10], Max-Change = 0.0533
Stage 1 = 108, CDLL = -18035.4, AR(0.58; 0.01) = [0.52; 0.13], Max-Change = 0.0424
Stage 1 = 109, CDLL = -18055.7, AR(0.58; 0.01) = [0.50; 0.10], Max-Change = 0.0339
Stage 1 = 110, CDLL = -18053.7, AR(0.58; 0.01) = [0.51; 0.10], Max-Change = 0.0282
Stage 1 = 111, CDLL = -18023.3, AR(0.58; 0.01) = [0.49; 0.17], Max-Change = 0.0229
Stage 1 = 112, CDLL = -18084.3, AR(0.58; 0.01) = [0.51; 0.07], Max-Change = 0.0193
Stage 1 = 113, CDLL = -18032.6, AR(0.58; 0.01) = [0.54; 0.17], Max-Change = 0.0178
Stage 1 = 114, CDLL = -18025.5, AR(0.58; 0.01) = [0.52; 0.13], Max-Change = 0.1145
Stage 1 = 115, CDLL = -18031.8, AR(0.58; 0.01) = [0.48; 0.10], Max-Change = 0.0062
Stage 1 = 116, CDLL = -17993.0, AR(0.58; 0.01) = [0.51; 0.17], Max-Change = 0.0091
Stage 1 = 117, CDLL = -18051.9, AR(0.58; 0.01) = [0.52; 0.03], Max-Change = 0.0025
Stage 1 = 118, CDLL = -18006.8, AR(0.58; 0.01) = [0.52; 0.17], Max-Change = 0.0052
Stage 1 = 119, CDLL = -18004.4, AR(0.58; 0.01) = [0.48; 0.20], Max-Change = 0.0141
Stage 1 = 120, CDLL = -18049.6, AR(0.58; 0.01) = [0.50; 0.07], Max-Change = 0.0049
Stage 1 = 121, CDLL = -18009.1, AR(0.58; 0.01) = [0.52; 0.03], Max-Change = 0.0088
Stage 1 = 122, CDLL = -18026.9, AR(0.58; 0.01) = [0.52; 0.03], Max-Change = 0.0028
Stage 1 = 123, CDLL = -18035.7, AR(0.58; 0.01) = [0.50; 0.03], Max-Change = 0.0065
Stage 1 = 124, CDLL = -18037.9, AR(0.58; 0.01) = [0.51; 0.03], Max-Change = 0.0036
Stage 1 = 125, CDLL = -18006.8, AR(0.58; 0.01) = [0.50; 0.10], Max-Change = 0.0063
Stage 1 = 126, CDLL = -18009.2, AR(0.58; 0.01) = [0.49; 0.07], Max-Change = 0.0043
Stage 1 = 127, CDLL = -18056.0, AR(0.58; 0.01) = [0.53; 0.03], Max-Change = 0.0107
Stage 1 = 128, CDLL = -18053.9, AR(0.58; 0.01) = [0.49; 0.00], Max-Change = 0.0078
Stage 1 = 129, CDLL = -18062.5, AR(0.58; 0.01) = [0.52; 0.03], Max-Change = 0.0054
Stage 1 = 130, CDLL = -18055.2, AR(0.58; 0.01) = [0.52; 0.07], Max-Change = 0.0060
Stage 1 = 131, CDLL = -18044.0, AR(0.58; 0.01) = [0.50; 0.00], Max-Change = 0.0064
Stage 1 = 132, CDLL = -18006.5, AR(0.58; 0.01) = [0.52; 0.10], Max-Change = 0.0061
Stage 1 = 133, CDLL = -18030.2, AR(0.58; 0.01) = [0.53; 0.03], Max-Change = 0.0041
Stage 1 = 134, CDLL = -17997.1, AR(0.58; 0.01) = [0.51; 0.00], Max-Change = 0.0079
Stage 1 = 135, CDLL = -18045.1, AR(0.58; 0.01) = [0.52; 0.00], Max-Change = 0.0029
Stage 1 = 136, CDLL = -18027.9, AR(0.58; 0.01) = [0.50; 0.00], Max-Change = 0.0062
Stage 1 = 137, CDLL = -18054.0, AR(0.58; 0.01) = [0.53; 0.03], Max-Change = 0.0038
Stage 1 = 138, CDLL = -18056.0, AR(0.58; 0.01) = [0.49; 0.03], Max-Change = 0.0057
Stage 1 = 139, CDLL = -17994.1, AR(0.58; 0.01) = [0.52; 0.07], Max-Change = 0.0041
Stage 1 = 140, CDLL = -18006.2, AR(0.58; 0.01) = [0.48; 0.00], Max-Change = 0.0074
Stage 1 = 141, CDLL = -18026.0, AR(0.58; 0.01) = [0.52; 0.03], Max-Change = 0.0043
Stage 1 = 142, CDLL = -18003.9, AR(0.58; 0.01) = [0.50; 0.03], Max-Change = 0.0042
Stage 1 = 143, CDLL = -18061.5, AR(0.58; 0.01) = [0.53; 0.00], Max-Change = 0.0062
Stage 1 = 144, CDLL = -18014.9, AR(0.58; 0.01) = [0.51; 0.03], Max-Change = 0.0068
Stage 1 = 145, CDLL = -17988.1, AR(0.58; 0.01) = [0.52; 0.03], Max-Change = 0.0031
Stage 1 = 146, CDLL = -18025.2, AR(0.58; 0.01) = [0.51; 0.07], Max-Change = 0.0048
Stage 1 = 147, CDLL = -18018.5, AR(0.58; 0.01) = [0.52; 0.07], Max-Change = 0.0035
Stage 1 = 148, CDLL = -18036.7, AR(0.58; 0.01) = [0.50; 0.00], Max-Change = 0.0083
Stage 1 = 149, CDLL = -18064.7, AR(0.58; 0.01) = [0.54; 0.10], Max-Change = 0.0063
Stage 1 = 150, CDLL = -18050.6, AR(0.58; 0.01) = [0.52; 0.07], Max-Change = 0.0028
Stage 1 = 151, CDLL = -18028.0, AR(0.58; 0.01) = [0.52; 0.07], Max-Change = 0.0064
Stage 1 = 152, CDLL = -18031.2, AR(0.58; 0.01) = [0.51; 0.07], Max-Change = 0.0028
Stage 1 = 153, CDLL = -18003.8, AR(0.58; 0.01) = [0.48; 0.07], Max-Change = 0.0016
Stage 1 = 154, CDLL = -18035.1, AR(0.58; 0.01) = [0.49; 0.03], Max-Change = 0.0061
Stage 1 = 155, CDLL = -18016.6, AR(0.58; 0.01) = [0.52; 0.03], Max-Change = 0.0055
Stage 1 = 156, CDLL = -18023.3, AR(0.58; 0.01) = [0.50; 0.00], Max-Change = 0.0028
Stage 1 = 157, CDLL = -18027.4, AR(0.58; 0.01) = [0.51; 0.00], Max-Change = 0.0064
Stage 1 = 158, CDLL = -18002.2, AR(0.58; 0.01) = [0.52; 0.07], Max-Change = 0.0035
Stage 1 = 159, CDLL = -18027.1, AR(0.58; 0.01) = [0.48; 0.07], Max-Change = 0.0055
Stage 1 = 160, CDLL = -18047.3, AR(0.58; 0.01) = [0.50; 0.07], Max-Change = 0.0029
Stage 1 = 161, CDLL = -18031.1, AR(0.58; 0.01) = [0.49; 0.07], Max-Change = 0.0067
Stage 1 = 162, CDLL = -18016.0, AR(0.58; 0.01) = [0.48; 0.00], Max-Change = 0.0079
Stage 1 = 163, CDLL = -18055.9, AR(0.58; 0.01) = [0.51; 0.07], Max-Change = 0.0043
Stage 1 = 164, CDLL = -18027.9, AR(0.58; 0.01) = [0.49; 0.07], Max-Change = 0.0039
Stage 1 = 165, CDLL = -18052.5, AR(0.58; 0.01) = [0.52; 0.03], Max-Change = 0.0079
Stage 1 = 166, CDLL = -18011.4, AR(0.58; 0.01) = [0.49; 0.03], Max-Change = 0.0066
Stage 1 = 167, CDLL = -18051.5, AR(0.58; 0.01) = [0.54; 0.03], Max-Change = 0.0066
Stage 1 = 168, CDLL = -17994.6, AR(0.58; 0.01) = [0.50; 0.03], Max-Change = 0.0023
Stage 1 = 169, CDLL = -18011.1, AR(0.58; 0.01) = [0.51; 0.07], Max-Change = 0.0038
Stage 1 = 170, CDLL = -17993.1, AR(0.58; 0.01) = [0.48; 0.03], Max-Change = 0.0034
Stage 1 = 171, CDLL = -18058.6, AR(0.58; 0.01) = [0.50; 0.03], Max-Change = 0.0032
Stage 1 = 172, CDLL = -18015.1, AR(0.58; 0.01) = [0.51; 0.07], Max-Change = 0.0030
Stage 1 = 173, CDLL = -18051.3, AR(0.58; 0.01) = [0.52; 0.00], Max-Change = 0.0055
Stage 1 = 174, CDLL = -18047.4, AR(0.58; 0.01) = [0.51; 0.07], Max-Change = 0.0026
Stage 1 = 175, CDLL = -18053.0, AR(0.58; 0.01) = [0.51; 0.00], Max-Change = 0.0127
Stage 1 = 176, CDLL = -18039.1, AR(0.58; 0.01) = [0.51; 0.07], Max-Change = 0.0087
Stage 1 = 177, CDLL = -18023.6, AR(0.58; 0.01) = [0.52; 0.03], Max-Change = 0.0037
Stage 1 = 178, CDLL = -18023.9, AR(0.58; 0.01) = [0.50; 0.00], Max-Change = 0.0246
Stage 1 = 179, CDLL = -18063.7, AR(0.58; 0.01) = [0.49; 0.07], Max-Change = 0.0031
Stage 1 = 180, CDLL = -18072.8, AR(0.58; 0.01) = [0.55; 0.03], Max-Change = 0.0068
Stage 1 = 181, CDLL = -18029.1, AR(0.58; 0.01) = [0.49; 0.03], Max-Change = 0.0036
Stage 1 = 182, CDLL = -18024.8, AR(0.58; 0.01) = [0.50; 0.07], Max-Change = 0.0135
Stage 1 = 183, CDLL = -18026.3, AR(0.58; 0.01) = [0.52; 0.07], Max-Change = 0.0032
Stage 1 = 184, CDLL = -18038.0, AR(0.58; 0.01) = [0.52; 0.07], Max-Change = 0.0025
Stage 1 = 185, CDLL = -18051.2, AR(0.58; 0.01) = [0.52; 0.03], Max-Change = 0.0022
Stage 1 = 186, CDLL = -18073.2, AR(0.58; 0.01) = [0.52; 0.03], Max-Change = 0.0055
Stage 1 = 187, CDLL = -18035.5, AR(0.58; 0.01) = [0.53; 0.00], Max-Change = 0.0048
Stage 1 = 188, CDLL = -18028.0, AR(0.58; 0.01) = [0.52; 0.03], Max-Change = 0.0045
Stage 1 = 189, CDLL = -18007.7, AR(0.58; 0.01) = [0.47; 0.07], Max-Change = 0.0106
Stage 1 = 190, CDLL = -18017.0, AR(0.58; 0.01) = [0.53; 0.00], Max-Change = 0.0054
Stage 1 = 191, CDLL = -18019.5, AR(0.58; 0.01) = [0.50; 0.10], Max-Change = 0.0101
Stage 1 = 192, CDLL = -18032.9, AR(0.58; 0.01) = [0.51; 0.03], Max-Change = 0.0064
Stage 1 = 193, CDLL = -18011.0, AR(0.58; 0.01) = [0.50; 0.10], Max-Change = 0.0050
Stage 1 = 194, CDLL = -18062.7, AR(0.58; 0.01) = [0.53; 0.07], Max-Change = 0.0030
Stage 1 = 195, CDLL = -18021.6, AR(0.58; 0.01) = [0.50; 0.07], Max-Change = 0.0055
Stage 1 = 196, CDLL = -17998.0, AR(0.58; 0.01) = [0.51; 0.00], Max-Change = 0.0140
Stage 1 = 197, CDLL = -18015.8, AR(0.58; 0.01) = [0.49; 0.03], Max-Change = 0.0070
Stage 1 = 198, CDLL = -18025.8, AR(0.58; 0.01) = [0.52; 0.07], Max-Change = 0.0040
Stage 1 = 199, CDLL = -18026.6, AR(0.58; 0.01) = [0.49; 0.13], Max-Change = 0.0064
Stage 1 = 200, CDLL = -18004.2, AR(1.16; 0.00) = [0.43; 0.17], Max-Change = 0.0030
Stage 2 = 1, CDLL = -17991.6, AR(1.16; 0.00) = [0.39; 0.10], Max-Change = 0.0036
Stage 2 = 2, CDLL = -18049.4, AR(1.16; 0.00) = [0.39; 0.07], Max-Change = 0.0038
Stage 2 = 3, CDLL = -18019.4, AR(1.16; 0.00) = [0.40; 0.07], Max-Change = 0.0027
Stage 2 = 4, CDLL = -18042.4, AR(1.16; 0.00) = [0.38; 0.07], Max-Change = 0.0043
Stage 2 = 5, CDLL = -18032.7, AR(1.16; 0.00) = [0.40; 0.13], Max-Change = 0.0011
Stage 2 = 6, CDLL = -18014.1, AR(1.16; 0.00) = [0.38; 0.07], Max-Change = 0.0067
Stage 2 = 7, CDLL = -18011.4, AR(1.16; 0.00) = [0.40; 0.03], Max-Change = 0.0066
Stage 2 = 8, CDLL = -18041.4, AR(1.16; 0.00) = [0.42; 0.07], Max-Change = 0.0051
Stage 2 = 9, CDLL = -18061.8, AR(1.16; 0.00) = [0.39; 0.10], Max-Change = 0.0036
Stage 2 = 10, CDLL = -18074.7, AR(1.16; 0.00) = [0.39; 0.07], Max-Change = 0.0096
Stage 2 = 11, CDLL = -18051.2, AR(1.16; 0.00) = [0.38; 0.07], Max-Change = 0.0032
Stage 2 = 12, CDLL = -18056.9, AR(1.16; 0.00) = [0.42; 0.07], Max-Change = 0.0064
Stage 2 = 13, CDLL = -18042.6, AR(1.16; 0.00) = [0.39; 0.07], Max-Change = 0.0033
Stage 2 = 14, CDLL = -18050.6, AR(1.16; 0.00) = [0.37; 0.10], Max-Change = 0.0038
Stage 2 = 15, CDLL = -18024.6, AR(1.16; 0.00) = [0.41; 0.10], Max-Change = 0.0065
Stage 2 = 16, CDLL = -18071.7, AR(1.16; 0.00) = [0.39; 0.03], Max-Change = 0.0051
Stage 2 = 17, CDLL = -18045.7, AR(1.16; 0.00) = [0.40; 0.03], Max-Change = 0.0038
Stage 2 = 18, CDLL = -18009.6, AR(1.16; 0.00) = [0.38; 0.07], Max-Change = 0.0045
Stage 2 = 19, CDLL = -18036.1, AR(1.16; 0.00) = [0.41; 0.07], Max-Change = 0.0031
Stage 2 = 20, CDLL = -18083.0, AR(1.16; 0.00) = [0.38; 0.07], Max-Change = 0.0054
Stage 2 = 21, CDLL = -18060.5, AR(1.16; 0.00) = [0.39; 0.10], Max-Change = 0.0013
Stage 2 = 22, CDLL = -18042.1, AR(1.16; 0.00) = [0.41; 0.03], Max-Change = 0.0015
Stage 2 = 23, CDLL = -18029.7, AR(1.16; 0.00) = [0.40; 0.07], Max-Change = 0.0024
Stage 2 = 24, CDLL = -18035.9, AR(1.16; 0.00) = [0.39; 0.07], Max-Change = 0.0061
Stage 2 = 25, CDLL = -18031.5, AR(1.16; 0.00) = [0.41; 0.10], Max-Change = 0.0079
Stage 2 = 26, CDLL = -18033.7, AR(1.16; 0.00) = [0.41; 0.07], Max-Change = 0.0042
Stage 2 = 27, CDLL = -18030.0, AR(1.16; 0.00) = [0.37; 0.13], Max-Change = 0.0036
Stage 2 = 28, CDLL = -18031.7, AR(1.16; 0.00) = [0.40; 0.03], Max-Change = 0.0095
Stage 2 = 29, CDLL = -18037.9, AR(1.16; 0.00) = [0.39; 0.07], Max-Change = 0.0060
Stage 2 = 30, CDLL = -18041.0, AR(1.16; 0.00) = [0.39; 0.10], Max-Change = 0.0069
Stage 2 = 31, CDLL = -18026.1, AR(1.16; 0.00) = [0.40; 0.03], Max-Change = 0.0023
Stage 2 = 32, CDLL = -18039.2, AR(1.16; 0.00) = [0.41; 0.00], Max-Change = 0.0047
Stage 2 = 33, CDLL = -18037.1, AR(1.16; 0.00) = [0.42; 0.03], Max-Change = 0.0053
Stage 2 = 34, CDLL = -18024.4, AR(1.16; 0.00) = [0.40; 0.00], Max-Change = 0.0028
Stage 2 = 35, CDLL = -18036.3, AR(1.16; 0.00) = [0.42; 0.07], Max-Change = 0.0078
Stage 2 = 36, CDLL = -18012.7, AR(1.16; 0.00) = [0.41; 0.00], Max-Change = 0.0035
Stage 2 = 37, CDLL = -17989.1, AR(1.16; 0.00) = [0.38; 0.07], Max-Change = 0.0025
Stage 2 = 38, CDLL = -18037.3, AR(1.16; 0.00) = [0.41; 0.03], Max-Change = 0.0045
Stage 2 = 39, CDLL = -18055.8, AR(1.16; 0.00) = [0.39; 0.03], Max-Change = 0.0069
Stage 2 = 40, CDLL = -18043.3, AR(1.16; 0.00) = [0.42; 0.00], Max-Change = 0.0064
Stage 2 = 41, CDLL = -18004.3, AR(1.16; 0.00) = [0.42; 0.03], Max-Change = 0.0024
Stage 2 = 42, CDLL = -18006.0, AR(1.16; 0.00) = [0.41; 0.13], Max-Change = 0.0026
Stage 2 = 43, CDLL = -18017.3, AR(1.16; 0.00) = [0.41; 0.13], Max-Change = 0.0025
Stage 2 = 44, CDLL = -18008.1, AR(1.16; 0.00) = [0.38; 0.07], Max-Change = 0.0053
Stage 2 = 45, CDLL = -18028.2, AR(1.16; 0.00) = [0.39; 0.07], Max-Change = 0.0161
Stage 2 = 46, CDLL = -18042.6, AR(1.16; 0.00) = [0.39; 0.07], Max-Change = 0.0060
Stage 2 = 47, CDLL = -18076.3, AR(1.16; 0.00) = [0.41; 0.03], Max-Change = 0.0077
Stage 2 = 48, CDLL = -17980.5, AR(1.16; 0.00) = [0.39; 0.13], Max-Change = 0.0065
Stage 2 = 49, CDLL = -18016.4, AR(1.16; 0.00) = [0.41; 0.00], Max-Change = 0.0030
Stage 2 = 50, CDLL = -18040.6, AR(1.16; 0.00) = [0.40; 0.10], Max-Change = 0.0060
Stage 2 = 51, CDLL = -18020.3, AR(1.16; 0.00) = [0.40; 0.03], Max-Change = 0.0033
Stage 2 = 52, CDLL = -17975.7, AR(1.16; 0.00) = [0.39; 0.03], Max-Change = 0.0037
Stage 2 = 53, CDLL = -18004.8, AR(1.16; 0.00) = [0.38; 0.03], Max-Change = 0.0104
Stage 2 = 54, CDLL = -18048.9, AR(1.16; 0.00) = [0.39; 0.03], Max-Change = 0.0044
Stage 2 = 55, CDLL = -18020.2, AR(1.16; 0.00) = [0.40; 0.10], Max-Change = 0.0048
Stage 2 = 56, CDLL = -18034.2, AR(1.16; 0.00) = [0.39; 0.03], Max-Change = 0.0065
Stage 2 = 57, CDLL = -18050.5, AR(1.16; 0.00) = [0.39; 0.10], Max-Change = 0.0053
Stage 2 = 58, CDLL = -18021.4, AR(1.16; 0.00) = [0.39; 0.10], Max-Change = 0.0053
Stage 2 = 59, CDLL = -18037.5, AR(1.16; 0.00) = [0.41; 0.10], Max-Change = 0.0041
Stage 2 = 60, CDLL = -18012.3, AR(1.16; 0.00) = [0.41; 0.13], Max-Change = 0.0048
Stage 2 = 61, CDLL = -18023.1, AR(1.16; 0.00) = [0.42; 0.07], Max-Change = 0.0051
Stage 2 = 62, CDLL = -18008.7, AR(1.16; 0.00) = [0.37; 0.03], Max-Change = 0.0055
Stage 2 = 63, CDLL = -18012.5, AR(1.16; 0.00) = [0.39; 0.10], Max-Change = 0.0129
Stage 2 = 64, CDLL = -18051.2, AR(1.16; 0.00) = [0.38; 0.03], Max-Change = 0.0020
Stage 2 = 65, CDLL = -18073.7, AR(1.16; 0.00) = [0.41; 0.03], Max-Change = 0.0098
Stage 2 = 66, CDLL = -17993.5, AR(1.16; 0.00) = [0.39; 0.10], Max-Change = 0.0048
Stage 2 = 67, CDLL = -18040.1, AR(1.16; 0.00) = [0.40; 0.07], Max-Change = 0.0044
Stage 2 = 68, CDLL = -18012.7, AR(1.16; 0.00) = [0.38; 0.10], Max-Change = 0.0054
Stage 2 = 69, CDLL = -18066.8, AR(1.16; 0.00) = [0.39; 0.00], Max-Change = 0.0028
Stage 2 = 70, CDLL = -18061.5, AR(1.16; 0.00) = [0.38; 0.07], Max-Change = 0.0035
Stage 2 = 71, CDLL = -18015.0, AR(1.16; 0.00) = [0.37; 0.07], Max-Change = 0.0027
Stage 2 = 72, CDLL = -18022.0, AR(1.16; 0.00) = [0.38; 0.07], Max-Change = 0.0043
Stage 2 = 73, CDLL = -18040.2, AR(1.16; 0.00) = [0.40; 0.03], Max-Change = 0.0073
Stage 2 = 74, CDLL = -18047.5, AR(1.16; 0.00) = [0.39; 0.00], Max-Change = 0.0011
Stage 2 = 75, CDLL = -18035.2, AR(1.16; 0.00) = [0.42; 0.07], Max-Change = 0.0010
Stage 2 = 76, CDLL = -18059.9, AR(1.16; 0.00) = [0.41; 0.10], Max-Change = 0.0075
Stage 2 = 77, CDLL = -18011.0, AR(1.16; 0.00) = [0.40; 0.03], Max-Change = 0.0092
Stage 2 = 78, CDLL = -18027.8, AR(1.16; 0.00) = [0.38; 0.13], Max-Change = 0.0035
Stage 2 = 79, CDLL = -18067.4, AR(1.16; 0.00) = [0.40; 0.07], Max-Change = 0.0054
Stage 2 = 80, CDLL = -18041.5, AR(1.16; 0.00) = [0.40; 0.03], Max-Change = 0.0070
Stage 2 = 81, CDLL = -18055.5, AR(1.16; 0.00) = [0.40; 0.07], Max-Change = 0.0022
Stage 2 = 82, CDLL = -18049.1, AR(1.16; 0.00) = [0.38; 0.10], Max-Change = 0.0053
Stage 2 = 83, CDLL = -18014.9, AR(1.16; 0.00) = [0.39; 0.03], Max-Change = 0.0053
Stage 2 = 84, CDLL = -18009.9, AR(1.16; 0.00) = [0.38; 0.10], Max-Change = 0.0142
Stage 2 = 85, CDLL = -18003.0, AR(1.16; 0.00) = [0.39; 0.03], Max-Change = 0.0049
Stage 2 = 86, CDLL = -17986.6, AR(1.16; 0.00) = [0.39; 0.07], Max-Change = 0.0045
Stage 2 = 87, CDLL = -18016.3, AR(1.16; 0.00) = [0.40; 0.10], Max-Change = 0.0013
Stage 2 = 88, CDLL = -18049.4, AR(1.16; 0.00) = [0.42; 0.03], Max-Change = 0.0004
Stage 2 = 89, CDLL = -18038.3, AR(1.16; 0.00) = [0.41; 0.07], Max-Change = 0.0080
Stage 2 = 90, CDLL = -18072.2, AR(1.16; 0.00) = [0.41; 0.03], Max-Change = 0.0101
Stage 2 = 91, CDLL = -18017.5, AR(1.16; 0.00) = [0.40; 0.03], Max-Change = 0.0035
Stage 2 = 92, CDLL = -18059.5, AR(1.16; 0.00) = [0.40; 0.03], Max-Change = 0.0105
Stage 2 = 93, CDLL = -18023.8, AR(1.16; 0.00) = [0.41; 0.03], Max-Change = 0.0044
Stage 2 = 94, CDLL = -18037.1, AR(1.16; 0.00) = [0.39; 0.10], Max-Change = 0.0034
Stage 2 = 95, CDLL = -18013.3, AR(1.16; 0.00) = [0.39; 0.17], Max-Change = 0.0023
Stage 2 = 96, CDLL = -18004.6, AR(1.16; 0.00) = [0.40; 0.13], Max-Change = 0.0027
Stage 2 = 97, CDLL = -18016.2, AR(1.16; 0.00) = [0.38; 0.07], Max-Change = 0.0034
Stage 2 = 98, CDLL = -18025.8, AR(1.16; 0.00) = [0.37; 0.07], Max-Change = 0.0012
Stage 2 = 99, CDLL = -18027.2, AR(1.16; 0.00) = [0.40; 0.03], Max-Change = 0.0042
Stage 2 = 100, CDLL = -18027.6, AR(1.16; 0.00) = [0.38; 0.07], Max-Change = 0.0081
Stage 3 = 1, CDLL = -18061.1, AR(1.16; 0.00) = [0.40; 0.00], gam = 0.0000, Max-Change = 0.0000
Stage 3 = 2, CDLL = -18023.5, AR(1.16; 0.00) = [0.40; 0.07], gam = 0.1778, Max-Change = 0.0039
Stage 3 = 3, CDLL = -17999.7, AR(1.16; 0.00) = [0.41; 0.03], gam = 0.1057, Max-Change = 0.0051
Stage 3 = 4, CDLL = -18059.4, AR(1.16; 0.00) = [0.41; 0.07], gam = 0.0780, Max-Change = 0.0035
Stage 3 = 5, CDLL = -18023.9, AR(1.16; 0.00) = [0.38; 0.03], gam = 0.0629, Max-Change = 0.0013
Stage 3 = 6, CDLL = -18039.3, AR(1.16; 0.00) = [0.41; 0.00], gam = 0.0532, Max-Change = 0.0013
Stage 3 = 7, CDLL = -18041.4, AR(1.16; 0.00) = [0.41; 0.03], gam = 0.0464, Max-Change = 0.0024
Stage 3 = 8, CDLL = -18036.7, AR(1.16; 0.00) = [0.40; 0.00], gam = 0.0413, Max-Change = 0.0011
Stage 3 = 9, CDLL = -17997.2, AR(1.16; 0.00) = [0.38; 0.10], gam = 0.0374, Max-Change = 0.0002
Stage 3 = 10, CDLL = -18071.8, AR(1.16; 0.00) = [0.40; 0.00], gam = 0.0342, Max-Change = 0.0006
Stage 3 = 11, CDLL = -18042.5, AR(1.16; 0.00) = [0.41; 0.03], gam = 0.0316, Max-Change = 0.0003
#>
#> Calculating log-likelihood...
coef(LLTM.e)
#> $Item_1
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_2
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_3
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_4
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_5
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_6
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_7
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_8
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_9
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_10
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_11
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_12
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_13
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_14
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_15
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_16
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_17
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_18
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_19
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_20
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_21
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_22
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_23
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_24
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_25
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_26
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_27
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_28
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_29
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $Item_30
#> difficultyeasy difficultyhard difficultymedium a1 d g u
#> par 1.167 -0.928 0.047 1 0 0 1
#>
#> $GroupPars
#> MEAN_1 COV_11
#> par 0 0.965
#>
#> $items
#> COV_items_items
#> par 0.009
#>
###################
# General MLTM example (Embretson, 1984)
set.seed(42)
as <- matrix(rep(1,60), ncol=2)
as[11:18,1] <- as[1:9,2] <- 0
d1 <- rep(c(3,1),each = 6) # first easy, then medium, last difficult for first trait
d2 <- rep(c(0,1,2),times = 4) # difficult to easy
d <- rnorm(18)
ds <- rbind(cbind(d1=NA, d2=d), cbind(d1, d2))
(pars <- data.frame(a=as, d=ds))
#> a.1 a.2 d.d1 d.d2
#> 1 1 0 NA 1.37095845
#> 2 1 0 NA -0.56469817
#> 3 1 0 NA 0.36312841
#> 4 1 0 NA 0.63286260
#> 5 1 0 NA 0.40426832
#> 6 1 0 NA -0.10612452
#> 7 1 0 NA 1.51152200
#> 8 1 0 NA -0.09465904
#> 9 1 0 NA 2.01842371
#> 10 1 1 NA -0.06271410
#> 11 0 1 NA 1.30486965
#> 12 0 1 NA 2.28664539
#> 13 0 1 NA -1.38886070
#> 14 0 1 NA -0.27878877
#> 15 0 1 NA -0.13332134
#> 16 0 1 NA 0.63595040
#> 17 0 1 NA -0.28425292
#> 18 0 1 NA -2.65645542
#> 19 1 1 3 0.00000000
#> 20 1 1 3 1.00000000
#> 21 1 1 3 2.00000000
#> 22 1 1 3 0.00000000
#> 23 1 1 3 1.00000000
#> 24 1 1 3 2.00000000
#> 25 1 1 1 0.00000000
#> 26 1 1 1 1.00000000
#> 27 1 1 1 2.00000000
#> 28 1 1 1 0.00000000
#> 29 1 1 1 1.00000000
#> 30 1 1 1 2.00000000
dat <- simdata(as, ds, 2500,
itemtype = c(rep('dich', 18), rep('partcomp', 12)))
itemstats(dat)
#> $overall
#> N mean_total.score sd_total.score ave.r sd.r alpha SEM.alpha
#> 2500 16.494 4.83 0.088 0.059 0.747 2.428
#>
#> $itemstats
#> N mean sd total.r total.r_if_rm alpha_if_rm
#> Item_1 2500 0.752 0.432 0.265 0.180 0.745
#> Item_2 2500 0.384 0.486 0.328 0.234 0.742
#> Item_3 2500 0.563 0.496 0.319 0.222 0.743
#> Item_4 2500 0.635 0.481 0.318 0.224 0.743
#> Item_5 2500 0.582 0.493 0.320 0.224 0.743
#> Item_6 2500 0.478 0.500 0.329 0.233 0.742
#> Item_7 2500 0.767 0.423 0.274 0.191 0.744
#> Item_8 2500 0.469 0.499 0.315 0.218 0.743
#> Item_9 2500 0.849 0.358 0.233 0.161 0.745
#> Item_10 2500 0.471 0.499 0.557 0.480 0.727
#> Item_11 2500 0.736 0.441 0.352 0.268 0.740
#> Item_12 2500 0.882 0.323 0.246 0.182 0.745
#> Item_13 2500 0.232 0.422 0.302 0.220 0.743
#> Item_14 2500 0.460 0.499 0.319 0.222 0.743
#> Item_15 2500 0.480 0.500 0.387 0.294 0.739
#> Item_16 2500 0.627 0.484 0.352 0.260 0.741
#> Item_17 2500 0.441 0.497 0.318 0.222 0.743
#> Item_18 2500 0.097 0.296 0.209 0.149 0.746
#> Item_19 2500 0.466 0.499 0.381 0.287 0.739
#> Item_20 2500 0.643 0.479 0.360 0.269 0.740
#> Item_21 2500 0.788 0.409 0.335 0.257 0.741
#> Item_22 2500 0.456 0.498 0.406 0.315 0.737
#> Item_23 2500 0.646 0.478 0.403 0.315 0.737
#> Item_24 2500 0.769 0.422 0.364 0.284 0.740
#> Item_25 2500 0.349 0.477 0.408 0.321 0.737
#> Item_26 2500 0.492 0.500 0.414 0.323 0.737
#> Item_27 2500 0.586 0.493 0.381 0.289 0.739
#> Item_28 2500 0.330 0.470 0.388 0.300 0.738
#> Item_29 2500 0.477 0.500 0.361 0.266 0.740
#> Item_30 2500 0.587 0.492 0.371 0.278 0.740
#>
#> $proportions
#> 0 1
#> Item_1 0.248 0.752
#> Item_2 0.616 0.384
#> Item_3 0.437 0.563
#> Item_4 0.365 0.635
#> Item_5 0.418 0.582
#> Item_6 0.522 0.478
#> Item_7 0.233 0.767
#> Item_8 0.531 0.469
#> Item_9 0.151 0.849
#> Item_10 0.529 0.471
#> Item_11 0.264 0.736
#> Item_12 0.118 0.882
#> Item_13 0.768 0.232
#> Item_14 0.540 0.460
#> Item_15 0.520 0.480
#> Item_16 0.373 0.627
#> Item_17 0.559 0.441
#> Item_18 0.903 0.097
#> Item_19 0.534 0.466
#> Item_20 0.357 0.643
#> Item_21 0.212 0.788
#> Item_22 0.544 0.456
#> Item_23 0.354 0.646
#> Item_24 0.231 0.769
#> Item_25 0.651 0.349
#> Item_26 0.508 0.492
#> Item_27 0.414 0.586
#> Item_28 0.670 0.330
#> Item_29 0.523 0.477
#> Item_30 0.413 0.587
#>
# unconditional model
syntax <- "theta1 = 1-9, 19-30
theta2 = 10-30
COV = theta1*theta2"
itemtype <- c(rep('Rasch', 18), rep('PC1PL', 12))
mod <- mirt(dat, syntax, itemtype=itemtype)
#>
Iteration: 1, Log-Lik: -45647.618, Max-Change: 1.61713
Iteration: 2, Log-Lik: -43934.319, Max-Change: 0.56278
Iteration: 3, Log-Lik: -43892.332, Max-Change: 0.38750
Iteration: 4, Log-Lik: -43877.383, Max-Change: 0.26104
Iteration: 5, Log-Lik: -43870.300, Max-Change: 0.27835
Iteration: 6, Log-Lik: -43866.174, Max-Change: 0.07772
Iteration: 7, Log-Lik: -43864.938, Max-Change: 0.13203
Iteration: 8, Log-Lik: -43863.307, Max-Change: 0.08207
Iteration: 9, Log-Lik: -43862.326, Max-Change: 0.06080
Iteration: 10, Log-Lik: -43861.278, Max-Change: 0.08802
Iteration: 11, Log-Lik: -43860.960, Max-Change: 0.17156
Iteration: 12, Log-Lik: -43860.658, Max-Change: 0.09321
Iteration: 13, Log-Lik: -43860.473, Max-Change: 0.08516
Iteration: 14, Log-Lik: -43860.372, Max-Change: 0.10367
Iteration: 15, Log-Lik: -43860.296, Max-Change: 0.03893
Iteration: 16, Log-Lik: -43860.263, Max-Change: 0.04451
Iteration: 17, Log-Lik: -43860.232, Max-Change: 0.03615
Iteration: 18, Log-Lik: -43860.211, Max-Change: 0.03300
Iteration: 19, Log-Lik: -43860.188, Max-Change: 0.00524
Iteration: 20, Log-Lik: -43860.173, Max-Change: 0.00129
Iteration: 21, Log-Lik: -43860.170, Max-Change: 0.00080
Iteration: 22, Log-Lik: -43860.169, Max-Change: 0.00052
Iteration: 23, Log-Lik: -43860.168, Max-Change: 0.00069
Iteration: 24, Log-Lik: -43860.168, Max-Change: 0.00064
Iteration: 25, Log-Lik: -43860.168, Max-Change: 0.00132
Iteration: 26, Log-Lik: -43860.167, Max-Change: 0.00048
Iteration: 27, Log-Lik: -43860.167, Max-Change: 0.00010
Iteration: 28, Log-Lik: -43860.167, Max-Change: 0.00012
Iteration: 29, Log-Lik: -43860.167, Max-Change: 0.00014
Iteration: 30, Log-Lik: -43860.167, Max-Change: 0.00014
Iteration: 31, Log-Lik: -43860.167, Max-Change: 0.00007
coef(mod, simplify=TRUE)
#> $items
#> a1 a2 d g u d1 d2
#> Item_1 1 0 1.313 0 1 NA NA
#> Item_2 1 0 -0.563 0 1 NA NA
#> Item_3 1 0 0.303 0 1 NA NA
#> Item_4 1 0 0.660 0 1 NA NA
#> Item_5 1 0 0.393 0 1 NA NA
#> Item_6 1 0 -0.105 0 1 NA NA
#> Item_7 1 0 1.404 0 1 NA NA
#> Item_8 1 0 -0.147 0 1 NA NA
#> Item_9 1 0 2.013 0 1 NA NA
#> Item_10 0 1 -0.141 0 1 NA NA
#> Item_11 0 1 1.227 0 1 NA NA
#> Item_12 0 1 2.350 0 1 NA NA
#> Item_13 0 1 -1.429 0 1 NA NA
#> Item_14 0 1 -0.193 0 1 NA NA
#> Item_15 0 1 -0.098 0 1 NA NA
#> Item_16 0 1 0.623 0 1 NA NA
#> Item_17 0 1 -0.286 0 1 NA NA
#> Item_18 0 1 -2.592 0 1 NA NA
#> Item_19 1 1 NA 0 1 2.870 0.013
#> Item_20 1 1 NA 0 1 3.716 0.832
#> Item_21 1 1 NA 0 1 3.238 1.900
#> Item_22 1 1 NA 0 1 4.407 -0.174
#> Item_23 1 1 NA 0 1 3.538 0.866
#> Item_24 1 1 NA 0 1 2.851 1.890
#> Item_25 1 1 NA 0 1 1.197 -0.137
#> Item_26 1 1 NA 0 1 1.038 0.975
#> Item_27 1 1 NA 0 1 1.063 1.818
#> Item_28 1 1 NA 0 1 0.970 -0.138
#> Item_29 1 1 NA 0 1 0.902 1.010
#> Item_30 1 1 NA 0 1 1.015 1.914
#>
#> $means
#> theta1 theta2
#> 0 0
#>
#> $cov
#> theta1 theta2
#> theta1 0.917 0.081
#> theta2 0.081 0.984
#>
data.frame(est=coef(mod, simplify=TRUE)$items, pop=data.frame(a=as, d=ds))
#> est.a1 est.a2 est.d est.g est.u est.d1 est.d2 pop.a.1
#> Item_1 1 0 1.31307855 0 1 NA NA 1
#> Item_2 1 0 -0.56331423 0 1 NA NA 1
#> Item_3 1 0 0.30311181 0 1 NA NA 1
#> Item_4 1 0 0.66017201 0 1 NA NA 1
#> Item_5 1 0 0.39267181 0 1 NA NA 1
#> Item_6 1 0 -0.10529560 0 1 NA NA 1
#> Item_7 1 0 1.40429460 0 1 NA NA 1
#> Item_8 1 0 -0.14742905 0 1 NA NA 1
#> Item_9 1 0 2.01310778 0 1 NA NA 1
#> Item_10 0 1 -0.14050425 0 1 NA NA 1
#> Item_11 0 1 1.22727159 0 1 NA NA 0
#> Item_12 0 1 2.35002102 0 1 NA NA 0
#> Item_13 0 1 -1.42944927 0 1 NA NA 0
#> Item_14 0 1 -0.19283592 0 1 NA NA 0
#> Item_15 0 1 -0.09794928 0 1 NA NA 0
#> Item_16 0 1 0.62283206 0 1 NA NA 0
#> Item_17 0 1 -0.28628773 0 1 NA NA 0
#> Item_18 0 1 -2.59213954 0 1 NA NA 0
#> Item_19 1 1 NA 0 1 2.8695796 0.01318001 1
#> Item_20 1 1 NA 0 1 3.7157820 0.83154537 1
#> Item_21 1 1 NA 0 1 3.2383233 1.90018431 1
#> Item_22 1 1 NA 0 1 4.4073154 -0.17448556 1
#> Item_23 1 1 NA 0 1 3.5382631 0.86641897 1
#> Item_24 1 1 NA 0 1 2.8505117 1.88958564 1
#> Item_25 1 1 NA 0 1 1.1972230 -0.13675332 1
#> Item_26 1 1 NA 0 1 1.0378260 0.97497271 1
#> Item_27 1 1 NA 0 1 1.0634033 1.81828381 1
#> Item_28 1 1 NA 0 1 0.9704764 -0.13769090 1
#> Item_29 1 1 NA 0 1 0.9017976 1.00959896 1
#> Item_30 1 1 NA 0 1 1.0149521 1.91386682 1
#> pop.a.2 pop.d.d1 pop.d.d2
#> Item_1 0 NA 1.37095845
#> Item_2 0 NA -0.56469817
#> Item_3 0 NA 0.36312841
#> Item_4 0 NA 0.63286260
#> Item_5 0 NA 0.40426832
#> Item_6 0 NA -0.10612452
#> Item_7 0 NA 1.51152200
#> Item_8 0 NA -0.09465904
#> Item_9 0 NA 2.01842371
#> Item_10 1 NA -0.06271410
#> Item_11 1 NA 1.30486965
#> Item_12 1 NA 2.28664539
#> Item_13 1 NA -1.38886070
#> Item_14 1 NA -0.27878877
#> Item_15 1 NA -0.13332134
#> Item_16 1 NA 0.63595040
#> Item_17 1 NA -0.28425292
#> Item_18 1 NA -2.65645542
#> Item_19 1 3 0.00000000
#> Item_20 1 3 1.00000000
#> Item_21 1 3 2.00000000
#> Item_22 1 3 0.00000000
#> Item_23 1 3 1.00000000
#> Item_24 1 3 2.00000000
#> Item_25 1 1 0.00000000
#> Item_26 1 1 1.00000000
#> Item_27 1 1 2.00000000
#> Item_28 1 1 0.00000000
#> Item_29 1 1 1.00000000
#> Item_30 1 1 2.00000000
itemplot(mod, 1)
itemplot(mod, 30)
# MLTM design only for PC1PL items
itemdesign <- data.frame(t1_difficulty= factor(d1, labels=c('medium', 'easy')),
t2_difficulty=factor(d2, labels=c('hard', 'medium', 'easy')))
rownames(itemdesign) <- colnames(dat)[19:30]
itemdesign
#> t1_difficulty t2_difficulty
#> Item_19 easy hard
#> Item_20 easy medium
#> Item_21 easy easy
#> Item_22 easy hard
#> Item_23 easy medium
#> Item_24 easy easy
#> Item_25 medium hard
#> Item_26 medium medium
#> Item_27 medium easy
#> Item_28 medium hard
#> Item_29 medium medium
#> Item_30 medium easy
# fit MLTM design, leaving first 18 items as 'Rasch' type
mltm <- mirt(dat, syntax, itemtype=itemtype, itemdesign=itemdesign,
item.formula = list(theta1 ~ 0 + t1_difficulty,
theta2 ~ 0 + t2_difficulty), SE=TRUE)
#>
Iteration: 1, Log-Lik: -49303.248, Max-Change: 1.93957
Iteration: 2, Log-Lik: -44367.201, Max-Change: 0.45231
Iteration: 3, Log-Lik: -44219.190, Max-Change: 0.27074
Iteration: 4, Log-Lik: -44116.596, Max-Change: 0.17330
Iteration: 5, Log-Lik: -44038.884, Max-Change: 0.10667
Iteration: 6, Log-Lik: -43981.731, Max-Change: 0.07106
Iteration: 7, Log-Lik: -43941.387, Max-Change: 0.04798
Iteration: 8, Log-Lik: -43914.195, Max-Change: 0.03703
Iteration: 9, Log-Lik: -43896.604, Max-Change: 0.03031
Iteration: 10, Log-Lik: -43885.583, Max-Change: 0.02433
Iteration: 11, Log-Lik: -43878.831, Max-Change: 0.01923
Iteration: 12, Log-Lik: -43874.753, Max-Change: 0.01512
Iteration: 13, Log-Lik: -43869.120, Max-Change: 0.00606
Iteration: 14, Log-Lik: -43868.905, Max-Change: 0.00385
Iteration: 15, Log-Lik: -43868.798, Max-Change: 0.00302
Iteration: 16, Log-Lik: -43868.694, Max-Change: 0.00277
Iteration: 17, Log-Lik: -43868.674, Max-Change: 0.00181
Iteration: 18, Log-Lik: -43868.665, Max-Change: 0.00133
Iteration: 19, Log-Lik: -43868.658, Max-Change: 0.00114
Iteration: 20, Log-Lik: -43868.656, Max-Change: 0.00071
Iteration: 21, Log-Lik: -43868.655, Max-Change: 0.00051
Iteration: 22, Log-Lik: -43868.654, Max-Change: 0.00043
Iteration: 23, Log-Lik: -43868.654, Max-Change: 0.00027
Iteration: 24, Log-Lik: -43868.654, Max-Change: 0.00019
Iteration: 25, Log-Lik: -43868.653, Max-Change: 0.00016
Iteration: 26, Log-Lik: -43868.653, Max-Change: 0.00010
#>
#> Calculating information matrix...
coef(mltm, simplify=TRUE)
#> $items
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> Item_1 0.00 0.000
#> Item_2 0.00 0.000
#> Item_3 0.00 0.000
#> Item_4 0.00 0.000
#> Item_5 0.00 0.000
#> Item_6 0.00 0.000
#> Item_7 0.00 0.000
#> Item_8 0.00 0.000
#> Item_9 0.00 0.000
#> Item_10 0.00 0.000
#> Item_11 0.00 0.000
#> Item_12 0.00 0.000
#> Item_13 0.00 0.000
#> Item_14 0.00 0.000
#> Item_15 0.00 0.000
#> Item_16 0.00 0.000
#> Item_17 0.00 0.000
#> Item_18 0.00 0.000
#> Item_19 3.19 0.000
#> Item_20 3.19 0.000
#> Item_21 3.19 0.000
#> Item_22 3.19 0.000
#> Item_23 3.19 0.000
#> Item_24 3.19 0.000
#> Item_25 0.00 1.031
#> Item_26 0.00 1.031
#> Item_27 0.00 1.031
#> Item_28 0.00 1.031
#> Item_29 0.00 1.031
#> Item_30 0.00 1.031
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> Item_1 0.000 0.000
#> Item_2 0.000 0.000
#> Item_3 0.000 0.000
#> Item_4 0.000 0.000
#> Item_5 0.000 0.000
#> Item_6 0.000 0.000
#> Item_7 0.000 0.000
#> Item_8 0.000 0.000
#> Item_9 0.000 0.000
#> Item_10 0.000 0.000
#> Item_11 0.000 0.000
#> Item_12 0.000 0.000
#> Item_13 0.000 0.000
#> Item_14 0.000 0.000
#> Item_15 0.000 0.000
#> Item_16 0.000 0.000
#> Item_17 0.000 0.000
#> Item_18 0.000 0.000
#> Item_19 0.000 -0.078
#> Item_20 0.000 0.000
#> Item_21 1.857 0.000
#> Item_22 0.000 -0.078
#> Item_23 0.000 0.000
#> Item_24 1.857 0.000
#> Item_25 0.000 -0.078
#> Item_26 0.000 0.000
#> Item_27 1.857 0.000
#> Item_28 0.000 -0.078
#> Item_29 0.000 0.000
#> Item_30 1.857 0.000
#> theta2.t2_difficultymedium a1 a2 d g u d1 d2
#> Item_1 0.000 1 0 1.314 0 1 NA NA
#> Item_2 0.000 1 0 -0.563 0 1 NA NA
#> Item_3 0.000 1 0 0.303 0 1 NA NA
#> Item_4 0.000 1 0 0.661 0 1 NA NA
#> Item_5 0.000 1 0 0.393 0 1 NA NA
#> Item_6 0.000 1 0 -0.105 0 1 NA NA
#> Item_7 0.000 1 0 1.405 0 1 NA NA
#> Item_8 0.000 1 0 -0.147 0 1 NA NA
#> Item_9 0.000 1 0 2.014 0 1 NA NA
#> Item_10 0.000 0 1 -0.140 0 1 NA NA
#> Item_11 0.000 0 1 1.228 0 1 NA NA
#> Item_12 0.000 0 1 2.351 0 1 NA NA
#> Item_13 0.000 0 1 -1.430 0 1 NA NA
#> Item_14 0.000 0 1 -0.193 0 1 NA NA
#> Item_15 0.000 0 1 -0.098 0 1 NA NA
#> Item_16 0.000 0 1 0.623 0 1 NA NA
#> Item_17 0.000 0 1 -0.286 0 1 NA NA
#> Item_18 0.000 0 1 -2.594 0 1 NA NA
#> Item_19 0.000 1 1 NA 0 1 0 0
#> Item_20 0.924 1 1 NA 0 1 0 0
#> Item_21 0.000 1 1 NA 0 1 0 0
#> Item_22 0.000 1 1 NA 0 1 0 0
#> Item_23 0.924 1 1 NA 0 1 0 0
#> Item_24 0.000 1 1 NA 0 1 0 0
#> Item_25 0.000 1 1 NA 0 1 0 0
#> Item_26 0.924 1 1 NA 0 1 0 0
#> Item_27 0.000 1 1 NA 0 1 0 0
#> Item_28 0.000 1 1 NA 0 1 0 0
#> Item_29 0.924 1 1 NA 0 1 0 0
#> Item_30 0.000 1 1 NA 0 1 0 0
#>
#> $means
#> theta1 theta2
#> 0 0
#>
#> $cov
#> theta1 theta2
#> theta1 0.919 0.074
#> theta2 0.074 0.988
#>
coef(mltm, printSE=TRUE)
#> $Item_1
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultymedium a1 a2 d logit(g) logit(u)
#> par 0 1 0 1.314 -999 999
#> SE NA NA NA 0.054 NA NA
#>
#> $Item_2
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultymedium a1 a2 d logit(g) logit(u)
#> par 0 1 0 -0.563 -999 999
#> SE NA NA NA 0.049 NA NA
#>
#> $Item_3
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultymedium a1 a2 d logit(g) logit(u)
#> par 0 1 0 0.303 -999 999
#> SE NA NA NA 0.048 NA NA
#>
#> $Item_4
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultymedium a1 a2 d logit(g) logit(u)
#> par 0 1 0 0.661 -999 999
#> SE NA NA NA 0.049 NA NA
#>
#> $Item_5
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultymedium a1 a2 d logit(g) logit(u)
#> par 0 1 0 0.393 -999 999
#> SE NA NA NA 0.048 NA NA
#>
#> $Item_6
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultymedium a1 a2 d logit(g) logit(u)
#> par 0 1 0 -0.105 -999 999
#> SE NA NA NA 0.048 NA NA
#>
#> $Item_7
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultymedium a1 a2 d logit(g) logit(u)
#> par 0 1 0 1.405 -999 999
#> SE NA NA NA 0.055 NA NA
#>
#> $Item_8
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultymedium a1 a2 d logit(g) logit(u)
#> par 0 1 0 -0.147 -999 999
#> SE NA NA NA 0.048 NA NA
#>
#> $Item_9
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultymedium a1 a2 d logit(g) logit(u)
#> par 0 1 0 2.014 -999 999
#> SE NA NA NA 0.063 NA NA
#>
#> $Item_10
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultymedium a1 a2 d logit(g) logit(u)
#> par 0 0 1 -0.140 -999 999
#> SE NA NA NA 0.048 NA NA
#>
#> $Item_11
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultymedium a1 a2 d logit(g) logit(u)
#> par 0 0 1 1.228 -999 999
#> SE NA NA NA 0.053 NA NA
#>
#> $Item_12
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultymedium a1 a2 d logit(g) logit(u)
#> par 0 0 1 2.351 -999 999
#> SE NA NA NA 0.069 NA NA
#>
#> $Item_13
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultymedium a1 a2 d logit(g) logit(u)
#> par 0 0 1 -1.430 -999 999
#> SE NA NA NA 0.055 NA NA
#>
#> $Item_14
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultymedium a1 a2 d logit(g) logit(u)
#> par 0 0 1 -0.193 -999 999
#> SE NA NA NA 0.048 NA NA
#>
#> $Item_15
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultymedium a1 a2 d logit(g) logit(u)
#> par 0 0 1 -0.098 -999 999
#> SE NA NA NA 0.048 NA NA
#>
#> $Item_16
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultymedium a1 a2 d logit(g) logit(u)
#> par 0 0 1 0.623 -999 999
#> SE NA NA NA 0.050 NA NA
#>
#> $Item_17
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultymedium a1 a2 d logit(g) logit(u)
#> par 0 0 1 -0.286 -999 999
#> SE NA NA NA 0.049 NA NA
#>
#> $Item_18
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 0 0
#> SE NA NA
#> theta2.t2_difficultymedium a1 a2 d logit(g) logit(u)
#> par 0 0 1 -2.594 -999 999
#> SE NA NA NA 0.074 NA NA
#>
#> $Item_19
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 3.190 1.031
#> SE 0.145 0.048
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 1.857 -0.078
#> SE 0.065 0.037
#> theta2.t2_difficultymedium a1 a2 d1 d2 logit(g) logit(u)
#> par 0.924 1 1 0 0 -999 999
#> SE 0.046 NA NA NA NA NA NA
#>
#> $Item_20
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 3.190 1.031
#> SE 0.145 0.048
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 1.857 -0.078
#> SE 0.065 0.037
#> theta2.t2_difficultymedium a1 a2 d1 d2 logit(g) logit(u)
#> par 0.924 1 1 0 0 -999 999
#> SE 0.046 NA NA NA NA NA NA
#>
#> $Item_21
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 3.190 1.031
#> SE 0.145 0.048
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 1.857 -0.078
#> SE 0.065 0.037
#> theta2.t2_difficultymedium a1 a2 d1 d2 logit(g) logit(u)
#> par 0.924 1 1 0 0 -999 999
#> SE 0.046 NA NA NA NA NA NA
#>
#> $Item_22
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 3.190 1.031
#> SE 0.145 0.048
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 1.857 -0.078
#> SE 0.065 0.037
#> theta2.t2_difficultymedium a1 a2 d1 d2 logit(g) logit(u)
#> par 0.924 1 1 0 0 -999 999
#> SE 0.046 NA NA NA NA NA NA
#>
#> $Item_23
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 3.190 1.031
#> SE 0.145 0.048
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 1.857 -0.078
#> SE 0.065 0.037
#> theta2.t2_difficultymedium a1 a2 d1 d2 logit(g) logit(u)
#> par 0.924 1 1 0 0 -999 999
#> SE 0.046 NA NA NA NA NA NA
#>
#> $Item_24
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 3.190 1.031
#> SE 0.145 0.048
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 1.857 -0.078
#> SE 0.065 0.037
#> theta2.t2_difficultymedium a1 a2 d1 d2 logit(g) logit(u)
#> par 0.924 1 1 0 0 -999 999
#> SE 0.046 NA NA NA NA NA NA
#>
#> $Item_25
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 3.190 1.031
#> SE 0.145 0.048
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 1.857 -0.078
#> SE 0.065 0.037
#> theta2.t2_difficultymedium a1 a2 d1 d2 logit(g) logit(u)
#> par 0.924 1 1 0 0 -999 999
#> SE 0.046 NA NA NA NA NA NA
#>
#> $Item_26
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 3.190 1.031
#> SE 0.145 0.048
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 1.857 -0.078
#> SE 0.065 0.037
#> theta2.t2_difficultymedium a1 a2 d1 d2 logit(g) logit(u)
#> par 0.924 1 1 0 0 -999 999
#> SE 0.046 NA NA NA NA NA NA
#>
#> $Item_27
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 3.190 1.031
#> SE 0.145 0.048
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 1.857 -0.078
#> SE 0.065 0.037
#> theta2.t2_difficultymedium a1 a2 d1 d2 logit(g) logit(u)
#> par 0.924 1 1 0 0 -999 999
#> SE 0.046 NA NA NA NA NA NA
#>
#> $Item_28
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 3.190 1.031
#> SE 0.145 0.048
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 1.857 -0.078
#> SE 0.065 0.037
#> theta2.t2_difficultymedium a1 a2 d1 d2 logit(g) logit(u)
#> par 0.924 1 1 0 0 -999 999
#> SE 0.046 NA NA NA NA NA NA
#>
#> $Item_29
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 3.190 1.031
#> SE 0.145 0.048
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 1.857 -0.078
#> SE 0.065 0.037
#> theta2.t2_difficultymedium a1 a2 d1 d2 logit(g) logit(u)
#> par 0.924 1 1 0 0 -999 999
#> SE 0.046 NA NA NA NA NA NA
#>
#> $Item_30
#> theta1.t1_difficultyeasy theta1.t1_difficultymedium
#> par 3.190 1.031
#> SE 0.145 0.048
#> theta2.t2_difficultyeasy theta2.t2_difficultyhard
#> par 1.857 -0.078
#> SE 0.065 0.037
#> theta2.t2_difficultymedium a1 a2 d1 d2 logit(g) logit(u)
#> par 0.924 1 1 0 0 -999 999
#> SE 0.046 NA NA NA NA NA NA
#>
#> $GroupPars
#> MEAN_1 MEAN_2 COV_11 COV_21 COV_22
#> par 0 0 0.919 0.074 0.988
#> SE NA NA 0.047 0.029 0.045
#>
anova(mltm, mod) # similar fit; hence more constrained version preferred
#> AIC SABIC HQ BIC logLik X2 df p
#> mltm 87789.31 87858.12 87844.28 87940.73 -43868.65
#> mod 87810.34 87929.44 87905.48 88072.42 -43860.17 16.972 19 0.592
M2(mltm) # goodness of fit
#> M2 df p RMSEA RMSEA_5 RMSEA_95 SRMSR
#> stats 724.3175 439 2.220446e-16 0.01612682 0.01400712 0.01819185 0.03054497
#> TLI CFI
#> stats 0.9760504 0.9758302
head(personfit(mltm))
#> outfit z.outfit infit z.infit Zh
#> 1 0.4099102 -2.3020948 0.5059336 -2.9261983 2.2862274
#> 2 1.9123368 2.2520109 1.2180485 1.0684326 -1.5047067
#> 3 0.6286135 -0.8426793 0.7783421 -0.9888073 1.0049591
#> 4 0.7758581 -0.9554199 0.8563428 -0.8899493 0.9411033
#> 5 0.7022093 -0.8066740 0.8190887 -0.9254922 0.9442138
#> 6 0.4515079 -1.3679137 0.5692678 -1.6827425 1.4501646
residuals(mltm)
#> LD matrix (lower triangle) and standardized residual correlations (upper triangle)
#>
#> Upper triangle summary:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.064 -0.024 -0.007 0.000 0.019 0.174
#>
#> Item_1 Item_2 Item_3 Item_4 Item_5 Item_6 Item_7 Item_8 Item_9 Item_10
#> Item_1 -0.010 -0.027 -0.040 -0.031 0.029 0.000 0.003 -0.012 0.098
#> Item_2 0.229 0.008 0.013 0.041 0.049 0.015 0.003 -0.004 0.142
#> Item_3 1.788 0.156 -0.025 -0.007 -0.012 0.012 -0.014 -0.015 0.174
#> Item_4 3.964 0.437 1.577 -0.006 0.014 -0.014 0.008 0.018 0.134
#> Item_5 2.393 4.302 0.134 0.085 0.021 0.010 -0.015 -0.005 0.154
#> Item_6 2.036 5.900 0.344 0.505 1.137 0.005 -0.012 -0.003 0.127
#> Item_7 0.000 0.581 0.363 0.498 0.261 0.064 0.005 0.006 0.134
#> Item_8 0.029 0.019 0.490 0.155 0.560 0.341 0.075 -0.011 0.166
#> Item_9 0.389 0.035 0.534 0.827 0.072 0.029 0.097 0.280 0.093
#> Item_10 23.809 50.189 75.667 44.656 59.644 40.070 45.056 68.776 21.841
#> Item_11 0.009 0.716 0.194 0.626 0.034 0.175 0.028 0.385 0.126 1.843
#> Item_12 0.753 0.236 3.918 0.095 1.109 0.582 0.818 1.181 5.494 0.011
#> Item_13 1.267 4.570 0.152 0.017 0.396 2.507 3.411 0.105 2.038 3.111
#> Item_14 7.361 0.214 0.172 0.934 1.965 4.761 4.570 0.319 3.784 1.714
#> Item_15 0.081 0.605 1.939 0.315 0.397 0.037 0.590 0.408 0.605 0.871
#> Item_16 1.749 0.256 2.779 0.965 1.745 0.134 2.493 0.001 3.477 0.281
#> Item_17 3.492 0.001 0.804 0.708 0.094 2.145 3.168 6.440 0.076 6.330
#> Item_18 1.296 0.205 0.068 0.911 0.003 0.029 0.301 0.309 0.158 0.447
#> Item_19 1.950 1.095 0.940 1.227 3.901 2.358 0.879 2.427 1.078 0.912
#> Item_20 0.821 1.556 0.836 0.291 0.071 0.862 1.370 0.069 6.617 0.072
#> Item_21 3.887 1.725 3.272 1.120 1.616 0.749 1.266 0.857 0.744 4.508
#> Item_22 2.670 0.247 0.016 4.552 0.345 0.736 0.650 0.010 0.030 1.904
#> Item_23 1.723 2.043 0.011 0.415 0.958 0.032 0.670 0.042 0.005 3.678
#> Item_24 6.039 2.418 3.100 6.560 2.357 5.733 2.198 2.200 4.635 7.501
#> Item_25 0.562 0.795 0.373 4.838 1.043 3.118 0.468 1.310 0.631 11.477
#> Item_26 4.256 1.169 0.889 0.700 1.184 0.633 3.494 1.488 3.177 20.873
#> Item_27 0.025 0.170 0.067 0.374 2.965 0.050 0.179 0.187 2.212 30.192
#> Item_28 2.586 7.102 3.183 2.042 2.136 2.200 2.730 3.809 2.120 13.578
#> Item_29 1.392 0.557 1.223 0.458 0.710 1.588 2.200 0.723 3.080 11.310
#> Item_30 0.831 1.556 1.214 0.302 0.109 0.449 0.573 0.340 0.424 20.892
#> Item_11 Item_12 Item_13 Item_14 Item_15 Item_16 Item_17 Item_18 Item_19
#> Item_1 0.002 -0.017 -0.023 -0.054 -0.006 -0.026 -0.037 -0.023 -0.028
#> Item_2 -0.017 -0.010 -0.043 -0.009 -0.016 -0.010 0.000 -0.009 0.021
#> Item_3 0.009 -0.040 0.008 -0.008 0.028 -0.033 -0.018 -0.005 -0.019
#> Item_4 -0.016 -0.006 -0.003 -0.019 -0.011 -0.020 -0.017 0.019 0.022
#> Item_5 -0.004 -0.021 -0.013 -0.028 -0.013 -0.026 0.006 -0.001 0.040
#> Item_6 0.008 -0.015 -0.032 -0.044 0.004 0.007 -0.029 -0.003 0.031
#> Item_7 0.003 0.018 -0.037 -0.043 -0.015 -0.032 -0.036 0.011 0.019
#> Item_8 0.012 -0.022 0.006 -0.011 0.013 0.001 -0.051 -0.011 0.031
#> Item_9 0.007 -0.047 -0.029 -0.039 -0.016 -0.037 0.006 0.008 0.021
#> Item_10 0.027 0.002 0.035 -0.026 0.019 0.011 -0.050 0.013 -0.019
#> Item_11 -0.022 0.022 -0.006 0.009 -0.009 -0.027 0.006 -0.019
#> Item_12 1.214 -0.008 -0.027 0.011 -0.003 -0.014 -0.028 -0.020
#> Item_13 1.222 0.141 -0.013 0.035 0.017 -0.008 -0.027 -0.023
#> Item_14 0.096 1.802 0.404 -0.014 0.018 -0.013 -0.038 -0.042
#> Item_15 0.208 0.293 3.129 0.460 0.021 -0.011 -0.026 0.029
#> Item_16 0.208 0.018 0.759 0.815 1.060 -0.007 -0.003 -0.019
#> Item_17 1.773 0.461 0.180 0.392 0.290 0.140 0.005 -0.023
#> Item_18 0.100 1.944 1.860 3.653 1.691 0.020 0.064 -0.033
#> Item_19 0.913 1.015 1.284 4.468 2.033 0.859 1.304 2.695
#> Item_20 1.446 0.039 0.045 2.772 4.411 0.072 0.042 3.259 0.949
#> Item_21 0.747 0.875 1.773 1.730 0.759 1.420 0.979 1.137 5.069
#> Item_22 0.717 0.201 0.020 0.388 5.866 0.030 0.071 1.091 1.009
#> Item_23 8.564 1.754 4.656 0.443 1.035 0.005 0.173 1.152 0.997
#> Item_24 3.006 2.617 2.265 2.175 2.826 2.329 2.261 4.236 6.280
#> Item_25 0.480 0.827 0.946 0.373 0.576 1.593 2.431 1.596 1.146
#> Item_26 1.356 0.825 1.879 2.200 0.954 1.012 5.500 4.288 1.332
#> Item_27 0.144 1.132 0.112 0.783 0.837 1.936 4.920 3.868 1.314
#> Item_28 2.097 4.981 2.166 2.329 2.583 3.338 2.228 2.049 3.566
#> Item_29 0.736 0.533 1.869 2.544 2.516 1.394 10.093 0.484 5.562
#> Item_30 0.221 0.086 5.871 2.007 0.460 0.201 5.445 2.127 0.862
#> Item_20 Item_21 Item_22 Item_23 Item_24 Item_25 Item_26 Item_27 Item_28
#> Item_1 -0.018 0.039 -0.033 -0.026 0.049 0.015 0.041 0.003 -0.032
#> Item_2 -0.025 -0.026 0.010 0.029 0.031 0.018 0.022 -0.008 0.053
#> Item_3 -0.018 -0.036 0.003 0.002 0.035 0.012 0.019 0.005 -0.036
#> Item_4 -0.011 0.021 0.043 0.013 0.051 -0.044 0.017 0.012 -0.029
#> Item_5 -0.005 -0.025 0.012 -0.020 0.031 -0.020 0.022 -0.034 0.029
#> Item_6 0.019 -0.017 -0.017 0.004 0.048 0.035 -0.016 -0.004 0.030
#> Item_7 -0.023 0.023 -0.016 -0.016 0.030 0.014 -0.037 -0.008 0.033
#> Item_8 0.005 -0.019 0.002 0.004 0.030 -0.023 -0.024 0.009 -0.039
#> Item_9 -0.051 -0.017 -0.003 -0.001 0.043 -0.016 -0.036 0.030 0.029
#> Item_10 -0.005 0.042 0.028 0.038 0.055 0.068 0.091 0.110 0.074
#> Item_11 0.024 -0.017 -0.017 0.059 0.035 -0.014 0.023 0.008 0.029
#> Item_12 -0.004 -0.019 0.009 0.026 -0.032 0.018 0.018 0.021 -0.045
#> Item_13 -0.004 -0.027 -0.003 0.043 -0.030 -0.019 -0.027 0.007 -0.029
#> Item_14 -0.033 -0.026 -0.012 -0.013 0.029 -0.012 -0.030 -0.018 -0.031
#> Item_15 0.042 -0.017 0.048 0.020 -0.034 0.015 -0.020 0.018 -0.032
#> Item_16 0.005 -0.024 0.003 0.001 0.031 0.025 0.020 -0.028 -0.037
#> Item_17 -0.004 0.020 0.005 -0.008 -0.030 -0.031 -0.047 -0.044 -0.030
#> Item_18 -0.036 0.021 0.021 -0.021 0.041 -0.025 -0.041 -0.039 -0.029
#> Item_19 0.019 -0.045 0.020 0.020 -0.050 0.021 -0.023 -0.023 -0.038
#> Item_20 0.021 0.029 0.011 -0.045 -0.015 -0.019 -0.026 -0.036
#> Item_21 1.097 -0.018 0.022 0.041 0.031 -0.023 0.027 0.041
#> Item_22 2.114 0.778 0.023 0.046 0.035 0.016 0.005 -0.033
#> Item_23 0.304 1.176 1.318 0.036 -0.019 0.022 -0.003 0.037
#> Item_24 5.068 4.269 5.374 3.166 0.034 0.050 -0.030 -0.047
#> Item_25 0.569 2.467 3.060 0.871 2.822 0.019 0.020 -0.039
#> Item_26 0.944 1.268 0.663 1.248 6.316 0.862 0.032 0.036
#> Item_27 1.693 1.795 0.068 0.021 2.264 0.969 2.522 -0.033
#> Item_28 3.193 4.110 2.716 3.385 5.434 3.775 3.228 2.749
#> Item_29 0.841 1.320 2.280 2.795 4.367 1.522 2.260 5.717 4.057
#> Item_30 6.126 0.904 0.633 3.421 3.815 0.664 1.371 0.140 3.142
#> Item_29 Item_30
#> Item_1 -0.024 -0.018
#> Item_2 -0.015 0.025
#> Item_3 0.022 0.022
#> Item_4 0.014 -0.011
#> Item_5 0.017 0.007
#> Item_6 -0.025 -0.013
#> Item_7 -0.030 -0.015
#> Item_8 -0.017 -0.012
#> Item_9 -0.035 -0.013
#> Item_10 0.067 0.091
#> Item_11 -0.017 -0.009
#> Item_12 -0.015 -0.006
#> Item_13 -0.027 -0.048
#> Item_14 -0.032 -0.028
#> Item_15 -0.032 0.014
#> Item_16 -0.024 -0.009
#> Item_17 -0.064 -0.047
#> Item_18 -0.014 -0.029
#> Item_19 -0.047 -0.019
#> Item_20 -0.018 -0.050
#> Item_21 -0.023 -0.019
#> Item_22 -0.030 0.016
#> Item_23 -0.033 0.037
#> Item_24 -0.042 -0.039
#> Item_25 -0.025 0.016
#> Item_26 -0.030 0.023
#> Item_27 -0.048 0.007
#> Item_28 -0.040 -0.035
#> Item_29 -0.029
#> Item_30 2.120
# EAP estimates
fscores(mltm) |> head()
#> theta1 theta2
#> [1,] -2.00196078 -0.4814752
#> [2,] 1.13844928 0.3697978
#> [3,] 0.14931661 1.7928628
#> [4,] -1.30231356 -0.2349522
#> [5,] -0.09142943 1.4551918
#> [6,] 1.47204612 1.1222933
# }