A generic function to extract the internal objects from estimated models.
Details
Objects which can be extracted from mirt objects include:
- logLik
observed log-likelihood
- logPrior
log term contributed by prior parameter distributions
- G2
goodness of fit statistic
- df
degrees of freedom
- p
p-value for G2 statistic
- RMSEA
root mean-square error of approximation based on G2
- CFI
CFI fit statistic
- TLI
TLI fit statistic
- AIC
AIC
- BIC
BIC
- SABIC
sample size adjusted BIC
- HQ
HQ
- LLhistory
EM log-likelihood history
- tabdata
a tabular version of the raw response data input. Frequencies are stored in
freq
- freq
frequencies associated with
tabdata
- K
an integer vector indicating the number of unique elements for each item
- mins
an integer vector indicating the lowest category found in the input
data
- model
input model syntax
- method
estimation method used
- itemtype
a vector of item types for each respective item (e.g., 'graded', '2PL', etc)
- itemnames
a vector of item names from the input data
- factorNames
a vector of factor names from the model definition
- rowID
an integer vector indicating all valid row numbers used in the model estimation (when all cases are used this will be
1:nrow(data)
)- data
raw input data of item responses
- covdata
raw input data of data used as covariates
- tabdatalong
similar to
tabdata
, however the responses have been transformed into dummy coded variables- fulldatalong
analogous to
tabdatafull
, but for the raw input data instead of the tabulated frequencies- EMhistory
if saved, extract the EM iteration history
- exp_resp
expected probability of the unique response patterns
- survey.weights
if supplied, the vector of survey weights used during estimation (NULL if missing)
- converged
a logical value indicating whether the model terminated within the convergence criteria
- iterations
number of iterations it took to reach the convergence criteria
- nest
number of freely estimated parameters
- parvec
vector containing uniquely estimated parameters
- vcov
parameter covariance matrix (associated with parvec)
- condnum
the condition number of the Hessian (if computed). Otherwise NA
- constrain
a list of item parameter constraints to indicate which item parameters were equal during estimation
- Prior
prior density distribution for the latent traits
- thetaPosterior
posterior distribution for latent traits when using EM algorithm
- key
if supplied, the data scoring key
- nfact
number of latent traits/factors
- nitems
number of items
- ngroups
number of groups
- groupNames
character vector of unique group names
- group
a character vector indicating the group membership
- invariance
a character vector indicating
invariance
input frommultipleGroup
- secondordertest
a logical indicating whether the model passed the second-order test based on the Hessian matrix. Indicates whether model is a potential local maximum solution
- SEMconv
logical; check whether the supplemented EM information matrix converged. Will be
NA
if not applicable- time
estimation time, broken into different sections
References
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
# \donttest{
mod <- mirt(Science, 1)
#>
Iteration: 1, Log-Lik: -1629.361, Max-Change: 0.50660
Iteration: 2, Log-Lik: -1617.374, Max-Change: 0.25442
Iteration: 3, Log-Lik: -1612.894, Max-Change: 0.16991
Iteration: 4, Log-Lik: -1610.306, Max-Change: 0.10461
Iteration: 5, Log-Lik: -1609.814, Max-Change: 0.09162
Iteration: 6, Log-Lik: -1609.534, Max-Change: 0.07363
Iteration: 7, Log-Lik: -1609.030, Max-Change: 0.03677
Iteration: 8, Log-Lik: -1608.988, Max-Change: 0.03200
Iteration: 9, Log-Lik: -1608.958, Max-Change: 0.02754
Iteration: 10, Log-Lik: -1608.878, Max-Change: 0.01443
Iteration: 11, Log-Lik: -1608.875, Max-Change: 0.00847
Iteration: 12, Log-Lik: -1608.873, Max-Change: 0.00515
Iteration: 13, Log-Lik: -1608.872, Max-Change: 0.00550
Iteration: 14, Log-Lik: -1608.872, Max-Change: 0.00318
Iteration: 15, Log-Lik: -1608.871, Max-Change: 0.00462
Iteration: 16, Log-Lik: -1608.871, Max-Change: 0.00277
Iteration: 17, Log-Lik: -1608.870, Max-Change: 0.00145
Iteration: 18, Log-Lik: -1608.870, Max-Change: 0.00175
Iteration: 19, Log-Lik: -1608.870, Max-Change: 0.00126
Iteration: 20, Log-Lik: -1608.870, Max-Change: 0.00025
Iteration: 21, Log-Lik: -1608.870, Max-Change: 0.00285
Iteration: 22, Log-Lik: -1608.870, Max-Change: 0.00108
Iteration: 23, Log-Lik: -1608.870, Max-Change: 0.00022
Iteration: 24, Log-Lik: -1608.870, Max-Change: 0.00059
Iteration: 25, Log-Lik: -1608.870, Max-Change: 0.00014
Iteration: 26, Log-Lik: -1608.870, Max-Change: 0.00068
Iteration: 27, Log-Lik: -1608.870, Max-Change: 0.00065
Iteration: 28, Log-Lik: -1608.870, Max-Change: 0.00019
Iteration: 29, Log-Lik: -1608.870, Max-Change: 0.00061
Iteration: 30, Log-Lik: -1608.870, Max-Change: 0.00012
Iteration: 31, Log-Lik: -1608.870, Max-Change: 0.00012
Iteration: 32, Log-Lik: -1608.870, Max-Change: 0.00058
Iteration: 33, Log-Lik: -1608.870, Max-Change: 0.00055
Iteration: 34, Log-Lik: -1608.870, Max-Change: 0.00015
Iteration: 35, Log-Lik: -1608.870, Max-Change: 0.00052
Iteration: 36, Log-Lik: -1608.870, Max-Change: 0.00010
extract.mirt(mod, 'logLik')
#> [1] -1608.87
extract.mirt(mod, 'K') # unique categories for each item
#> [1] 4 4 4 4
#multiple group model
grp <- rep(c('G1', 'G2'), each = nrow(Science)/2)
mod2 <- multipleGroup(Science, 1, grp)
#>
Iteration: 1, Log-Lik: -1629.361, Max-Change: 1.10657
Iteration: 2, Log-Lik: -1609.594, Max-Change: 0.44262
Iteration: 3, Log-Lik: -1603.139, Max-Change: 0.33923
Iteration: 4, Log-Lik: -1600.524, Max-Change: 0.23152
Iteration: 5, Log-Lik: -1599.314, Max-Change: 0.17794
Iteration: 6, Log-Lik: -1598.777, Max-Change: 0.13751
Iteration: 7, Log-Lik: -1598.257, Max-Change: 0.03517
Iteration: 8, Log-Lik: -1598.189, Max-Change: 0.03698
Iteration: 9, Log-Lik: -1598.136, Max-Change: 0.03742
Iteration: 10, Log-Lik: -1597.913, Max-Change: 0.04062
Iteration: 11, Log-Lik: -1597.889, Max-Change: 0.03424
Iteration: 12, Log-Lik: -1597.869, Max-Change: 0.03294
Iteration: 13, Log-Lik: -1597.778, Max-Change: 0.02383
Iteration: 14, Log-Lik: -1597.768, Max-Change: 0.02590
Iteration: 15, Log-Lik: -1597.760, Max-Change: 0.02474
Iteration: 16, Log-Lik: -1597.720, Max-Change: 0.02137
Iteration: 17, Log-Lik: -1597.715, Max-Change: 0.01882
Iteration: 18, Log-Lik: -1597.712, Max-Change: 0.01744
Iteration: 19, Log-Lik: -1597.693, Max-Change: 0.01737
Iteration: 20, Log-Lik: -1597.691, Max-Change: 0.01382
Iteration: 21, Log-Lik: -1597.689, Max-Change: 0.01264
Iteration: 22, Log-Lik: -1597.680, Max-Change: 0.01199
Iteration: 23, Log-Lik: -1597.678, Max-Change: 0.01097
Iteration: 24, Log-Lik: -1597.677, Max-Change: 0.01019
Iteration: 25, Log-Lik: -1597.672, Max-Change: 0.00935
Iteration: 26, Log-Lik: -1597.671, Max-Change: 0.00864
Iteration: 27, Log-Lik: -1597.670, Max-Change: 0.00752
Iteration: 28, Log-Lik: -1597.667, Max-Change: 0.00912
Iteration: 29, Log-Lik: -1597.667, Max-Change: 0.00661
Iteration: 30, Log-Lik: -1597.666, Max-Change: 0.00605
Iteration: 31, Log-Lik: -1597.665, Max-Change: 0.00931
Iteration: 32, Log-Lik: -1597.664, Max-Change: 0.00637
Iteration: 33, Log-Lik: -1597.663, Max-Change: 0.00500
Iteration: 34, Log-Lik: -1597.663, Max-Change: 0.00587
Iteration: 35, Log-Lik: -1597.662, Max-Change: 0.00520
Iteration: 36, Log-Lik: -1597.662, Max-Change: 0.00395
Iteration: 37, Log-Lik: -1597.662, Max-Change: 0.00206
Iteration: 38, Log-Lik: -1597.662, Max-Change: 0.00483
Iteration: 39, Log-Lik: -1597.661, Max-Change: 0.00110
Iteration: 40, Log-Lik: -1597.661, Max-Change: 0.00436
Iteration: 41, Log-Lik: -1597.661, Max-Change: 0.00200
Iteration: 42, Log-Lik: -1597.661, Max-Change: 0.00362
Iteration: 43, Log-Lik: -1597.661, Max-Change: 0.00585
Iteration: 44, Log-Lik: -1597.661, Max-Change: 0.00115
Iteration: 45, Log-Lik: -1597.661, Max-Change: 0.00069
Iteration: 46, Log-Lik: -1597.661, Max-Change: 0.00062
Iteration: 47, Log-Lik: -1597.661, Max-Change: 0.00067
Iteration: 48, Log-Lik: -1597.661, Max-Change: 0.00063
Iteration: 49, Log-Lik: -1597.661, Max-Change: 0.00068
Iteration: 50, Log-Lik: -1597.661, Max-Change: 0.00076
Iteration: 51, Log-Lik: -1597.661, Max-Change: 0.00110
Iteration: 52, Log-Lik: -1597.661, Max-Change: 0.00064
Iteration: 53, Log-Lik: -1597.661, Max-Change: 0.00092
Iteration: 54, Log-Lik: -1597.661, Max-Change: 0.00025
Iteration: 55, Log-Lik: -1597.661, Max-Change: 0.00112
Iteration: 56, Log-Lik: -1597.661, Max-Change: 0.00758
Iteration: 57, Log-Lik: -1597.660, Max-Change: 0.00125
Iteration: 58, Log-Lik: -1597.660, Max-Change: 0.00113
Iteration: 59, Log-Lik: -1597.660, Max-Change: 0.00051
Iteration: 60, Log-Lik: -1597.660, Max-Change: 0.00057
Iteration: 61, Log-Lik: -1597.660, Max-Change: 0.00057
Iteration: 62, Log-Lik: -1597.660, Max-Change: 0.00070
Iteration: 63, Log-Lik: -1597.660, Max-Change: 0.00092
Iteration: 64, Log-Lik: -1597.660, Max-Change: 0.00060
Iteration: 65, Log-Lik: -1597.660, Max-Change: 0.00067
Iteration: 66, Log-Lik: -1597.660, Max-Change: 0.00083
Iteration: 67, Log-Lik: -1597.660, Max-Change: 0.00060
Iteration: 68, Log-Lik: -1597.660, Max-Change: 0.00066
Iteration: 69, Log-Lik: -1597.660, Max-Change: 0.00090
Iteration: 70, Log-Lik: -1597.660, Max-Change: 0.00061
Iteration: 71, Log-Lik: -1597.660, Max-Change: 0.00075
Iteration: 72, Log-Lik: -1597.660, Max-Change: 0.00107
Iteration: 73, Log-Lik: -1597.660, Max-Change: 0.00060
Iteration: 74, Log-Lik: -1597.660, Max-Change: 0.00086
Iteration: 75, Log-Lik: -1597.660, Max-Change: 0.00024
Iteration: 76, Log-Lik: -1597.660, Max-Change: 0.00106
Iteration: 77, Log-Lik: -1597.660, Max-Change: 0.00030
Iteration: 78, Log-Lik: -1597.660, Max-Change: 0.00079
Iteration: 79, Log-Lik: -1597.660, Max-Change: 0.00334
Iteration: 80, Log-Lik: -1597.660, Max-Change: 0.00179
Iteration: 81, Log-Lik: -1597.660, Max-Change: 0.00081
Iteration: 82, Log-Lik: -1597.660, Max-Change: 0.00280
Iteration: 83, Log-Lik: -1597.660, Max-Change: 0.00173
Iteration: 84, Log-Lik: -1597.660, Max-Change: 0.00079
Iteration: 85, Log-Lik: -1597.660, Max-Change: 0.00022
Iteration: 86, Log-Lik: -1597.660, Max-Change: 0.00059
Iteration: 87, Log-Lik: -1597.660, Max-Change: 0.00079
Iteration: 88, Log-Lik: -1597.660, Max-Change: 0.00054
Iteration: 89, Log-Lik: -1597.660, Max-Change: 0.00067
Iteration: 90, Log-Lik: -1597.660, Max-Change: 0.00092
Iteration: 91, Log-Lik: -1597.660, Max-Change: 0.00057
Iteration: 92, Log-Lik: -1597.660, Max-Change: 0.00076
Iteration: 93, Log-Lik: -1597.660, Max-Change: 0.00107
Iteration: 94, Log-Lik: -1597.660, Max-Change: 0.00059
Iteration: 95, Log-Lik: -1597.660, Max-Change: 0.00084
Iteration: 96, Log-Lik: -1597.660, Max-Change: 0.00023
Iteration: 97, Log-Lik: -1597.660, Max-Change: 0.00021
Iteration: 98, Log-Lik: -1597.660, Max-Change: 0.00054
Iteration: 99, Log-Lik: -1597.660, Max-Change: 0.00077
Iteration: 100, Log-Lik: -1597.660, Max-Change: 0.00055
Iteration: 101, Log-Lik: -1597.660, Max-Change: 0.00078
Iteration: 102, Log-Lik: -1597.660, Max-Change: 0.00021
Iteration: 103, Log-Lik: -1597.660, Max-Change: 0.00096
Iteration: 104, Log-Lik: -1597.660, Max-Change: 0.00027
Iteration: 105, Log-Lik: -1597.660, Max-Change: 0.00071
Iteration: 106, Log-Lik: -1597.660, Max-Change: 0.00295
Iteration: 107, Log-Lik: -1597.660, Max-Change: 0.00150
Iteration: 108, Log-Lik: -1597.660, Max-Change: 0.00054
Iteration: 109, Log-Lik: -1597.660, Max-Change: 0.00435
Iteration: 110, Log-Lik: -1597.659, Max-Change: 0.00083
Iteration: 111, Log-Lik: -1597.659, Max-Change: 0.00072
Iteration: 112, Log-Lik: -1597.659, Max-Change: 0.00047
Iteration: 113, Log-Lik: -1597.659, Max-Change: 0.00053
Iteration: 114, Log-Lik: -1597.659, Max-Change: 0.00072
Iteration: 115, Log-Lik: -1597.659, Max-Change: 0.00053
Iteration: 116, Log-Lik: -1597.659, Max-Change: 0.00073
Iteration: 117, Log-Lik: -1597.659, Max-Change: 0.00021
Iteration: 118, Log-Lik: -1597.659, Max-Change: 0.00092
Iteration: 119, Log-Lik: -1597.659, Max-Change: 0.00026
Iteration: 120, Log-Lik: -1597.659, Max-Change: 0.00066
Iteration: 121, Log-Lik: -1597.659, Max-Change: 0.00307
Iteration: 122, Log-Lik: -1597.659, Max-Change: 0.00111
Iteration: 123, Log-Lik: -1597.659, Max-Change: 0.00044
Iteration: 124, Log-Lik: -1597.659, Max-Change: 0.00416
Iteration: 125, Log-Lik: -1597.659, Max-Change: 0.00091
Iteration: 126, Log-Lik: -1597.659, Max-Change: 0.00216
Iteration: 127, Log-Lik: -1597.659, Max-Change: 0.00062
Iteration: 128, Log-Lik: -1597.659, Max-Change: 0.00065
Iteration: 129, Log-Lik: -1597.659, Max-Change: 0.00017
Iteration: 130, Log-Lik: -1597.659, Max-Change: 0.00078
Iteration: 131, Log-Lik: -1597.659, Max-Change: 0.00022
Iteration: 132, Log-Lik: -1597.659, Max-Change: 0.00057
Iteration: 133, Log-Lik: -1597.659, Max-Change: 0.00029
Iteration: 134, Log-Lik: -1597.659, Max-Change: 0.00076
Iteration: 135, Log-Lik: -1597.659, Max-Change: 0.00021
Iteration: 136, Log-Lik: -1597.659, Max-Change: 0.00019
Iteration: 137, Log-Lik: -1597.659, Max-Change: 0.00048
Iteration: 138, Log-Lik: -1597.659, Max-Change: 0.00069
Iteration: 139, Log-Lik: -1597.659, Max-Change: 0.00045
Iteration: 140, Log-Lik: -1597.659, Max-Change: 0.00065
Iteration: 141, Log-Lik: -1597.659, Max-Change: 0.00018
Iteration: 142, Log-Lik: -1597.659, Max-Change: 0.00079
Iteration: 143, Log-Lik: -1597.659, Max-Change: 0.00022
Iteration: 144, Log-Lik: -1597.659, Max-Change: 0.00059
Iteration: 145, Log-Lik: -1597.659, Max-Change: 0.00029
Iteration: 146, Log-Lik: -1597.659, Max-Change: 0.00074
Iteration: 147, Log-Lik: -1597.659, Max-Change: 0.00021
Iteration: 148, Log-Lik: -1597.659, Max-Change: 0.00019
Iteration: 149, Log-Lik: -1597.659, Max-Change: 0.00049
Iteration: 150, Log-Lik: -1597.659, Max-Change: 0.00067
Iteration: 151, Log-Lik: -1597.659, Max-Change: 0.00046
Iteration: 152, Log-Lik: -1597.659, Max-Change: 0.00064
Iteration: 153, Log-Lik: -1597.659, Max-Change: 0.00018
Iteration: 154, Log-Lik: -1597.659, Max-Change: 0.00081
Iteration: 155, Log-Lik: -1597.659, Max-Change: 0.00022
Iteration: 156, Log-Lik: -1597.659, Max-Change: 0.00058
Iteration: 157, Log-Lik: -1597.659, Max-Change: 0.00029
Iteration: 158, Log-Lik: -1597.659, Max-Change: 0.00076
Iteration: 159, Log-Lik: -1597.659, Max-Change: 0.00021
Iteration: 160, Log-Lik: -1597.659, Max-Change: 0.00019
Iteration: 161, Log-Lik: -1597.659, Max-Change: 0.00048
Iteration: 162, Log-Lik: -1597.659, Max-Change: 0.00069
Iteration: 163, Log-Lik: -1597.659, Max-Change: 0.00045
Iteration: 164, Log-Lik: -1597.659, Max-Change: 0.00064
Iteration: 165, Log-Lik: -1597.659, Max-Change: 0.00018
Iteration: 166, Log-Lik: -1597.659, Max-Change: 0.00016
Iteration: 167, Log-Lik: -1597.659, Max-Change: 0.00041
Iteration: 168, Log-Lik: -1597.659, Max-Change: 0.00058
Iteration: 169, Log-Lik: -1597.659, Max-Change: 0.00043
Iteration: 170, Log-Lik: -1597.659, Max-Change: 0.00061
Iteration: 171, Log-Lik: -1597.659, Max-Change: 0.00017
Iteration: 172, Log-Lik: -1597.659, Max-Change: 0.00076
Iteration: 173, Log-Lik: -1597.659, Max-Change: 0.00021
Iteration: 174, Log-Lik: -1597.659, Max-Change: 0.00056
Iteration: 175, Log-Lik: -1597.659, Max-Change: 0.00027
Iteration: 176, Log-Lik: -1597.659, Max-Change: 0.00071
Iteration: 177, Log-Lik: -1597.659, Max-Change: 0.00020
Iteration: 178, Log-Lik: -1597.659, Max-Change: 0.00018
Iteration: 179, Log-Lik: -1597.659, Max-Change: 0.00047
Iteration: 180, Log-Lik: -1597.659, Max-Change: 0.00064
Iteration: 181, Log-Lik: -1597.659, Max-Change: 0.00044
Iteration: 182, Log-Lik: -1597.659, Max-Change: 0.00061
Iteration: 183, Log-Lik: -1597.659, Max-Change: 0.00017
Iteration: 184, Log-Lik: -1597.659, Max-Change: 0.00077
Iteration: 185, Log-Lik: -1597.659, Max-Change: 0.00021
Iteration: 186, Log-Lik: -1597.659, Max-Change: 0.00055
Iteration: 187, Log-Lik: -1597.659, Max-Change: 0.00028
Iteration: 188, Log-Lik: -1597.659, Max-Change: 0.00072
Iteration: 189, Log-Lik: -1597.659, Max-Change: 0.00020
Iteration: 190, Log-Lik: -1597.659, Max-Change: 0.00018
Iteration: 191, Log-Lik: -1597.659, Max-Change: 0.00046
Iteration: 192, Log-Lik: -1597.659, Max-Change: 0.00066
Iteration: 193, Log-Lik: -1597.659, Max-Change: 0.00042
Iteration: 194, Log-Lik: -1597.659, Max-Change: 0.00061
Iteration: 195, Log-Lik: -1597.659, Max-Change: 0.00017
Iteration: 196, Log-Lik: -1597.659, Max-Change: 0.00015
Iteration: 197, Log-Lik: -1597.659, Max-Change: 0.00039
Iteration: 198, Log-Lik: -1597.659, Max-Change: 0.00055
Iteration: 199, Log-Lik: -1597.659, Max-Change: 0.00040
Iteration: 200, Log-Lik: -1597.659, Max-Change: 0.00058
Iteration: 201, Log-Lik: -1597.659, Max-Change: 0.00016
Iteration: 202, Log-Lik: -1597.659, Max-Change: 0.00071
Iteration: 203, Log-Lik: -1597.659, Max-Change: 0.00020
Iteration: 204, Log-Lik: -1597.659, Max-Change: 0.00053
Iteration: 205, Log-Lik: -1597.659, Max-Change: 0.00026
Iteration: 206, Log-Lik: -1597.659, Max-Change: 0.00067
Iteration: 207, Log-Lik: -1597.659, Max-Change: 0.00019
Iteration: 208, Log-Lik: -1597.659, Max-Change: 0.00017
Iteration: 209, Log-Lik: -1597.659, Max-Change: 0.00044
Iteration: 210, Log-Lik: -1597.659, Max-Change: 0.00061
Iteration: 211, Log-Lik: -1597.659, Max-Change: 0.00041
Iteration: 212, Log-Lik: -1597.659, Max-Change: 0.00057
Iteration: 213, Log-Lik: -1597.659, Max-Change: 0.00016
Iteration: 214, Log-Lik: -1597.659, Max-Change: 0.00072
Iteration: 215, Log-Lik: -1597.659, Max-Change: 0.00020
Iteration: 216, Log-Lik: -1597.659, Max-Change: 0.00052
Iteration: 217, Log-Lik: -1597.659, Max-Change: 0.00026
Iteration: 218, Log-Lik: -1597.659, Max-Change: 0.00068
Iteration: 219, Log-Lik: -1597.659, Max-Change: 0.00019
Iteration: 220, Log-Lik: -1597.659, Max-Change: 0.00017
Iteration: 221, Log-Lik: -1597.659, Max-Change: 0.00044
Iteration: 222, Log-Lik: -1597.659, Max-Change: 0.00062
Iteration: 223, Log-Lik: -1597.659, Max-Change: 0.00040
Iteration: 224, Log-Lik: -1597.659, Max-Change: 0.00057
Iteration: 225, Log-Lik: -1597.659, Max-Change: 0.00016
Iteration: 226, Log-Lik: -1597.659, Max-Change: 0.00014
Iteration: 227, Log-Lik: -1597.659, Max-Change: 0.00036
Iteration: 228, Log-Lik: -1597.659, Max-Change: 0.00052
Iteration: 229, Log-Lik: -1597.659, Max-Change: 0.00038
Iteration: 230, Log-Lik: -1597.659, Max-Change: 0.00054
Iteration: 231, Log-Lik: -1597.659, Max-Change: 0.00015
Iteration: 232, Log-Lik: -1597.659, Max-Change: 0.00067
Iteration: 233, Log-Lik: -1597.659, Max-Change: 0.00019
Iteration: 234, Log-Lik: -1597.659, Max-Change: 0.00049
Iteration: 235, Log-Lik: -1597.659, Max-Change: 0.00024
Iteration: 236, Log-Lik: -1597.658, Max-Change: 0.00063
Iteration: 237, Log-Lik: -1597.658, Max-Change: 0.00018
Iteration: 238, Log-Lik: -1597.658, Max-Change: 0.00016
Iteration: 239, Log-Lik: -1597.658, Max-Change: 0.00041
Iteration: 240, Log-Lik: -1597.658, Max-Change: 0.00057
Iteration: 241, Log-Lik: -1597.658, Max-Change: 0.00039
Iteration: 242, Log-Lik: -1597.658, Max-Change: 0.00054
Iteration: 243, Log-Lik: -1597.658, Max-Change: 0.00015
Iteration: 244, Log-Lik: -1597.658, Max-Change: 0.00068
Iteration: 245, Log-Lik: -1597.658, Max-Change: 0.00019
Iteration: 246, Log-Lik: -1597.658, Max-Change: 0.00049
Iteration: 247, Log-Lik: -1597.658, Max-Change: 0.00025
Iteration: 248, Log-Lik: -1597.658, Max-Change: 0.00064
Iteration: 249, Log-Lik: -1597.658, Max-Change: 0.00018
Iteration: 250, Log-Lik: -1597.658, Max-Change: 0.00016
Iteration: 251, Log-Lik: -1597.658, Max-Change: 0.00041
Iteration: 252, Log-Lik: -1597.658, Max-Change: 0.00058
Iteration: 253, Log-Lik: -1597.658, Max-Change: 0.00038
Iteration: 254, Log-Lik: -1597.658, Max-Change: 0.00054
Iteration: 255, Log-Lik: -1597.658, Max-Change: 0.00015
Iteration: 256, Log-Lik: -1597.658, Max-Change: 0.00013
Iteration: 257, Log-Lik: -1597.658, Max-Change: 0.00034
Iteration: 258, Log-Lik: -1597.658, Max-Change: 0.00049
Iteration: 259, Log-Lik: -1597.658, Max-Change: 0.00036
Iteration: 260, Log-Lik: -1597.658, Max-Change: 0.00051
Iteration: 261, Log-Lik: -1597.658, Max-Change: 0.00014
Iteration: 262, Log-Lik: -1597.658, Max-Change: 0.00063
Iteration: 263, Log-Lik: -1597.658, Max-Change: 0.00018
Iteration: 264, Log-Lik: -1597.658, Max-Change: 0.00046
Iteration: 265, Log-Lik: -1597.658, Max-Change: 0.00023
Iteration: 266, Log-Lik: -1597.658, Max-Change: 0.00059
Iteration: 267, Log-Lik: -1597.658, Max-Change: 0.00017
Iteration: 268, Log-Lik: -1597.658, Max-Change: 0.00015
Iteration: 269, Log-Lik: -1597.658, Max-Change: 0.00039
Iteration: 270, Log-Lik: -1597.658, Max-Change: 0.00054
Iteration: 271, Log-Lik: -1597.658, Max-Change: 0.00037
Iteration: 272, Log-Lik: -1597.658, Max-Change: 0.00050
Iteration: 273, Log-Lik: -1597.658, Max-Change: 0.00014
Iteration: 274, Log-Lik: -1597.658, Max-Change: 0.00064
Iteration: 275, Log-Lik: -1597.658, Max-Change: 0.00018
Iteration: 276, Log-Lik: -1597.658, Max-Change: 0.00046
Iteration: 277, Log-Lik: -1597.658, Max-Change: 0.00023
Iteration: 278, Log-Lik: -1597.658, Max-Change: 0.00060
Iteration: 279, Log-Lik: -1597.658, Max-Change: 0.00017
Iteration: 280, Log-Lik: -1597.658, Max-Change: 0.00015
Iteration: 281, Log-Lik: -1597.658, Max-Change: 0.00039
Iteration: 282, Log-Lik: -1597.658, Max-Change: 0.00055
Iteration: 283, Log-Lik: -1597.658, Max-Change: 0.00035
Iteration: 284, Log-Lik: -1597.658, Max-Change: 0.00050
Iteration: 285, Log-Lik: -1597.658, Max-Change: 0.00014
Iteration: 286, Log-Lik: -1597.658, Max-Change: 0.00012
Iteration: 287, Log-Lik: -1597.658, Max-Change: 0.00032
Iteration: 288, Log-Lik: -1597.658, Max-Change: 0.00046
Iteration: 289, Log-Lik: -1597.658, Max-Change: 0.00034
Iteration: 290, Log-Lik: -1597.658, Max-Change: 0.00048
Iteration: 291, Log-Lik: -1597.658, Max-Change: 0.00013
Iteration: 292, Log-Lik: -1597.658, Max-Change: 0.00059
Iteration: 293, Log-Lik: -1597.658, Max-Change: 0.00017
Iteration: 294, Log-Lik: -1597.658, Max-Change: 0.00044
Iteration: 295, Log-Lik: -1597.658, Max-Change: 0.00021
Iteration: 296, Log-Lik: -1597.658, Max-Change: 0.00056
Iteration: 297, Log-Lik: -1597.658, Max-Change: 0.00016
Iteration: 298, Log-Lik: -1597.658, Max-Change: 0.00014
Iteration: 299, Log-Lik: -1597.658, Max-Change: 0.00037
Iteration: 300, Log-Lik: -1597.658, Max-Change: 0.00051
Iteration: 301, Log-Lik: -1597.658, Max-Change: 0.00034
Iteration: 302, Log-Lik: -1597.658, Max-Change: 0.00047
Iteration: 303, Log-Lik: -1597.658, Max-Change: 0.00013
Iteration: 304, Log-Lik: -1597.658, Max-Change: 0.00060
Iteration: 305, Log-Lik: -1597.658, Max-Change: 0.00017
Iteration: 306, Log-Lik: -1597.658, Max-Change: 0.00043
Iteration: 307, Log-Lik: -1597.658, Max-Change: 0.00022
Iteration: 308, Log-Lik: -1597.658, Max-Change: 0.00057
Iteration: 309, Log-Lik: -1597.658, Max-Change: 0.00016
Iteration: 310, Log-Lik: -1597.658, Max-Change: 0.00014
Iteration: 311, Log-Lik: -1597.658, Max-Change: 0.00036
Iteration: 312, Log-Lik: -1597.658, Max-Change: 0.00052
Iteration: 313, Log-Lik: -1597.658, Max-Change: 0.00033
Iteration: 314, Log-Lik: -1597.658, Max-Change: 0.00047
Iteration: 315, Log-Lik: -1597.658, Max-Change: 0.00013
Iteration: 316, Log-Lik: -1597.658, Max-Change: 0.00012
Iteration: 317, Log-Lik: -1597.658, Max-Change: 0.00030
Iteration: 318, Log-Lik: -1597.658, Max-Change: 0.00043
Iteration: 319, Log-Lik: -1597.658, Max-Change: 0.00032
Iteration: 320, Log-Lik: -1597.658, Max-Change: 0.00045
Iteration: 321, Log-Lik: -1597.658, Max-Change: 0.00012
Iteration: 322, Log-Lik: -1597.658, Max-Change: 0.00056
Iteration: 323, Log-Lik: -1597.658, Max-Change: 0.00016
Iteration: 324, Log-Lik: -1597.658, Max-Change: 0.00041
Iteration: 325, Log-Lik: -1597.658, Max-Change: 0.00020
Iteration: 326, Log-Lik: -1597.658, Max-Change: 0.00052
Iteration: 327, Log-Lik: -1597.658, Max-Change: 0.00015
Iteration: 328, Log-Lik: -1597.658, Max-Change: 0.00013
Iteration: 329, Log-Lik: -1597.658, Max-Change: 0.00035
Iteration: 330, Log-Lik: -1597.658, Max-Change: 0.00048
Iteration: 331, Log-Lik: -1597.658, Max-Change: 0.00032
Iteration: 332, Log-Lik: -1597.658, Max-Change: 0.00045
Iteration: 333, Log-Lik: -1597.658, Max-Change: 0.00013
Iteration: 334, Log-Lik: -1597.658, Max-Change: 0.00057
Iteration: 335, Log-Lik: -1597.658, Max-Change: 0.00016
Iteration: 336, Log-Lik: -1597.658, Max-Change: 0.00041
Iteration: 337, Log-Lik: -1597.658, Max-Change: 0.00021
Iteration: 338, Log-Lik: -1597.658, Max-Change: 0.00054
Iteration: 339, Log-Lik: -1597.658, Max-Change: 0.00015
Iteration: 340, Log-Lik: -1597.658, Max-Change: 0.00013
Iteration: 341, Log-Lik: -1597.658, Max-Change: 0.00034
Iteration: 342, Log-Lik: -1597.658, Max-Change: 0.00049
Iteration: 343, Log-Lik: -1597.658, Max-Change: 0.00031
Iteration: 344, Log-Lik: -1597.658, Max-Change: 0.00045
Iteration: 345, Log-Lik: -1597.658, Max-Change: 0.00012
Iteration: 346, Log-Lik: -1597.658, Max-Change: 0.00011
Iteration: 347, Log-Lik: -1597.658, Max-Change: 0.00029
Iteration: 348, Log-Lik: -1597.658, Max-Change: 0.00041
Iteration: 349, Log-Lik: -1597.658, Max-Change: 0.00030
Iteration: 350, Log-Lik: -1597.658, Max-Change: 0.00043
Iteration: 351, Log-Lik: -1597.658, Max-Change: 0.00012
Iteration: 352, Log-Lik: -1597.658, Max-Change: 0.00052
Iteration: 353, Log-Lik: -1597.658, Max-Change: 0.00015
Iteration: 354, Log-Lik: -1597.658, Max-Change: 0.00039
Iteration: 355, Log-Lik: -1597.658, Max-Change: 0.00019
Iteration: 356, Log-Lik: -1597.658, Max-Change: 0.00049
Iteration: 357, Log-Lik: -1597.658, Max-Change: 0.00014
Iteration: 358, Log-Lik: -1597.658, Max-Change: 0.00012
Iteration: 359, Log-Lik: -1597.658, Max-Change: 0.00033
Iteration: 360, Log-Lik: -1597.658, Max-Change: 0.00045
Iteration: 361, Log-Lik: -1597.658, Max-Change: 0.00031
Iteration: 362, Log-Lik: -1597.658, Max-Change: 0.00042
Iteration: 363, Log-Lik: -1597.658, Max-Change: 0.00012
Iteration: 364, Log-Lik: -1597.658, Max-Change: 0.00053
Iteration: 365, Log-Lik: -1597.658, Max-Change: 0.00015
Iteration: 366, Log-Lik: -1597.658, Max-Change: 0.00038
Iteration: 367, Log-Lik: -1597.658, Max-Change: 0.00019
Iteration: 368, Log-Lik: -1597.658, Max-Change: 0.00051
Iteration: 369, Log-Lik: -1597.658, Max-Change: 0.00014
Iteration: 370, Log-Lik: -1597.658, Max-Change: 0.00013
Iteration: 371, Log-Lik: -1597.658, Max-Change: 0.00032
Iteration: 372, Log-Lik: -1597.658, Max-Change: 0.00046
Iteration: 373, Log-Lik: -1597.658, Max-Change: 0.00030
Iteration: 374, Log-Lik: -1597.658, Max-Change: 0.00042
Iteration: 375, Log-Lik: -1597.658, Max-Change: 0.00012
Iteration: 376, Log-Lik: -1597.658, Max-Change: 0.00010
Iteration: 377, Log-Lik: -1597.658, Max-Change: 0.00027
Iteration: 378, Log-Lik: -1597.658, Max-Change: 0.00038
Iteration: 379, Log-Lik: -1597.658, Max-Change: 0.00028
Iteration: 380, Log-Lik: -1597.658, Max-Change: 0.00040
Iteration: 381, Log-Lik: -1597.658, Max-Change: 0.00011
Iteration: 382, Log-Lik: -1597.658, Max-Change: 0.00049
Iteration: 383, Log-Lik: -1597.658, Max-Change: 0.00014
Iteration: 384, Log-Lik: -1597.658, Max-Change: 0.00037
Iteration: 385, Log-Lik: -1597.658, Max-Change: 0.00018
Iteration: 386, Log-Lik: -1597.658, Max-Change: 0.00046
Iteration: 387, Log-Lik: -1597.658, Max-Change: 0.00013
Iteration: 388, Log-Lik: -1597.658, Max-Change: 0.00012
Iteration: 389, Log-Lik: -1597.658, Max-Change: 0.00031
Iteration: 390, Log-Lik: -1597.658, Max-Change: 0.00042
Iteration: 391, Log-Lik: -1597.658, Max-Change: 0.00029
Iteration: 392, Log-Lik: -1597.658, Max-Change: 0.00040
Iteration: 393, Log-Lik: -1597.658, Max-Change: 0.00011
Iteration: 394, Log-Lik: -1597.658, Max-Change: 0.00050
Iteration: 395, Log-Lik: -1597.658, Max-Change: 0.00014
Iteration: 396, Log-Lik: -1597.658, Max-Change: 0.00036
Iteration: 397, Log-Lik: -1597.658, Max-Change: 0.00018
Iteration: 398, Log-Lik: -1597.658, Max-Change: 0.00048
Iteration: 399, Log-Lik: -1597.658, Max-Change: 0.00013
Iteration: 400, Log-Lik: -1597.658, Max-Change: 0.00012
Iteration: 401, Log-Lik: -1597.658, Max-Change: 0.00031
Iteration: 402, Log-Lik: -1597.658, Max-Change: 0.00044
Iteration: 403, Log-Lik: -1597.658, Max-Change: 0.00028
Iteration: 404, Log-Lik: -1597.658, Max-Change: 0.00040
Iteration: 405, Log-Lik: -1597.658, Max-Change: 0.00011
Iteration: 406, Log-Lik: -1597.658, Max-Change: 0.00010
grp1 <- extract.group(mod2, 1) #extract single group model
extract.mirt(mod2, 'parvec')
#> [1] 0.8316800 4.8913029 2.5597789 -1.3592138 0.8289135 2.4772334
#> [7] 0.7025447 -2.1135580 2.8809926 5.4820292 2.2126281 -2.5451325
#> [13] 0.6920437 3.0133748 0.8608953 -1.5516666 1.1955161 4.8900152
#> [19] 2.6929286 -1.5545256 1.7621713 3.6416308 1.1724290 -2.5499919
#> [25] 2.4324588 6.4188352 2.6336468 -1.8297283 1.4875546 3.8081350
#> [31] 1.1473714 -1.8343958
extract.mirt(grp1, 'parvec')
#> [1] 0.8316800 4.8913029 2.5597789 -1.3592138 0.8289135 2.4772334
#> [7] 0.7025447 -2.1135580 2.8809926 5.4820292 2.2126281 -2.5451325
#> [13] 0.6920437 3.0133748 0.8608953 -1.5516666
# }