Given an estimated model from any of mirt's model fitting functions this function will convert
the model parameters into the design data frame of starting values and other parameter
characteristics (similar to using the pars = 'values'
for obtaining starting values).
References
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
if (FALSE) { # \dontrun{
dat <- expand.table(LSAT7)
mod <- mirt(dat, "F=1-5
CONSTRAIN=(1-5, a1)")
values <- mod2values(mod)
values
# use the converted values as starting values in a new model, and reduce TOL
mod2 <- mirt(dat, 1, pars = values, TOL=1e-5)
coef(mod2, simplify=TRUE)
# use parameters on different dataset
mod3 <- mirt(expand.table(LSAT6), pars=values)
coef(mod3, simplify=TRUE)
# supports differing itemtypes on second model
sv <- mirt(Science, itemtype=c('graded', rep('gpcm', 3)), pars='values')
mod3 <- mirt(Science, pars = sv) # itemtype omitted
coef(mod3, simplify=TRUE)$items
extract.mirt(mod3, 'itemtype')
} # }