Package index
-
ASVAB
- Description of ASVAB data
-
Bock1997
- Description of Bock 1997 data
-
DIF()
- Differential item functioning statistics
-
DRF()
- Differential Response Functioning statistics
-
DTF()
- Differential test functioning statistics
-
DiscreteClass-class
- Class "DiscreteClass"
-
LSAT6
- Description of LSAT6 data
-
LSAT7
- Description of LSAT7 data
-
M2()
- Compute the M2 model fit statistic
-
MDIFF()
- Compute multidimensional difficulty index
-
MDISC()
- Compute multidimensional discrimination index
-
MixedClass-class
- Class "MixedClass"
-
MixtureClass-class
- Class "MixtureClass"
-
MultipleGroupClass-class
- Class "MultipleGroupClass"
-
PLCI.mirt()
- Compute profiled-likelihood (or posterior) confidence intervals
-
RCI()
- Model-based Reliable Change Index
-
RMSD_DIF()
- RMSD effect size statistic to quantify category-level DIF
-
SAT12
- Description of SAT12 data
-
SIBTEST()
- (Generalized) Simultaneous Item Bias Test (SIBTEST)
-
SLF
- Social Life Feelings Data
-
Science
- Description of Science data
-
SingleGroupClass-class
- Class "SingleGroupClass"
-
anova(<SingleGroupClass>)
- Compare nested models with likelihood-based statistics
-
areainfo()
- Function to calculate the area under a selection of information curves
-
averageMI()
- Collapse values from multiple imputation draws
-
bfactor()
- Full-Information Item Bi-factor and Two-Tier Analysis
-
boot.LR()
- Parametric bootstrap likelihood-ratio test
-
boot.mirt()
- Calculate bootstrapped standard errors for estimated models
-
coef(<SingleGroupClass>)
- Extract raw coefs from model object
-
createGroup()
- Create a user defined group-level object with correct generic functions
-
createItem()
- Create a user defined item with correct generic functions
-
deAyala
- Description of deAyala data
-
draw_parameters()
- Draw plausible parameter instantiations from a given model
-
empirical_ES()
- Empirical effect sizes based on latent trait estimates
-
empirical_plot()
- Function to generate empirical unidimensional item and test plots
-
empirical_rxx()
- Function to calculate the empirical (marginal) reliability
-
estfun.AllModelClass()
- Extract Empirical Estimating Functions
-
expand.table()
- Expand summary table of patterns and frequencies
-
expected.item()
- Function to calculate expected value of item
-
expected.test()
- Function to calculate expected test score
-
extract.group()
- Extract a group from a multiple group mirt object
-
extract.item()
- Extract an item object from mirt objects
-
extract.mirt()
- Extract various elements from estimated model objects
-
fixedCalib()
- Fixed-item calibration method
-
fixef()
- Compute latent regression fixed effect expected values
-
fscores()
- Compute factor score estimates (a.k.a, ability estimates, latent trait estimates, etc)
-
gen.difficulty()
- Generalized item difficulty summaries
-
imputeMissing()
- Imputing plausible data for missing values
-
itemGAM()
plot(<itemGAM>)
- Parametric smoothed regression lines for item response probability functions
-
itemfit()
- Item fit statistics
-
iteminfo()
- Function to calculate item information
-
itemplot()
- Displays item surface and information plots
-
itemstats()
- Generic item summary statistics
-
key2binary()
- Score a test by converting response patterns to binary data
-
lagrange()
- Lagrange test for freeing parameters
-
likert2int()
- Convert ordered Likert-scale responses (character or factors) to integers
-
logLik(<SingleGroupClass>)
- Extract log-likelihood
-
marginal_rxx()
- Function to calculate the marginal reliability
-
mdirt()
- Multidimensional discrete item response theory
-
mirt-package
- Full information maximum likelihood estimation of IRT models.
-
mirt()
- Full-Information Item Factor Analysis (Multidimensional Item Response Theory)
-
mirt.model()
- Specify model information
-
mirtCluster()
- Define a parallel cluster object to be used in internal functions
-
mixedmirt()
- Mixed effects modeling for MIRT models
-
mod2values()
- Convert an estimated mirt model to a data.frame
-
multipleGroup()
- Multiple Group Estimation
-
numerical_deriv()
- Compute numerical derivatives
-
personfit()
- Person fit statistics
-
plot(<MultipleGroupClass>,<missing>)
plot(<SingleGroupClass>,<missing>)
- Plot various test-implied functions from models
-
poly2dich()
- Change polytomous items to dichotomous item format
-
print(<SingleGroupClass>)
- Print the model objects
-
print(<mirt_df>)
- Print generic for customized data.frame console output
-
print(<mirt_list>)
- Print generic for customized list console output
-
print(<mirt_matrix>)
- Print generic for customized matrix console output
-
probtrace()
- Function to calculate probability trace lines
-
randef()
- Compute posterior estimates of random effect
-
read.mirt()
- Translate mirt parameters into suitable structure for plink package
-
remap.distance()
- Remap item categories to have integer distances of 1
-
residuals(<SingleGroupClass>)
- Compute model residuals
-
reverse.score()
- Reverse score one or more items from a response matrix
-
secondOrderTest()
- Second-order test of convergence
-
show(<SingleGroupClass>)
- Show model object
-
simdata()
- Simulate response patterns
-
summary(<SingleGroupClass>)
- Summary of model object
-
testinfo()
- Function to calculate test information
-
thetaComb()
- Create all possible combinations of vector input
-
traditional2mirt()
- Convert traditional IRT metric into slope-intercept form used in mirt
-
vcov(<SingleGroupClass>)
- Extract parameter variance covariance matrix
-
wald()
- Wald statistics for mirt models