Skip to contents

All functions

ASVAB
Description of ASVAB data
Bock1997
Description of Bock 1997 data
DIF()
Differential item functioning statistics
DRF()
Differential Response Functioning statistics
DTF()
Differential test functioning statistics
DiscreteClass-class
Class "DiscreteClass"
LSAT6
Description of LSAT6 data
LSAT7
Description of LSAT7 data
M2()
Compute the M2 model fit statistic
MDIFF()
Compute multidimensional difficulty index
MDISC()
Compute multidimensional discrimination index
MixedClass-class
Class "MixedClass"
MixtureClass-class
Class "MixtureClass"
MultipleGroupClass-class
Class "MultipleGroupClass"
PLCI.mirt()
Compute profiled-likelihood (or posterior) confidence intervals
RCI()
Model-based Reliable Change Index
RMSD_DIF()
RMSD effect size statistic to quantify category-level DIF
SAT12
Description of SAT12 data
SIBTEST()
(Generalized) Simultaneous Item Bias Test (SIBTEST)
SLF
Social Life Feelings Data
Science
Description of Science data
SingleGroupClass-class
Class "SingleGroupClass"
anova(<SingleGroupClass>)
Compare nested models with likelihood-based statistics
areainfo()
Function to calculate the area under a selection of information curves
averageMI()
Collapse values from multiple imputation draws
bfactor()
Full-Information Item Bi-factor and Two-Tier Analysis
boot.LR()
Parametric bootstrap likelihood-ratio test
boot.mirt()
Calculate bootstrapped standard errors for estimated models
coef(<SingleGroupClass>)
Extract raw coefs from model object
createGroup()
Create a user defined group-level object with correct generic functions
createItem()
Create a user defined item with correct generic functions
deAyala
Description of deAyala data
draw_parameters()
Draw plausible parameter instantiations from a given model
empirical_ES()
Empirical effect sizes based on latent trait estimates
empirical_plot()
Function to generate empirical unidimensional item and test plots
empirical_rxx()
Function to calculate the empirical (marginal) reliability
estfun.AllModelClass()
Extract Empirical Estimating Functions
expand.table()
Expand summary table of patterns and frequencies
expected.item()
Function to calculate expected value of item
expected.test()
Function to calculate expected test score
extract.group()
Extract a group from a multiple group mirt object
extract.item()
Extract an item object from mirt objects
extract.mirt()
Extract various elements from estimated model objects
fixedCalib()
Fixed-item calibration method
fixef()
Compute latent regression fixed effect expected values
fscores()
Compute factor score estimates (a.k.a, ability estimates, latent trait estimates, etc)
gen.difficulty()
Generalized item difficulty summaries
imputeMissing()
Imputing plausible data for missing values
itemGAM() plot(<itemGAM>)
Parametric smoothed regression lines for item response probability functions
itemfit()
Item fit statistics
iteminfo()
Function to calculate item information
itemplot()
Displays item surface and information plots
itemstats()
Generic item summary statistics
key2binary()
Score a test by converting response patterns to binary data
lagrange()
Lagrange test for freeing parameters
likert2int()
Convert ordered Likert-scale responses (character or factors) to integers
logLik(<SingleGroupClass>)
Extract log-likelihood
marginal_rxx()
Function to calculate the marginal reliability
mdirt()
Multidimensional discrete item response theory
mirt-package
Full information maximum likelihood estimation of IRT models.
mirt()
Full-Information Item Factor Analysis (Multidimensional Item Response Theory)
mirt.model()
Specify model information
mirtCluster()
Define a parallel cluster object to be used in internal functions
mixedmirt()
Mixed effects modeling for MIRT models
mod2values()
Convert an estimated mirt model to a data.frame
multipleGroup()
Multiple Group Estimation
numerical_deriv()
Compute numerical derivatives
personfit()
Person fit statistics
plot(<MultipleGroupClass>,<missing>) plot(<SingleGroupClass>,<missing>)
Plot various test-implied functions from models
poly2dich()
Change polytomous items to dichotomous item format
print(<SingleGroupClass>)
Print the model objects
print(<mirt_df>)
Print generic for customized data.frame console output
print(<mirt_list>)
Print generic for customized list console output
print(<mirt_matrix>)
Print generic for customized matrix console output
probtrace()
Function to calculate probability trace lines
randef()
Compute posterior estimates of random effect
read.mirt()
Translate mirt parameters into suitable structure for plink package
remap.distance()
Remap item categories to have integer distances of 1
residuals(<SingleGroupClass>)
Compute model residuals
reverse.score()
Reverse score one or more items from a response matrix
secondOrderTest()
Second-order test of convergence
show(<SingleGroupClass>)
Show model object
simdata()
Simulate response patterns
summary(<SingleGroupClass>)
Summary of model object
testinfo()
Function to calculate test information
thetaComb()
Create all possible combinations of vector input
traditional2mirt()
Convert traditional IRT metric into slope-intercept form used in mirt
vcov(<SingleGroupClass>)
Extract parameter variance covariance matrix
wald()
Wald statistics for mirt models