Skip to contents

Test whether terminated estimation criteria for a given model passes the second order test by checking the positive definiteness of the resulting Hessian matrix. This function, which accepts the symmetric Hessian/information matrix as the input, returns TRUE if the matrix is positive definite and FALSE otherwise.

Usage

secondOrderTest(mat, ..., method = "eigen")

Arguments

mat

symmetric matrix to test for positive definiteness (typically the Hessian at the highest point of model estimator, such as MLE or MAP)

...

arguments passed to either eigen, chol, or 'det' for the positiveness of the eigen values, positiveness of leading minors via the Cholesky decomposition, or evaluation of whether the determinant is greater than 0

method

method to use to test positive definiteness. Default is 'eigen'

Value

a matrix with all possible combinations

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Author

Phil Chalmers rphilip.chalmers@gmail.com

Examples


# \donttest{

# PD matrix
mod <- mirt(Science, 1, SE=TRUE)
#> 
Iteration: 1, Log-Lik: -1629.361, Max-Change: 0.50660
Iteration: 2, Log-Lik: -1617.374, Max-Change: 0.25442
Iteration: 3, Log-Lik: -1612.894, Max-Change: 0.16991
Iteration: 4, Log-Lik: -1610.306, Max-Change: 0.10461
Iteration: 5, Log-Lik: -1609.814, Max-Change: 0.09162
Iteration: 6, Log-Lik: -1609.534, Max-Change: 0.07363
Iteration: 7, Log-Lik: -1609.030, Max-Change: 0.03677
Iteration: 8, Log-Lik: -1608.988, Max-Change: 0.03200
Iteration: 9, Log-Lik: -1608.958, Max-Change: 0.02754
Iteration: 10, Log-Lik: -1608.878, Max-Change: 0.01443
Iteration: 11, Log-Lik: -1608.875, Max-Change: 0.00847
Iteration: 12, Log-Lik: -1608.873, Max-Change: 0.00515
Iteration: 13, Log-Lik: -1608.872, Max-Change: 0.00550
Iteration: 14, Log-Lik: -1608.872, Max-Change: 0.00318
Iteration: 15, Log-Lik: -1608.871, Max-Change: 0.00462
Iteration: 16, Log-Lik: -1608.871, Max-Change: 0.00277
Iteration: 17, Log-Lik: -1608.870, Max-Change: 0.00145
Iteration: 18, Log-Lik: -1608.870, Max-Change: 0.00175
Iteration: 19, Log-Lik: -1608.870, Max-Change: 0.00126
Iteration: 20, Log-Lik: -1608.870, Max-Change: 0.00025
Iteration: 21, Log-Lik: -1608.870, Max-Change: 0.00285
Iteration: 22, Log-Lik: -1608.870, Max-Change: 0.00108
Iteration: 23, Log-Lik: -1608.870, Max-Change: 0.00022
Iteration: 24, Log-Lik: -1608.870, Max-Change: 0.00059
Iteration: 25, Log-Lik: -1608.870, Max-Change: 0.00014
Iteration: 26, Log-Lik: -1608.870, Max-Change: 0.00068
Iteration: 27, Log-Lik: -1608.870, Max-Change: 0.00065
Iteration: 28, Log-Lik: -1608.870, Max-Change: 0.00019
Iteration: 29, Log-Lik: -1608.870, Max-Change: 0.00061
Iteration: 30, Log-Lik: -1608.870, Max-Change: 0.00012
Iteration: 31, Log-Lik: -1608.870, Max-Change: 0.00012
Iteration: 32, Log-Lik: -1608.870, Max-Change: 0.00058
Iteration: 33, Log-Lik: -1608.870, Max-Change: 0.00055
Iteration: 34, Log-Lik: -1608.870, Max-Change: 0.00015
Iteration: 35, Log-Lik: -1608.870, Max-Change: 0.00052
Iteration: 36, Log-Lik: -1608.870, Max-Change: 0.00010
#> 
#> Calculating information matrix...
info <- solve(vcov(mod))   ## observed information
secondOrderTest(info)
#> [1] TRUE
secondOrderTest(info, method = 'chol')
#> [1] TRUE
secondOrderTest(info, method = 'det')
#> [1] TRUE

# non-PD matrix
mat <- matrix(c(1,0,0,0,1,1,0,1,1), ncol=3)
mat
#>      [,1] [,2] [,3]
#> [1,]    1    0    0
#> [2,]    0    1    1
#> [3,]    0    1    1
secondOrderTest(mat)
#> [1] FALSE
secondOrderTest(mat, method = 'chol')
#> [1] FALSE
secondOrderTest(mat, method = 'det')
#> [1] FALSE

# }