Computes profiled-likelihood based confidence intervals. Supports the inclusion of equality constraints. Object returns the confidence intervals and whether the respective interval could be found.
Usage
PLCI.mirt(
mod,
parnum = NULL,
alpha = 0.05,
search_bound = TRUE,
step = 0.5,
lower = TRUE,
upper = TRUE,
inf2val = 30,
NealeMiller = FALSE,
verbose = TRUE,
...
)
Arguments
- mod
a converged mirt model
- parnum
a numeric vector indicating which parameters to estimate. Use
mod2values
to determine parameter numbers. IfNULL
, all possible parameters are used- alpha
two-tailed alpha critical level
- search_bound
logical; use a fixed grid of values around the ML estimate to determine more suitable optimization bounds? Using this has much better behaviour than setting fixed upper/lower bound values and searching from more extreme ends
- step
magnitude of steps used when
search_bound
isTRUE
. Smaller values create more points to search a suitable bound for (up to the lower bound value visible withmod2values
). When upper/lower bounds are detected this value will be adjusted accordingly- lower
logical; search for the lower CI?
- upper
logical; search for the upper CI?
- inf2val
a numeric used to change parameter bounds which are infinity to a finite number. Decreasing this too much may not allow a suitable bound to be located. Default is 30
- NealeMiller
logical; use the Neale and Miller 1997 approximation? Default is
FALSE
- verbose
logical; include additional information in the console?
- ...
additional arguments to pass to the estimation functions
References
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Chalmers, R. P., Pek, J., & Liu, Y. (2017). Profile-likelihood Confidence Intervals in Item Response Theory Models. Multivariate Behavioral Research, 52, 533-550. doi:10.1080/00273171.2017.1329082
Neale, M. C. & Miller, M. B. (1997). The use of likelihood-based confidence intervals in genetic models. Behavior Genetics, 27, 113-120.
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
if (FALSE) { # \dontrun{
if(interactive()) mirtCluster() #use all available cores to estimate CI's in parallel
dat <- expand.table(LSAT7)
mod <- mirt(dat, 1)
result <- PLCI.mirt(mod)
result
# model with constraints
mod <- mirt(dat, 'F = 1-5
CONSTRAIN = (1-5, a1)')
result <- PLCI.mirt(mod)
result
mod2 <- mirt(Science, 1)
result2 <- PLCI.mirt(mod2)
result2
# only estimate CI's slopes
sv <- mod2values(mod2)
parnum <- sv$parnum[sv$name == 'a1']
result3 <- PLCI.mirt(mod2, parnum)
result3
} # }