Given an internal mirt object estimate the bootstrapped standard errors. It may
be beneficial to run the computations using multi-core architecture (e.g., the parallel
package). Parameters are organized from the freely estimated values in mod2values(x)
(equality constraints will also be returned in the bootstrapped estimates).
Arguments
- x
an estimated model object
- R
number of draws to use (passed to the
boot()
function)- boot.fun
a user-defined function used to extract the information from the bootstrap fitted models. Must be of the form
boot.fun(x)
, wherex
is the bootstrap fitted model under investigation, and the return must be a numeric vector. If omitted a default function will be defined internally that returns the estimated parameters from themod
object, resulting in bootstrapped parameter estimate results- technical
technical arguments passed to estimation engine. See
mirt
for details- ...
additional arguments to be passed on to
boot(...)
and mirt's estimation engine
References
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
if (FALSE) { # \dontrun{
# standard
mod <- mirt(Science, 1)
booted <- boot.mirt(mod, R=20)
plot(booted)
booted
#run in parallel using snow back-end using all available cores
mod <- mirt(Science, 1)
booted <- boot.mirt(mod, parallel = 'snow', ncpus = parallel::detectCores())
booted
####
# bootstrapped CIs for standardized factor loadings
boot.fun <- function(mod){
so <- summary(mod, verbose=FALSE)
as.vector(so$rotF)
}
# test to see if it works before running
boot.fun(mod)
# run
booted.loads <- boot.mirt(mod, boot.fun=boot.fun)
booted.loads
} # }