Skip to contents

Computes effect size measures of differential item functioning and differential test/bundle functioning based on expected scores from Meade (2010). Item parameters from both reference and focal group are used in conjunction with focal group empirical theta estimates (and an assumed normally distributed theta) to compute expected scores.

Usage

empirical_ES(
  mod,
  Theta.focal = NULL,
  focal_items = 1L:extract.mirt(mod, "nitems"),
  DIF = TRUE,
  npts = 61,
  theta_lim = c(-6, 6),
  plot = FALSE,
  type = "b",
  par.strip.text = list(cex = 0.7),
  par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col =
    "black")),
  ...
)

Arguments

mod

a multipleGroup object which estimated only 2 groups. The first group in this object is assumed to be the reference group by default (i.e., ref.group = 1), which conforms to the invariance arguments in multipleGroup

Theta.focal

an optional matrix of Theta values from the focal group to be evaluated. If not supplied the default values to fscores will be used in conjunction with the ... arguments passed

focal_items

a numeric vector indicating which items to include the tests. The default uses all of the items. Selecting fewer items will result in tests of 'differential bundle functioning' when DIF = FALSE

DIF

logical; return a data.frame of item-level imputation properties? If FALSE, only DBF and DTF statistics will be reported

npts

number of points to use in the integration. Default is 61

theta_lim

lower and upper limits of the latent trait (theta) to be evaluated, and is used in conjunction with npts

plot

logical; plot expected scores of items/test where expected scores are computed using focal group thetas and both focal and reference group item parameters

type

type of objects to draw in lattice; default plots both points and lines

par.strip.text

plotting argument passed to lattice

par.settings

plotting argument passed to lattice

...

additional arguments to be passed to fscores and xyplot

DIF

The default DIF = TRUE produces several effect sizes indices at the item level. Signed indices allow DIF favoring the focal group at one point on the theta distribution to cancel DIF favoring the reference group at another point on the theta distribution. Unsigned indices take the absolute value before summing or averaging, thus not allowing cancellation of DIF across theta.

SIDS

Signed Item Difference in the Sample. The average difference in expected scores across the focal sample using both focal and reference group item parameters.

UIDS

Unsigned Item Difference in the Sample. Same as SIDS except absolute value of expected scores is taken prior to averaging across the sample.

D-Max

The maximum difference in expected scores in the sample.

ESSD

Expected Score Standardized Difference. Cohen's D for difference in expected scores.

SIDN

Signed Item Difference in a Normal distribution. Identical to SIDS but averaged across a normal distribution rather than the sample.

UIDN

Unsigned Item Difference in a Normal distribution. Identical to UIDS but averaged across a normal distribution rather than the sample.

DBF/DTF

DIF = FALSE produces a series of test/bundle-level indices that are based on item-level indices.

STDS

Signed Test Differences in the Sample. The sum of the SIDS across items.

UTDS

Unsigned Test Differences in the Sample. The sum of the UIDS across items.

Stark's DTFR

Stark's version of STDS using a normal distribution rather than sample estimated thetas.

UDTFR

Unsigned Expected Test Scores Differences in the Sample. The difference in observed summed scale scores expected, on average, across a hypothetical focal group with a normally distributed theta, had DF been uniform in nature for all items

UETSDS

Unsigned Expected Test Score Differences in the Sample. The hypothetical difference expected scale scores that would have been present if scale-level DF had been uniform across respondents (i.e., always favoring the focal group).

UETSDN

Identical to UETSDS but computed using a normal distribution.

Test D-Max

Maximum expected test score differences in the sample.

ETSSD

Expected Test Score Standardized Difference. Cohen's D for expected test scores.

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi:10.18637/jss.v048.i06

Meade, A. W. (2010). A taxonomy of effect size measures for the differential functioning of items and scales. Journal of Applied Psychology, 95, 728-743.

Author

Adam Meade, with contributions by Phil Chalmers rphilip.chalmers@gmail.com

Examples

# \donttest{

# no DIF
set.seed(12345)
a <- matrix(abs(rnorm(15,1,.3)), ncol=1)
d <- matrix(rnorm(15,0,.7),ncol=1)
itemtype <- rep('2PL', nrow(a))
N <- 1000
dataset1 <- simdata(a, d, N, itemtype)
dataset2 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5))
dat <- rbind(dataset1, dataset2)

# ensure 'Ref' is the first group (and therefore reference group during estimation)
group <- factor(c(rep('Ref', N), rep('Focal', N)), levels = c('Ref', 'Focal'))

mod <- multipleGroup(dat, 1, group = group,
   invariance = c(colnames(dat)[1:5], 'free_means', 'free_var'))
#> 
Iteration: 1, Log-Lik: -18088.417, Max-Change: 0.37928
Iteration: 2, Log-Lik: -17927.092, Max-Change: 0.16095
Iteration: 3, Log-Lik: -17911.266, Max-Change: 0.08104
Iteration: 4, Log-Lik: -17908.966, Max-Change: 0.04069
Iteration: 5, Log-Lik: -17908.422, Max-Change: 0.02045
Iteration: 6, Log-Lik: -17908.217, Max-Change: 0.01025
Iteration: 7, Log-Lik: -17908.062, Max-Change: 0.01050
Iteration: 8, Log-Lik: -17907.986, Max-Change: 0.00768
Iteration: 9, Log-Lik: -17907.925, Max-Change: 0.00690
Iteration: 10, Log-Lik: -17907.834, Max-Change: 0.02114
Iteration: 11, Log-Lik: -17907.700, Max-Change: 0.00752
Iteration: 12, Log-Lik: -17907.678, Max-Change: 0.00529
Iteration: 13, Log-Lik: -17907.645, Max-Change: 0.00917
Iteration: 14, Log-Lik: -17907.625, Max-Change: 0.00487
Iteration: 15, Log-Lik: -17907.614, Max-Change: 0.00406
Iteration: 16, Log-Lik: -17907.602, Max-Change: 0.01236
Iteration: 17, Log-Lik: -17907.574, Max-Change: 0.00437
Iteration: 18, Log-Lik: -17907.569, Max-Change: 0.00310
Iteration: 19, Log-Lik: -17907.562, Max-Change: 0.00502
Iteration: 20, Log-Lik: -17907.558, Max-Change: 0.00278
Iteration: 21, Log-Lik: -17907.555, Max-Change: 0.00237
Iteration: 22, Log-Lik: -17907.553, Max-Change: 0.00724
Iteration: 23, Log-Lik: -17907.545, Max-Change: 0.00252
Iteration: 24, Log-Lik: -17907.543, Max-Change: 0.00179
Iteration: 25, Log-Lik: -17907.542, Max-Change: 0.00283
Iteration: 26, Log-Lik: -17907.540, Max-Change: 0.00160
Iteration: 27, Log-Lik: -17907.539, Max-Change: 0.00136
Iteration: 28, Log-Lik: -17907.539, Max-Change: 0.00420
Iteration: 29, Log-Lik: -17907.536, Max-Change: 0.00146
Iteration: 30, Log-Lik: -17907.536, Max-Change: 0.00103
Iteration: 31, Log-Lik: -17907.535, Max-Change: 0.00161
Iteration: 32, Log-Lik: -17907.535, Max-Change: 0.00091
Iteration: 33, Log-Lik: -17907.534, Max-Change: 0.00078
Iteration: 34, Log-Lik: -17907.534, Max-Change: 0.00243
Iteration: 35, Log-Lik: -17907.533, Max-Change: 0.00083
Iteration: 36, Log-Lik: -17907.533, Max-Change: 0.00060
Iteration: 37, Log-Lik: -17907.533, Max-Change: 0.00097
Iteration: 38, Log-Lik: -17907.533, Max-Change: 0.00052
Iteration: 39, Log-Lik: -17907.533, Max-Change: 0.00045
Iteration: 40, Log-Lik: -17907.533, Max-Change: 0.00136
Iteration: 41, Log-Lik: -17907.532, Max-Change: 0.00047
Iteration: 42, Log-Lik: -17907.532, Max-Change: 0.00033
Iteration: 43, Log-Lik: -17907.532, Max-Change: 0.00052
Iteration: 44, Log-Lik: -17907.532, Max-Change: 0.00030
Iteration: 45, Log-Lik: -17907.532, Max-Change: 0.00025
Iteration: 46, Log-Lik: -17907.532, Max-Change: 0.00070
Iteration: 47, Log-Lik: -17907.532, Max-Change: 0.00027
Iteration: 48, Log-Lik: -17907.532, Max-Change: 0.00020
Iteration: 49, Log-Lik: -17907.532, Max-Change: 0.00035
Iteration: 50, Log-Lik: -17907.532, Max-Change: 0.00017
Iteration: 51, Log-Lik: -17907.532, Max-Change: 0.00015
Iteration: 52, Log-Lik: -17907.532, Max-Change: 0.00045
Iteration: 53, Log-Lik: -17907.532, Max-Change: 0.00016
Iteration: 54, Log-Lik: -17907.532, Max-Change: 0.00011
Iteration: 55, Log-Lik: -17907.532, Max-Change: 0.00017
Iteration: 56, Log-Lik: -17907.532, Max-Change: 0.00010
coef(mod, simplify=TRUE)
#> $Ref
#> $items
#>            a1      d g u
#> Item_1  1.085  0.518 0 1
#> Item_2  1.182 -0.652 0 1
#> Item_3  1.040 -0.284 0 1
#> Item_4  0.869  0.885 0 1
#> Item_5  1.063  0.144 0 1
#> Item_6  0.567  0.683 0 1
#> Item_7  1.273  1.001 0 1
#> Item_8  0.924 -0.330 0 1
#> Item_9  0.890 -1.059 0 1
#> Item_10 0.721 -1.082 0 1
#> Item_11 0.832  1.188 0 1
#> Item_12 1.478 -0.252 0 1
#> Item_13 1.288  0.445 0 1
#> Item_14 1.034  0.452 0 1
#> Item_15 0.864 -0.062 0 1
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 
#> 
#> $Focal
#> $items
#>            a1      d g u
#> Item_1  1.085  0.518 0 1
#> Item_2  1.182 -0.652 0 1
#> Item_3  1.040 -0.284 0 1
#> Item_4  0.869  0.885 0 1
#> Item_5  1.063  0.144 0 1
#> Item_6  0.363  0.585 0 1
#> Item_7  1.083  0.915 0 1
#> Item_8  0.997 -0.471 0 1
#> Item_9  0.840 -1.041 0 1
#> Item_10 0.647 -1.181 0 1
#> Item_11 1.009  1.199 0 1
#> Item_12 1.278 -0.240 0 1
#> Item_13 1.201  0.366 0 1
#> Item_14 1.219  0.403 0 1
#> Item_15 0.696 -0.103 0 1
#> 
#> $means
#>    F1 
#> 0.106 
#> 
#> $cov
#>       F1
#> F1 1.697
#> 
#> 

empirical_ES(mod)
#>           SIDS  UIDS   SIDN  UIDN   ESSD theta.of.max.D  max.D mean.ES.foc
#> Item_1   0.000 0.000  0.000 0.000  0.000         -1.786  0.000       0.618
#> Item_2   0.000 0.000  0.000 0.000  0.000         -1.786  0.000       0.408
#> Item_3   0.000 0.000  0.000 0.000  0.000         -1.786  0.000       0.468
#> Item_4   0.000 0.000  0.000 0.000  0.000         -1.786  0.000       0.691
#> Item_5   0.000 0.000  0.000 0.000  0.000         -1.786  0.000       0.550
#> Item_6  -0.018 0.042 -0.020 0.037 -0.148         -2.560  0.098       0.645
#> Item_7  -0.004 0.023 -0.007 0.021 -0.018         -1.935  0.047       0.686
#> Item_8  -0.024 0.024 -0.026 0.026 -0.106         -0.533 -0.037       0.431
#> Item_9  -0.001 0.007  0.000 0.006 -0.005          2.571 -0.020       0.313
#> Item_10 -0.024 0.025 -0.023 0.023 -0.163          2.571 -0.065       0.271
#> Item_11 -0.009 0.024 -0.006 0.021 -0.048         -2.357 -0.081       0.736
#> Item_12 -0.003 0.023 -0.003 0.022 -0.012          1.229 -0.036       0.484
#> Item_13 -0.012 0.015 -0.014 0.015 -0.045          0.618 -0.024       0.589
#> Item_14 -0.012 0.027 -0.012 0.025 -0.048         -1.426 -0.056       0.595
#> Item_15 -0.013 0.031 -0.013 0.028 -0.064          1.901 -0.057       0.494
#>         mean.ES.ref
#> Item_1        0.618
#> Item_2        0.408
#> Item_3        0.468
#> Item_4        0.691
#> Item_5        0.550
#> Item_6        0.663
#> Item_7        0.690
#> Item_8        0.455
#> Item_9        0.314
#> Item_10       0.295
#> Item_11       0.744
#> Item_12       0.487
#> Item_13       0.601
#> Item_14       0.607
#> Item_15       0.507
empirical_ES(mod, DIF=FALSE)
#>           Effect Size       Value
#> 1                STDS -0.12007524
#> 2                UTDS  0.24122923
#> 3              UETSDS  0.13068433
#> 4               ETSSD -0.03693475
#> 5         Starks.DTFR -0.12338715
#> 6               UDTFR  0.22580510
#> 7              UETSDN  0.12941066
#> 8 theta.of.max.test.D  1.73546824
#> 9           Test.Dmax -0.23002060
empirical_ES(mod, DIF=FALSE, focal_items = 10:15)
#>           Effect Size       Value
#> 1                STDS -0.07301229
#> 2                UTDS  0.14449888
#> 3              UETSDS  0.07301229
#> 4               ETSSD -0.05523295
#> 5         Starks.DTFR -0.06993679
#> 6               UDTFR  0.13444167
#> 7              UETSDN  0.06993679
#> 8 theta.of.max.test.D  1.90144409
#> 9           Test.Dmax -0.12250160

empirical_ES(mod, plot=TRUE)

empirical_ES(mod, plot=TRUE, DIF=FALSE)


###---------------------------------------------
# DIF
set.seed(12345)
a1 <- a2 <- matrix(abs(rnorm(15,1,.3)), ncol=1)
d1 <- d2 <- matrix(rnorm(15,0,.7),ncol=1)
a2[10:15,] <- a2[10:15,] + rnorm(6, 0, .3)
d2[10:15,] <- d2[10:15,] + rnorm(6, 0, .3)
itemtype <- rep('dich', nrow(a1))
N <- 1000
dataset1 <- simdata(a1, d1, N, itemtype)
dataset2 <- simdata(a2, d2, N, itemtype, mu = .1, sigma = matrix(1.5))
dat <- rbind(dataset1, dataset2)
group <- factor(c(rep('Ref', N), rep('Focal', N)), levels = c('Ref', 'Focal'))

mod <- multipleGroup(dat, 1, group = group,
   invariance = c(colnames(dat)[1:5], 'free_means', 'free_var'))
#> 
Iteration: 1, Log-Lik: -17936.582, Max-Change: 0.73422
Iteration: 2, Log-Lik: -17615.443, Max-Change: 0.25313
Iteration: 3, Log-Lik: -17593.876, Max-Change: 0.08896
Iteration: 4, Log-Lik: -17591.020, Max-Change: 0.04355
Iteration: 5, Log-Lik: -17590.338, Max-Change: 0.02234
Iteration: 6, Log-Lik: -17590.061, Max-Change: 0.01235
Iteration: 7, Log-Lik: -17589.805, Max-Change: 0.00954
Iteration: 8, Log-Lik: -17589.690, Max-Change: 0.00937
Iteration: 9, Log-Lik: -17589.599, Max-Change: 0.00867
Iteration: 10, Log-Lik: -17589.382, Max-Change: 0.02056
Iteration: 11, Log-Lik: -17589.236, Max-Change: 0.00422
Iteration: 12, Log-Lik: -17589.212, Max-Change: 0.00436
Iteration: 13, Log-Lik: -17589.159, Max-Change: 0.01046
Iteration: 14, Log-Lik: -17589.119, Max-Change: 0.00204
Iteration: 15, Log-Lik: -17589.113, Max-Change: 0.00213
Iteration: 16, Log-Lik: -17589.099, Max-Change: 0.00522
Iteration: 17, Log-Lik: -17589.088, Max-Change: 0.00152
Iteration: 18, Log-Lik: -17589.086, Max-Change: 0.00110
Iteration: 19, Log-Lik: -17589.082, Max-Change: 0.00260
Iteration: 20, Log-Lik: -17589.079, Max-Change: 0.00110
Iteration: 21, Log-Lik: -17589.079, Max-Change: 0.00083
Iteration: 22, Log-Lik: -17589.077, Max-Change: 0.00228
Iteration: 23, Log-Lik: -17589.076, Max-Change: 0.00087
Iteration: 24, Log-Lik: -17589.076, Max-Change: 0.00063
Iteration: 25, Log-Lik: -17589.075, Max-Change: 0.00131
Iteration: 26, Log-Lik: -17589.075, Max-Change: 0.00061
Iteration: 27, Log-Lik: -17589.074, Max-Change: 0.00048
Iteration: 28, Log-Lik: -17589.074, Max-Change: 0.00145
Iteration: 29, Log-Lik: -17589.074, Max-Change: 0.00052
Iteration: 30, Log-Lik: -17589.074, Max-Change: 0.00037
Iteration: 31, Log-Lik: -17589.074, Max-Change: 0.00065
Iteration: 32, Log-Lik: -17589.074, Max-Change: 0.00034
Iteration: 33, Log-Lik: -17589.074, Max-Change: 0.00028
Iteration: 34, Log-Lik: -17589.073, Max-Change: 0.00086
Iteration: 35, Log-Lik: -17589.073, Max-Change: 0.00031
Iteration: 36, Log-Lik: -17589.073, Max-Change: 0.00022
Iteration: 37, Log-Lik: -17589.073, Max-Change: 0.00032
Iteration: 38, Log-Lik: -17589.073, Max-Change: 0.00020
Iteration: 39, Log-Lik: -17589.073, Max-Change: 0.00016
Iteration: 40, Log-Lik: -17589.073, Max-Change: 0.00050
Iteration: 41, Log-Lik: -17589.073, Max-Change: 0.00019
Iteration: 42, Log-Lik: -17589.073, Max-Change: 0.00013
Iteration: 43, Log-Lik: -17589.073, Max-Change: 0.00017
Iteration: 44, Log-Lik: -17589.073, Max-Change: 0.00011
Iteration: 45, Log-Lik: -17589.073, Max-Change: 0.00010
coef(mod, simplify=TRUE)
#> $Ref
#> $items
#>            a1      d g u
#> Item_1  1.202  0.566 0 1
#> Item_2  1.163 -0.626 0 1
#> Item_3  0.965 -0.316 0 1
#> Item_4  0.819  0.872 0 1
#> Item_5  1.165  0.161 0 1
#> Item_6  0.533  0.631 0 1
#> Item_7  1.147  1.022 0 1
#> Item_8  1.064 -0.319 0 1
#> Item_9  0.889 -1.003 0 1
#> Item_10 0.756 -1.098 0 1
#> Item_11 1.024  1.394 0 1
#> Item_12 1.485 -0.268 0 1
#> Item_13 1.280  0.402 0 1
#> Item_14 1.009  0.490 0 1
#> Item_15 0.745 -0.136 0 1
#> 
#> $means
#> F1 
#>  0 
#> 
#> $cov
#>    F1
#> F1  1
#> 
#> 
#> $Focal
#> $items
#>            a1      d g u
#> Item_1  1.202  0.566 0 1
#> Item_2  1.163 -0.626 0 1
#> Item_3  0.965 -0.316 0 1
#> Item_4  0.819  0.872 0 1
#> Item_5  1.165  0.161 0 1
#> Item_6  0.326  0.556 0 1
#> Item_7  1.085  0.947 0 1
#> Item_8  0.987 -0.529 0 1
#> Item_9  0.786 -1.009 0 1
#> Item_10 0.908 -1.274 0 1
#> Item_11 1.437  0.628 0 1
#> Item_12 1.947  0.153 0 1
#> Item_13 1.477  0.315 0 1
#> Item_14 1.313  0.623 0 1
#> Item_15 0.919 -0.878 0 1
#> 
#> $means
#>    F1 
#> 0.123 
#> 
#> $cov
#>       F1
#> F1 1.788
#> 
#> 

empirical_ES(mod)
#>           SIDS  UIDS   SIDN  UIDN   ESSD theta.of.max.D  max.D mean.ES.foc
#> Item_1   0.000 0.000  0.000 0.000  0.000          1.153  0.000       0.624
#> Item_2   0.000 0.000  0.000 0.000  0.000          1.153  0.000       0.417
#> Item_3   0.000 0.000  0.000 0.000  0.000          1.153  0.000       0.464
#> Item_4   0.000 0.000  0.000 0.000  0.000          1.153  0.000       0.691
#> Item_5   0.000 0.000  0.000 0.000  0.000          1.153  0.000       0.556
#> Item_6  -0.014 0.045 -0.017 0.037 -0.120         -2.463  0.103       0.640
#> Item_7  -0.009 0.010 -0.010 0.011 -0.037          0.312 -0.016       0.691
#> Item_8  -0.043 0.043 -0.046 0.046 -0.174          0.940 -0.066       0.424
#> Item_9  -0.010 0.018 -0.008 0.015 -0.054          2.421 -0.050       0.319
#> Item_10 -0.016 0.025 -0.020 0.025 -0.089          2.622  0.043       0.284
#> Item_11 -0.136 0.136 -0.138 0.138 -0.545         -1.274 -0.291       0.627
#> Item_12  0.064 0.070  0.075 0.079  0.195          0.536  0.139       0.555
#> Item_13 -0.016 0.026 -0.017 0.025 -0.055         -1.037 -0.055       0.579
#> Item_14  0.014 0.042  0.019 0.039  0.055         -1.774 -0.061       0.630
#> Item_15 -0.137 0.137 -0.147 0.147 -0.663         -0.086 -0.173       0.355
#>         mean.ES.ref
#> Item_1        0.624
#> Item_2        0.417
#> Item_3        0.464
#> Item_4        0.691
#> Item_5        0.556
#> Item_6        0.654
#> Item_7        0.699
#> Item_8        0.467
#> Item_9        0.329
#> Item_10       0.300
#> Item_11       0.763
#> Item_12       0.490
#> Item_13       0.595
#> Item_14       0.616
#> Item_15       0.492
empirical_ES(mod, DIF = FALSE)
#>           Effect Size       Value
#> 1                STDS -0.30204052
#> 2                UTDS  0.55171554
#> 3              UETSDS  0.30204052
#> 4               ETSSD -0.08665251
#> 5         Starks.DTFR -0.30918657
#> 6               UDTFR  0.56373600
#> 7              UETSDN  0.30918906
#> 8 theta.of.max.test.D -1.05111220
#> 9           Test.Dmax -0.54821795
empirical_ES(mod, plot=TRUE)

empirical_ES(mod, plot=TRUE, DIF=FALSE)


# }