Robustness interval criteria for empirical detection rate estimates and
empirical coverage estimates defined by Bradley (1978).
See EDR
and ECR
to obtain such estimates.
Usage
Bradley1978(
rate,
alpha = 0.05,
type = "liberal",
CI = FALSE,
out.logical = FALSE,
out.labels = c("conservative", "robust", "liberal"),
unname = FALSE
)
Arguments
- rate
(optional) numeric vector containing the empirical detection rate(s) or empirical confidence interval estimates. If supplied a character vector with elements defined in
out.labels
or a logical vector will be returned indicating whether the detection rate estimate is considered 'robust'.When the input is an empirical coverage rate the argument
CI
must be set toTRUE
.If this input is missing, the interval criteria will be printed to the console
- alpha
Type I error rate to evaluated (default is .05)
- type
character vector indicating the type of interval classification to use. Default is 'liberal', however can be 'stringent' to use Bradley's more stringent robustness criteria
- CI
logical; should this robust interval be constructed on empirical detection rates (
FALSE
) or empirical coverage rates (TRUE
)?- out.logical
logical; should the output vector be TRUE/FALSE indicating whether the supplied empirical detection rate/CI should be considered "robust"? Default is FALSE, in which case the out.labels elements are used instead
- out.labels
character vector of length three indicating the classification labels according to the desired robustness interval
- unname
logical; apply
unname
to the results to remove any variable names?
References
Bradley, J. V. (1978). Robustness? British Journal of Mathematical and Statistical Psychology, 31, 144-152.
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
doi:10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
doi:10.1080/10691898.2016.1246953
See also
EDR
, ECR
, Serlin2000
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
# interval criteria used for empirical detection rates
Bradley1978()
#> liberal.lower liberal.upper
#> 0.025 0.075
Bradley1978(type = 'stringent')
#> stringent.lower stringent.upper
#> 0.045 0.055
Bradley1978(alpha = .01, type = 'stringent')
#> stringent.lower stringent.upper
#> 0.009 0.011
# intervals applied to empirical detection rate estimates
edr <- c(test1 = .05, test2 = .027, test3 = .051, test4 = .076, test5 = .024)
Bradley1978(edr)
#> test1 test2 test3 test4 test5
#> "robust" "robust" "robust" "liberal" "conservative"
Bradley1978(edr, out.logical=TRUE) # is robust?
#> test1 test2 test3 test4 test5
#> TRUE TRUE TRUE FALSE FALSE
#####
# interval criteria used for coverage estimates
Bradley1978(CI = TRUE)
#> liberal.lower liberal.upper
#> 0.925 0.975
Bradley1978(CI = TRUE, type = 'stringent')
#> stringent.lower stringent.upper
#> 0.945 0.955
Bradley1978(CI = TRUE, alpha = .01, type = 'stringent')
#> stringent.lower stringent.upper
#> 0.989 0.991
# intervals applied to empirical coverage rate estimates
ecr <- c(test1 = .950, test2 = .973, test3 = .949, test4 = .924, test5 = .976)
Bradley1978(ecr, CI=TRUE)
#> test1 test2 test3 test4 test5
#> "robust" "robust" "robust" "liberal" "conservative"
Bradley1978(ecr, CI=TRUE, out.logical=TRUE) # is robust?
#> test1 test2 test3 test4 test5
#> TRUE TRUE TRUE FALSE FALSE