Skip to contents

All functions

Analyse()
Compute estimates and statistics
AnalyseIf()
Perform a test that indicates whether a given Analyse() function should be executed
Attach()
Attach objects for easier reference
BF_sim
Example simulation from Brown and Forsythe (1974)
BF_sim_alternative
(Alternative) Example simulation from Brown and Forsythe (1974)
Bradley1978()
Bradley's (1978) empirical robustness interval
CC()
Compute congruence coefficient
ECR()
Compute empirical coverage rates
EDR()
Compute the empirical detection/rejection rate for Type I errors and Power
Generate()
Generate data
GenerateIf()
Perform a test that indicates whether a given Generate() function should be executed
IRMSE()
Compute the integrated root mean-square error
MAE()
Compute the mean absolute error
MSRSE()
Compute the relative performance behavior of collections of standard errors
PBA() print(<PBA>) plot(<PBA>)
Probabilistic Bisection Algorithm
RAB()
Compute the relative absolute bias of multiple estimators
RD()
Compute the relative difference
RE()
Compute the relative efficiency of multiple estimators
RMSE() RMSD()
Compute the (normalized) root mean square error
RSE()
Compute the relative standard error ratio
RobbinsMonro() print(<RM>) plot(<RM>)
Robbins-Monro (1951) stochastic root-finding algorithm
SFA() print(<SFA>)
Surrogate Function Approximation via the Generalized Linear Model
Serlin2000()
Empirical detection robustness method suggested by Serlin (2000)
SimAnova()
Function for decomposing the simulation into ANOVA-based effect sizes
SimCheck()
Check for missing files in array simulations
SimClean()
Removes/cleans files and folders that have been saved
SimCollect() aggregate_simulations()
Collapse separate simulation files into a single result
SimDesign SimDesign-package
Structure for Organizing Monte Carlo Simulation Designs
SimExtract()
Function to extract extra information from SimDesign objects
SimFunctions()
Template-based generation of the Generate-Analyse-Summarise functions
SimResults()
Function to read in saved simulation results
SimShiny()
Generate a basic Monte Carlo simulation GUI template
SimSolve() summary(<SimSolve>) plot(<SimSolve>)
One Dimensional Root (Zero) Finding in Simulation Experiments
Summarise()
Summarise simulated data using various population comparison statistics
addMissing()
Add missing values to a vector given a MCAR, MAR, or MNAR scheme
bias()
Compute (relative/standardized) bias summary statistic
bootPredict() boot_predict()
Compute prediction estimates for the replication size using bootstrap MSE estimates
clusterSetRNGSubStream()
Set RNG sub-stream for Pierre L'Ecuyer's RngStreams
colVars() colSDs()
Form Column Standard Deviation and Variances
createDesign() print(<Design>) `[`(<Design>) rbind(<Design>)
Create the simulation design object
expandDesign()
Create the simulation design object
genSeeds() gen_seeds()
Generate random seeds
getArrayID()
Get job array ID (e.g., from SLURM or other HPC array distributions)
manageMessages()
Increase the intensity or suppress the output of an observed message
manageWarnings()
Manage specific warning messages
nc()
Auto-named Concatenation of Vector or List
quiet()
Suppress verbose function messages
rHeadrick()
Generate non-normal data with Headrick's (2002) method
rValeMaurelli()
Generate non-normal data with Vale & Maurelli's (1983) method
rbind(<SimDesign>)
Combine two separate SimDesign objects by row
reSummarise()
Run a summarise step for results that have been saved to the hard drive
rejectionSampling()
Rejection sampling (i.e., accept-reject method)
rint()
Generate integer values within specified range
rinvWishart()
Generate data with the inverse Wishart distribution
rmgh()
Generate data with the multivariate g-and-h distribution
rmvnorm()
Generate data with the multivariate normal (i.e., Gaussian) distribution
rmvt()
Generate data with the multivariate t distribution
rtruncate()
Generate a random set of values within a truncated range
runArraySimulation()
Run a Monte Carlo simulation using array job submissions per condition
runSimulation() summary(<SimDesign>) print(<SimDesign>)
Run a Monte Carlo simulation given conditions and simulation functions
timeFormater()
Format time string to suitable numeric output