All functions

Analyse()

Compute estimates and statistics

AnalyseIf()

Perform a test that indicates whether a given Analyse() function should be executed

Attach()

Attach objects for easier reference

BF_sim

Example simulation from Brown and Forsythe (1974)

BF_sim_alternative

(Alternative) Example simulation from Brown and Forsythe (1974)

Bradley1978()

Bradley's (1978) empirical robustness interval

CC()

Compute congruence coefficient

ECR()

Compute empirical coverage rates

EDR()

Compute the empirical detection/rejection rate for Type I errors and Power

Generate()

Generate data

GenerateIf()

Perform a test that indicates whether a given Generate() function should be executed

IRMSE()

Compute the integrated root mean-square error

MAE()

Compute the mean absolute error

MSRSE()

Compute the relative performance behavior of collections of standard errors

PBA() print(<PBA>) plot(<PBA>)

Probabilistic Bisection Algorithm

RAB()

Compute the relative absolute bias of multiple estimators

RD()

Compute the relative difference

RE()

Compute the relative efficiency of multiple estimators

RMSE() RMSD()

Compute the (normalized) root mean square error

RSE()

Compute the relative standard error ratio

RobbinsMonro() print(<RM>) plot(<RM>)

Robbins-Monro (1951) stochastic root-finding algorithm

SFA() print(<SFA>)

Surrogate Function Approximation via the Generalized Linear Model

Serlin2000()

Empirical detection robustness method suggested by Serlin (2000)

SimAnova()

Function for decomposing the simulation into ANOVA-based effect sizes

SimCheck()

Check for missing files in array simulations

SimClean()

Removes/cleans files and folders that have been saved

SimCollect() aggregate_simulations()

Collapse separate simulation files into a single result

SimDesign SimDesign-package

Structure for Organizing Monte Carlo Simulation Designs

SimExtract()

Function to extract extra information from SimDesign objects

SimFunctions()

Template-based generation of the Generate-Analyse-Summarise functions

SimResults()

Function to read in saved simulation results

SimShiny()

Generate a basic Monte Carlo simulation GUI template

SimSolve() summary(<SimSolve>) plot(<SimSolve>)

One Dimensional Root (Zero) Finding in Simulation Experiments

Summarise()

Summarise simulated data using various population comparison statistics

addMissing()

Add missing values to a vector given a MCAR, MAR, or MNAR scheme

bias()

Compute (relative/standardized) bias summary statistic

bootPredict() boot_predict()

Compute prediction estimates for the replication size using bootstrap MSE estimates

clusterSetRNGSubStream()

Set RNG sub-stream for Pierre L'Ecuyer's RngStreams

colVars() colSDs()

Form Column Standard Deviation and Variances

createDesign() print(<Design>) `[`(<Design>) rbindDesign()

Create the simulation design object

expandDesign()

Expand the simulation design object for array computing

expandReplications()

Expand the replications to match expandDesign

genSeeds() gen_seeds()

Generate random seeds

getArrayID()

Get job array ID (e.g., from SLURM or other HPC array distributions)

listAvailableNotifiers()

List All Available Notifiers

manageMessages()

Increase the intensity or suppress the output of an observed message

manageWarnings()

Manage specific warning messages

nc()

Auto-named Concatenation of Vector or List

new_PushbulletNotifier()

Create a Pushbullet Notifier

new_TelegramNotifier()

Create a Telegram Notifier

quiet()

Suppress verbose function messages

rHeadrick()

Generate non-normal data with Headrick's (2002) method

rValeMaurelli()

Generate non-normal data with Vale & Maurelli's (1983) method

rbind(<SimDesign>)

Combine two separate SimDesign objects by row

reSummarise()

Run a summarise step for results that have been saved to the hard drive

rejectionSampling()

Rejection sampling (i.e., accept-reject method)

rint()

Generate integer values within specified range

rinvWishart()

Generate data with the inverse Wishart distribution

rmgh()

Generate data with the multivariate g-and-h distribution

rmvnorm()

Generate data with the multivariate normal (i.e., Gaussian) distribution

rmvt()

Generate data with the multivariate t distribution

rtruncate()

Generate a random set of values within a truncated range

runArraySimulation()

Run a Monte Carlo simulation using array job submissions per condition

runSimulation() summary(<SimDesign>) print(<SimDesign>)

Run a Monte Carlo simulation given conditions and simulation functions

timeFormater()

Format time string to suitable numeric output