Package index
-
Analyse()
- Compute estimates and statistics
-
AnalyseIf()
- Perform a test that indicates whether a given
Analyse()
function should be executed
-
Attach()
- Attach objects for easier reference
-
BF_sim
- Example simulation from Brown and Forsythe (1974)
-
BF_sim_alternative
- (Alternative) Example simulation from Brown and Forsythe (1974)
-
Bradley1978()
- Bradley's (1978) empirical robustness interval
-
CC()
- Compute congruence coefficient
-
ECR()
- Compute empirical coverage rates
-
EDR()
- Compute the empirical detection/rejection rate for Type I errors and Power
-
Generate()
- Generate data
-
GenerateIf()
- Perform a test that indicates whether a given
Generate()
function should be executed
-
IRMSE()
- Compute the integrated root mean-square error
-
MAE()
- Compute the mean absolute error
-
MSRSE()
- Compute the relative performance behavior of collections of standard errors
-
PBA()
print(<PBA>)
plot(<PBA>)
- Probabilistic Bisection Algorithm
-
RAB()
- Compute the relative absolute bias of multiple estimators
-
RD()
- Compute the relative difference
-
RE()
- Compute the relative efficiency of multiple estimators
-
RSE()
- Compute the relative standard error ratio
-
RobbinsMonro()
print(<RM>)
plot(<RM>)
- Robbins-Monro (1951) stochastic root-finding algorithm
-
SFA()
print(<SFA>)
- Surrogate Function Approximation via the Generalized Linear Model
-
Serlin2000()
- Empirical detection robustness method suggested by Serlin (2000)
-
SimAnova()
- Function for decomposing the simulation into ANOVA-based effect sizes
-
SimCheck()
- Check for missing files in array simulations
-
SimClean()
- Removes/cleans files and folders that have been saved
-
SimCollect()
aggregate_simulations()
- Collapse separate simulation files into a single result
-
SimDesign
SimDesign-package
- Structure for Organizing Monte Carlo Simulation Designs
-
SimExtract()
- Function to extract extra information from SimDesign objects
-
SimFunctions()
- Template-based generation of the Generate-Analyse-Summarise functions
-
SimResults()
- Function to read in saved simulation results
-
SimShiny()
- Generate a basic Monte Carlo simulation GUI template
-
SimSolve()
summary(<SimSolve>)
plot(<SimSolve>)
- One Dimensional Root (Zero) Finding in Simulation Experiments
-
Summarise()
- Summarise simulated data using various population comparison statistics
-
addMissing()
- Add missing values to a vector given a MCAR, MAR, or MNAR scheme
-
bias()
- Compute (relative/standardized) bias summary statistic
-
bootPredict()
boot_predict()
- Compute prediction estimates for the replication size using bootstrap MSE estimates
-
clusterSetRNGSubStream()
- Set RNG sub-stream for Pierre L'Ecuyer's RngStreams
-
createDesign()
print(<Design>)
`[`(<Design>)
rbind(<Design>)
- Create the simulation design object
-
expandDesign()
- Create the simulation design object
-
genSeeds()
gen_seeds()
- Generate random seeds
-
getArrayID()
- Get job array ID (e.g., from SLURM or other HPC array distributions)
-
manageMessages()
- Increase the intensity or suppress the output of an observed message
-
manageWarnings()
- Manage specific warning messages
-
nc()
- Auto-named Concatenation of Vector or List
-
quiet()
- Suppress verbose function messages
-
rHeadrick()
- Generate non-normal data with Headrick's (2002) method
-
rValeMaurelli()
- Generate non-normal data with Vale & Maurelli's (1983) method
-
rbind(<SimDesign>)
- Combine two separate SimDesign objects by row
-
reSummarise()
- Run a summarise step for results that have been saved to the hard drive
-
rejectionSampling()
- Rejection sampling (i.e., accept-reject method)
-
rint()
- Generate integer values within specified range
-
rinvWishart()
- Generate data with the inverse Wishart distribution
-
rmgh()
- Generate data with the multivariate g-and-h distribution
-
rmvnorm()
- Generate data with the multivariate normal (i.e., Gaussian) distribution
-
rmvt()
- Generate data with the multivariate t distribution
-
rtruncate()
- Generate a random set of values within a truncated range
-
runArraySimulation()
- Run a Monte Carlo simulation using array job submissions per condition
-
runSimulation()
summary(<SimDesign>)
print(<SimDesign>)
- Run a Monte Carlo simulation given conditions and simulation functions
-
timeFormater()
- Format time string to suitable numeric output