Computes the average absolute deviation of a sample estimate from the parameter value. Accepts estimate and parameter values, as well as estimate values which are in deviation form.
Arguments
- estimate
a
numeric
vector,matrix
/data.frame
, orlist
of parameter estimates. If a vector, the length is equal to the number of replications. If amatrix
/data.frame
the number of rows must equal the number of replications.list
objects will be looped over using the same rules after above after first translating the information into one-dimensional vectors and re-creating the structure upon return- parameter
a
numeric
scalar/vector ormatrix
indicating the fixed parameter values. If a single value is supplied andestimate
is amatrix
/data.frame
then the value will be recycled for each column; otherwise, each element will be associated with each respective column in theestimate
input. IfNULL
, then it will be assumed that theestimate
input is in a deviation form (thereforemean(abs(estimate))
will be returned)- type
type of deviation to compute. Can be
'MAE'
(default) for the mean absolute error,'NMSE'
for the normalized MAE (MAE / (max(estimate) - min(estimate))), or'SMSE'
for the standardized MAE (MAE / sd(estimate))- percent
logical; change returned result to percentage by multiplying by 100? Default is FALSE
- unname
logical; apply
unname
to the results to remove any variable names?
References
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
doi:10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
doi:10.1080/10691898.2016.1246953
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
pop <- 1
samp <- rnorm(100, 1, sd = 0.5)
MAE(samp, pop)
#> [1] 0.3545376
dev <- samp - pop
MAE(dev)
#> [1] 0.3545376
MAE(samp, pop, type = 'NMAE')
#> [1] 0.1193529
MAE(samp, pop, type = 'SMAE')
#> [1] 0.7859817
# matrix input
mat <- cbind(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
MAE(mat, parameter = 2)
#> M1 M2
#> 0.4552233 0.8681354
# same, but with data.frame
df <- data.frame(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
MAE(df, parameter = c(2,2))
#> M1 M2
#> 0.4040587 0.7386515
# parameters of the same size
parameters <- 1:10
estimates <- parameters + rnorm(10)
MAE(estimates, parameters)
#> [1] 0.8352983