Function for decomposing the simulation into ANOVA-based effect sizes
Source:R/SimAnova.R
SimAnova.Rd
Given the results from a simulation with runSimulation
form an ANOVA table (without
p-values) with effect sizes based on the eta-squared statistic. These results provide approximate
indications of observable simulation effects, therefore these ANOVA-based results are generally useful
as exploratory rather than inferential tools.
Arguments
- formula
an R formula generally of a form suitable for
lm
oraov
. However, if the dependent variable (left size of the equation) is omitted then all the dependent variables in the simulation will be used and the result will return a list of analyses- dat
an object returned from
runSimulation
of class'SimDesign'
- subset
an optional argument to be passed to
subset
with the same name. Used to subset the results object while preserving the associated attributes- rates
logical; does the dependent variable consist of rates (e.g., returned from
ECR
orEDR
)? Default is TRUE, which will use the logit of the DV to help stabilize the proportion-based summary statistics when computing the parameters and effect sizes
References
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
doi:10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
doi:10.1080/10691898.2016.1246953
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
data(BF_sim)
# all results (not usually good to mix Power and Type I results together)
SimAnova(alpha.05.F ~ (groups_equal + distribution)^2, BF_sim)
#> SS df MS F p sig eta.sq eta.sq.part
#> groups_equal 0.080 1 0.080 0.022 0.885 . 0.001 0.001
#> distribution 17.790 3 5.930 1.590 0.223 . 0.192 0.193
#> groups_equal:distribution 0.006 3 0.002 0.001 1.000 . 0.000 0.000
#> Residuals 74.598 20 3.730 NA NA 0.806 NA
# only use anova for Type I error conditions
SimAnova(alpha.05.F ~ (groups_equal + distribution)^2, BF_sim, subset = var_ratio == 1)
#> SS df MS F p sig eta.sq eta.sq.part
#> groups_equal 0.027 1 0.027 0.281 0.610 . 0.001 0.034
#> distribution 30.755 3 10.252 108.101 0.000 *** 0.975 0.976
#> groups_equal:distribution 0.002 3 0.001 0.006 0.999 . 0.000 0.002
#> Residuals 0.759 8 0.095 NA NA 0.024 NA
# run all DVs at once using the same formula
SimAnova(~ groups_equal * distribution, BF_sim, subset = var_ratio == 1)
#> $alpha.05.F
#> SS df MS F p sig eta.sq eta.sq.part
#> groups_equal 0.027 1 0.027 0.281 0.610 . 0.001 0.034
#> distribution 30.755 3 10.252 108.101 0.000 *** 0.975 0.976
#> groups_equal:distribution 0.002 3 0.001 0.006 0.999 . 0.000 0.002
#> Residuals 0.759 8 0.095 NA NA 0.024 NA
#>
#> $alpha.05.Jacknife
#> SS df MS F p sig eta.sq eta.sq.part
#> groups_equal 0.077 1 0.077 3.644 0.093 . 0.016 0.313
#> distribution 4.462 3 1.487 70.265 0.000 *** 0.933 0.963
#> groups_equal:distribution 0.072 3 0.024 1.140 0.390 . 0.015 0.300
#> Residuals 0.169 8 0.021 NA NA 0.035 NA
#>
#> $alpha.05.Layard
#> SS df MS F p sig eta.sq eta.sq.part
#> groups_equal 0.004 1 0.004 0.056 0.818 . 0.000 0.007
#> distribution 10.111 3 3.370 46.579 0.000 *** 0.943 0.946
#> groups_equal:distribution 0.023 3 0.008 0.104 0.955 . 0.002 0.038
#> Residuals 0.579 8 0.072 NA NA 0.054 NA
#>
#> $alpha.05.Levene
#> SS df MS F p sig eta.sq eta.sq.part
#> groups_equal 0.024 1 0.024 1.615 0.239 . 0.006 0.168
#> distribution 4.263 3 1.421 93.943 0.000 *** 0.960 0.972
#> groups_equal:distribution 0.030 3 0.010 0.661 0.599 . 0.007 0.199
#> Residuals 0.121 8 0.015 NA NA 0.027 NA
#>
#> $alpha.05.W10
#> SS df MS F p sig eta.sq eta.sq.part
#> groups_equal 0.040 1 0.040 0.573 0.471 . 0.021 0.067
#> distribution 1.263 3 0.421 5.956 0.020 . 0.669 0.691
#> groups_equal:distribution 0.019 3 0.006 0.092 0.963 . 0.010 0.033
#> Residuals 0.566 8 0.071 NA NA 0.299 NA
#>
#> $alpha.05.W50
#> SS df MS F p sig eta.sq eta.sq.part
#> groups_equal 0.073 1 0.073 3.005 0.121 . 0.048 0.273
#> distribution 1.164 3 0.388 16.002 0.001 ** 0.763 0.857
#> groups_equal:distribution 0.095 3 0.032 1.304 0.338 . 0.062 0.328
#> Residuals 0.194 8 0.024 NA NA 0.127 NA
#>