Generate data with the multivariate normal (i.e., Gaussian) distribution
Source:R/rgenerate.R
rmvnorm.Rd
Function generates data from the multivariate normal distribution given some mean vector and/or covariance matrix.
References
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
doi:10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
doi:10.1080/10691898.2016.1246953
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
# random normal values with mean [5, 10] and variances [3,6], and covariance 2
sigma <- matrix(c(3,2,2,6), 2, 2)
mu <- c(5,10)
x <- rmvnorm(1000, mean = mu, sigma = sigma)
head(x)
#> [,1] [,2]
#> [1,] 6.060771 11.172431
#> [2,] 4.222922 9.918127
#> [3,] 6.189192 7.146768
#> [4,] 6.328861 7.243104
#> [5,] 4.874275 12.614418
#> [6,] 2.573901 9.202745
summary(x)
#> V1 V2
#> Min. : 0.008016 Min. : 1.091
#> 1st Qu.: 3.779530 1st Qu.: 8.364
#> Median : 5.018941 Median :10.009
#> Mean : 4.927963 Mean : 9.975
#> 3rd Qu.: 6.062034 3rd Qu.:11.546
#> Max. :10.018291 Max. :17.717
plot(x[,1], x[,2])