Skip to contents

Efficiently generate positive and negative integer values with (default) or without replacement. This function is mainly a wrapper to the sample.int function (which itself is much more efficient integer sampler than the more general sample), however is intended to work with both positive and negative integer ranges since sample.int only returns positive integer values that must begin at 1L.

Usage

rint(n, min, max, replace = TRUE, prob = NULL)

Arguments

n

number of samples to draw

min

lower limit of the distribution. Must be finite

max

upper limit of the distribution. Must be finite

replace

should sampling be with replacement?

prob

a vector of probability weights for obtaining the elements of the vector being sampled

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280. doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simulation. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Author

Phil Chalmers rphilip.chalmers@gmail.com

Examples


set.seed(1)

# sample 1000 integer values within 20 to 100
x <- rint(1000, min = 20, max = 100)
summary(x)
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>   20.00   40.00   59.00   59.55   79.25  100.00 

# sample 1000 integer values within 100 to 10 billion
x <- rint(1000, min = 100, max = 1e8)
summary(x)
#>     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
#>     2499 25538779 48425070 49782329 75851586 99994040 

# compare speed to sample()
system.time(x <- rint(1000, min = 100, max = 1e8))
#>    user  system elapsed 
#>       0       0       0 
system.time(x2 <- sample(100:1e8, 1000, replace = TRUE))
#>    user  system elapsed 
#>   0.001   0.000   0.001 

# sample 1000 integer values within -20 to 20
x <- rint(1000, min = -20, max = 20)
summary(x)
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#> -20.000 -10.250   0.000   0.067  11.000  20.000