Computes the relative difference statistic of the form (est - pop)/ pop
, which
is equivalent to the form est/pop - 1
. If matrices are supplied then
an equivalent matrix variant will be used of the form
(est - pop) * solve(pop)
. Values closer to 0 indicate better
relative parameter recovery. Note that for single variable inputs this is equivalent to
bias(..., type = 'relative')
.
RD(est, pop, as.vector = TRUE, unname = FALSE)
a numeric
vector, matrix/data.frame
, or list
containing
the parameter estimates
a numeric
vector or matrix containing the true parameter values. Must be
of comparable dimension to est
logical; always wrap the result in a as.vector
function
before returning?
logical; apply unname
to the results to remove any variable
names?
returns a vector
or matrix
depending on the inputs and whether
as.vector
was used
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
doi:10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
doi:10.1080/10691898.2016.1246953
# vector
pop <- seq(1, 100, length.out=9)
est1 <- pop + rnorm(9, 0, .2)
(rds <- RD(est1, pop))
#> [1] -0.1221416359 -0.0001433052 0.0014094503 0.0001416364 0.0046819446
#> [6] 0.0029448524 0.0022352420 -0.0015123786 0.0017933783
summary(rds)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.1221416 -0.0001433 0.0014095 -0.0122879 0.0022352 0.0046819
# matrix
pop <- matrix(c(1:8, 10), 3, 3)
est2 <- pop + rnorm(9, 0, .2)
RD(est2, pop, as.vector = FALSE)
#> [,1] [,2] [,3]
#> [1,] 0.04717509 -0.2042294 0.1239549
#> [2,] 0.17461297 -0.6481818 0.4303047
#> [3,] 0.38129425 -1.0145981 0.5729735
(rds <- RD(est2, pop))
#> [1] 0.04717509 0.17461297 0.38129425 -0.20422939 -0.64818184 -1.01459805
#> [7] 0.12395488 0.43030474 0.57297354
summary(rds)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -1.01460 -0.20423 0.12395 -0.01519 0.38129 0.57297