Computes the congruence coefficient, also known as an "unadjusted" correlation or Tucker's congruence coefficient.
CC(x, y = NULL, unname = FALSE)
a vector or data.frame
/matrix
containing the
variables to use. If a vector then the input y
is required,
otherwise the congruence coefficient is computed for all bivariate
combinations
(optional) the second vector input to use if
x
is a vector
logical; apply unname
to the results to remove any variable
names?
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
doi:10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
doi:10.1080/10691898.2016.1246953
vec1 <- runif(1000)
vec2 <- runif(1000)
CC(vec1, vec2)
#> [1] 0.7555849
# compare to cor()
cor(vec1, vec2)
#> [1] 0.01474897
# column input
df <- data.frame(vec1, vec2, vec3 = runif(1000))
CC(df)
#> vec1 vec2 vec3
#> vec1 1.0000000 0.7555849 0.7543060
#> vec2 0.7555849 1.0000000 0.7564529
#> vec3 0.7543060 0.7564529 1.0000000
cor(df)
#> vec1 vec2 vec3
#> vec1 1.00000000 0.01474897 0.02617410
#> vec2 0.01474897 1.00000000 0.02597289
#> vec3 0.02617410 0.02597289 1.00000000