Computes the congruence coefficient, also known as an "unadjusted" correlation or Tucker's congruence coefficient.
Arguments
- x
a vector or
data.frame
/matrix
containing the variables to use. If a vector then the inputy
is required, otherwise the congruence coefficient is computed for all bivariate combinations- y
(optional) the second vector input to use if
x
is a vector- unname
logical; apply
unname
to the results to remove any variable names?
References
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
doi:10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
doi:10.1080/10691898.2016.1246953
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
vec1 <- runif(1000)
vec2 <- runif(1000)
CC(vec1, vec2)
#> [1] 0.7539623
# compare to cor()
cor(vec1, vec2)
#> [1] 0.009919872
# column input
df <- data.frame(vec1, vec2, vec3 = runif(1000))
CC(df)
#> vec1 vec2 vec3
#> vec1 1.0000000 0.7539623 0.7528033
#> vec2 0.7539623 1.0000000 0.7574734
#> vec3 0.7528033 0.7574734 1.0000000
cor(df)
#> vec1 vec2 vec3
#> vec1 1.000000000 0.009919872 0.02368507
#> vec2 0.009919872 1.000000000 0.02560829
#> vec3 0.023685075 0.025608293 1.00000000