This function generates suitable stand-alone code from the shiny
package to create simple
web-interfaces for performing single condition Monte Carlo simulations. The template
generated is relatively minimalistic, but allows the user to quickly and easily
edit the saved files to customize the associated shiny elements as they see fit.
Usage
SimShiny(filename = NULL, dir = getwd(), design, ...)
Arguments
- filename
an optional name of a text file to save the server and UI components (e.g., 'mysimGUI.R'). If omitted, the code will be printed to the R console instead
- dir
the directory to write the files to. Default is the working directory
- design
design
object fromrunSimulation
- ...
arguments to be passed to
runSimulation
. Note that thedesign
object is not used directly, and instead provides options to be selected in the GUI
References
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
doi:10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
doi:10.1080/10691898.2016.1246953
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
if (FALSE) { # \dontrun{
Design <- createDesign(sample_size = c(30, 60, 90, 120),
group_size_ratio = c(1, 4, 8),
standard_deviation_ratio = c(.5, 1, 2))
Generate <- function(condition, fixed_objects) {
N <- condition$sample_size
grs <- condition$group_size_ratio
sd <- condition$standard_deviation_ratio
if(grs < 1){
N2 <- N / (1/grs + 1)
N1 <- N - N2
} else {
N1 <- N / (grs + 1)
N2 <- N - N1
}
group1 <- rnorm(N1)
group2 <- rnorm(N2, sd=sd)
dat <- data.frame(group = c(rep('g1', N1), rep('g2', N2)), DV = c(group1, group2))
dat
}
Analyse <- function(condition, dat, fixed_objects) {
welch <- t.test(DV ~ group, dat)
ind <- t.test(DV ~ group, dat, var.equal=TRUE)
# In this function the p values for the t-tests are returned,
# and make sure to name each element, for future reference
ret <- c(welch = welch$p.value, independent = ind$p.value)
ret
}
Summarise <- function(condition, results, fixed_objects) {
#find results of interest here (e.g., alpha < .1, .05, .01)
ret <- EDR(results, alpha = .05)
ret
}
# test that it works
# Final <- runSimulation(design=Design, replications=5,
# generate=Generate, analyse=Analyse, summarise=Summarise)
# print code to console
SimShiny(design=Design, generate=Generate, analyse=Analyse,
summarise=Summarise, verbose=FALSE)
# save shiny code to file
SimShiny('app.R', design=Design, generate=Generate, analyse=Analyse,
summarise=Summarise, verbose=FALSE)
# run the application
shiny::runApp()
shiny::runApp(launch.browser = TRUE) # in web-browser
} # }