Compute the relative performance behavior of collections of standard errors
Source:R/summary_functions.R
MSRSE.Rd
The mean-square relative standard error (MSRSE) compares standard error estimates to the standard deviation of the respective parameter estimates. Values close to 1 indicate that the behavior of the standard errors closely matched the sampling variability of the parameter estimates.
Arguments
- SE
a
numeric
scalar/vector indicating the average standard errors across the replications, or amatrix
of collected standard error estimates themselves to be used to compute the average standard errors. Each column/element in this input corresponds to the column/element inSD
- SD
a
numeric
scalar/vector indicating the standard deviation across the replications, or amatrix
of collected parameter estimates themselves to be used to compute the standard deviations. Each column/element in this input corresponds to the column/element inSE
- percent
logical; change returned result to percentage by multiplying by 100? Default is FALSE
- unname
logical; apply
unname
to the results to remove any variable names?
Value
returns a vector
of ratios indicating the relative performance
of the standard error estimates to the observed parameter standard deviation.
Values less than 1 indicate that the standard errors were larger than the standard
deviation of the parameters (hence, the SEs are interpreted as more conservative),
while values greater than 1 were smaller than the standard deviation of the
parameters (i.e., more liberal SEs)
Details
Mean-square relative standard error (MSRSE) is expressed as
$$MSRSE = \frac{E(SE(\psi)^2)}{SD(\psi)^2} = \frac{1/R * \sum_{r=1}^R SE(\psi_r)^2}{SD(\psi)^2}$$
where \(SE(\psi_r)\) represents the estimate of the standard error at the \(r\)th simulation replication, and \(SD(\psi)\) represents the standard deviation estimate of the parameters across all \(R\) replications. Note that \(SD(\psi)^2\) is used, which corresponds to the variance of \(\psi\).
References
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
doi:10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
doi:10.1080/10691898.2016.1246953
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
Generate <- function(condition, fixed_objects) {
X <- rep(0:1, each = 50)
y <- 10 + 5 * X + rnorm(100, 0, .2)
data.frame(y, X)
}
Analyse <- function(condition, dat, fixed_objects) {
mod <- lm(y ~ X, dat)
so <- summary(mod)
ret <- c(SE = so$coefficients[,"Std. Error"],
est = so$coefficients[,"Estimate"])
ret
}
Summarise <- function(condition, results, fixed_objects) {
MSRSE(SE = results[,1:2], SD = results[,3:4])
}
results <- runSimulation(replications=500, generate=Generate,
analyse=Analyse, summarise=Summarise)
#>
#>
Replications: 500; RAM Used: 131.2 Mb;
#> Conditions: dummy_run=NA
#>
results
#> # A tibble: 1 × 7
#> `SE.(Intercept)` SE.X REPLICATIONS SIM_TIME RAM_USED SEED COMPLETED
#> <dbl> <dbl> <dbl> <chr> <chr> <int> <chr>
#> 1 0.98822 1.1781 500 0.49s 132.3 Mb 402147477 Sat Dec 14 1…