Function generates data from the multivariate t distribution given a covariance matrix, non-centrality parameter (or mode), and degrees of freedom.
Arguments
- n
number of observations to generate
- sigma
positive definite covariance matrix
- df
degrees of freedom.
df = 0
anddf = Inf
corresponds to the multivariate normal distribution- delta
the vector of non-centrality parameters of length
n
which specifies the either the modes (default) or non-centrality parameters- Kshirsagar
logical; triggers whether to generate data with non-centrality parameters or to adjust the simulated data to the mode of the distribution. The default uses the mode
References
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
doi:10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
doi:10.1080/10691898.2016.1246953
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
# random t values given variances [3,6], covariance 2, and df = 15
sigma <- matrix(c(3,2,2,6), 2, 2)
x <- rmvt(1000, sigma = sigma, df = 15)
head(x)
#> [,1] [,2]
#> [1,] 1.1355823 -1.511125
#> [2,] 4.2293566 3.520368
#> [3,] 1.4742611 -2.296661
#> [4,] 0.4845494 -0.982761
#> [5,] -0.4792007 -3.010312
#> [6,] -1.8363903 -1.736213
summary(x)
#> V1 V2
#> Min. :-6.15834 Min. :-10.22541
#> 1st Qu.:-1.27204 1st Qu.: -1.86951
#> Median :-0.06571 Median : -0.13726
#> Mean :-0.05165 Mean : -0.06365
#> 3rd Qu.: 1.23916 3rd Qu.: 1.80329
#> Max. : 8.84541 Max. : 10.35493
plot(x[,1], x[,2])