Generate()
function should be executedR/GenerateIf.R
GenerateIf.Rd
This function is designed to prevent specific generate function executions when the
design conditions are not met. Primarily useful when the generate
argument to
runSimulation
was input as a named list object, however should only be
applied for some specific design condition (otherwise, the data generation moves to the
next function in the list).
GenerateIf(x, condition = NULL)
logical statement to evaluate. If the statement evaluates to TRUE
then the remainder of the defined function will be evaluated
(optional) the current design condition. This does not need to be supplied
if the expression in x
evaluates to valid logical (e.g., use Attach(condition)
prior to using AnalyseIf
, or use with(condition, AnalyseIf(someLogicalTest))
)
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
doi:10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
doi:10.1080/10691898.2016.1246953
if (FALSE) { # \dontrun{
# SimFunctions(nGenerate = 2)
Design <- createDesign(N=c(10,20,30), var.equal = c(TRUE, FALSE))
Generate.G1 <- function(condition, fixed_objects) {
GenerateIf(condition$var.equal == FALSE) # only run when unequal vars
Attach(condition)
dat <- data.frame(DV = c(rnorm(N), rnorm(N, sd=2)),
IV = gl(2, N, labels=c('G1', 'G2')))
dat
}
Generate.G2 <- function(condition, fixed_objects) {
Attach(condition)
dat <- data.frame(DV = rnorm(N*2), IV = gl(2, N, labels=c('G1', 'G2')))
dat
}
# always run this analysis for each row in Design
Analyse <- function(condition, dat, fixed_objects) {
mod <- t.test(DV ~ IV, data=dat)
mod$p.value
}
Summarise <- function(condition, results, fixed_objects) {
ret <- EDR(results, alpha=.05)
ret
}
#-------------------------------------------------------------------
# append names 'Welch' and 'independent' to associated output
res <- runSimulation(design=Design, replications=1000,
generate=list(G1=Generate.G1, G2=Generate.G2),
analyse=Analyse,
summarise=Summarise)
res
} # }