Computes the relative efficiency given the RMSE (default) or MSE values for multiple estimators.
Arguments
- x
a
numeric
vector of root mean square error values (seeRMSE
), where the first element will be used as the reference. Otherwise, the object could contain MSE values if the flagMSE = TRUE
is also included- MSE
logical; are the input value mean squared errors instead of root mean square errors?
- percent
logical; change returned result to percentage by multiplying by 100? Default is FALSE
- unname
logical; apply
unname
to the results to remove any variable names?
Value
returns a vector
of variance ratios indicating the relative efficiency compared
to the first estimator. Values less than 1 indicate better efficiency than the first
estimator, while values greater than 1 indicate worse efficiency than the first estimator
References
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
doi:10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
doi:10.1080/10691898.2016.1246953
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
pop <- 1
samp1 <- rnorm(100, 1, sd = 0.5)
RMSE1 <- RMSE(samp1, pop)
samp2 <- rnorm(100, 1, sd = 1)
RMSE2 <- RMSE(samp2, pop)
RE(c(RMSE1, RMSE2))
#> [1] 1.000000 4.072193
RE(c(RMSE1, RMSE2), percent = TRUE) # as a percentage
#> [1] 100.0000 407.2193
# using MSE instead
mse <- c(RMSE1, RMSE2)^2
RE(mse, MSE = TRUE)
#> [1] 1.000000 4.072193