Computes the relative standard error ratio given the set of estimated standard errors (SE) and the deviation across the R simulation replications (SD). The ratio is formed by finding the expectation of the SE terms, and compares this expectation to the general variability of their respective parameter estimates across the R replications (ratio should equal 1). This is used to roughly evaluate whether the SEs being advertised by a given estimation method matches the sampling variability of the respective estimates across samples.
RSE(SE, ests, unname = FALSE)
a numeric
matrix of SE estimates across the replications (extracted
from the results
object in the Summarise step). Alternatively, can be a vector containing
the mean of the SE estimates across the R simulation replications
a numeric
matrix object containing the parameter estimates under investigation
found within the Summarise
function. This input is used to compute the
standard deviation/variance estimates for each column to evaluate how well the expected SE
matches the standard deviation
logical; apply unname
to the results to remove any variable
names?
returns vector of variance ratios, (RSV = SE^2/SD^2)
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
doi:10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
doi:10.1080/10691898.2016.1246953
R <- 10000
par_ests <- cbind(rnorm(R), rnorm(R, sd=1/10),
rnorm(R, sd=1/15))
colnames(par_ests) <- paste0("par", 1:3)
(SDs <- colSDs(par_ests))
#> par1 par2 par3
#> 1.00233527 0.09950858 0.06682729
SEs <- cbind(1 + rnorm(R, sd=.01),
1/10 + + rnorm(R, sd=.01),
1/15 + rnorm(R, sd=.01))
(E_SEs <- colMeans(SEs))
#> [1] 1.00018554 0.10001727 0.06673456
RSE(SEs, par_ests)
#> par1 par2 par3
#> 0.9978553 1.0051120 0.9986124
# equivalent to the form
colMeans(SEs) / SDs
#> par1 par2 par3
#> 0.9978553 1.0051120 0.9986124