p-values associated with linear regression model using fixed/random independent variables. Focus is on the omnibus behavior of the R^2 statistic.
Usage
p_lm.R2(
n,
R2,
k,
R2_0 = 0,
k.R2_0 = 0,
R2.resid = 1 - R2,
fixed = TRUE,
return_analysis = FALSE,
...
)Arguments
- n
sample size
- R2
R-squared effect size
- k
number of IVs
- R2_0
null hypothesis for R-squared
- k.R2_0
number of IVs associated with the null hypothesis model
- R2.resid
residual R-squared value, typically used when comparing nested models when fit sequentially (e.g., comparing model A vs B when model involves the structure A -> B -> C)
- fixed
logical; if FALSE then the data are random generated according to a joint multivariate normal distribution
- return_analysis
logical; return the analysis object for further extraction and customization?
- ...
additional arguments to be passed to
gen_fun. Not used unless a customizedgen_funis defined
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
# 5 fixed IVs, R^2 = .1, sample size of 95
p_lm.R2(n=95, R2=.1, k=5)
#> [1] 0.237872
# random model
p_lm.R2(n=95, R2=.1, k=5, fixed=FALSE)
#> [1] 0.0004204452
# return analysis model
p_lm.R2(n=95, R2=.1, k=5, return_analysis=TRUE)
#>
#> Call:
#> lm(formula = y ~ ., data = df)
#>
#> Coefficients:
#> (Intercept) X1 X2 X3 X4 X5
#> -0.04910 0.17532 -0.17560 -0.01870 0.08196 0.06008
#>